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Abstract

The basis of (default) negative in-
formation in the well-founded se-
mantics is given by the so-called
unfounded sets, used to complete
missing information from a program
through a kind of pessimistic as-
sumption. We extend this con-
cept by considering optimistic, pes-
simistic, skeptical and inconsistent
assumptions in the context of mul-
tivalued logics given by bilattices.
The extended well-founded seman-
tics we define for general logic pro-
grams in bilattices is capable to ex-
press imperfect information consid-
ered to be missing/incomplete, un-
certain and/or inconsistent. We pro-
vide a method of computing the se-
mantics and show that, for different
assumptions, it captures the Kripke-
Kleene semantics, the well-founded
semantics and Fitting’s least multi-
valued stable model. We show also
that the complexity of the computa-
tion of our semantics is polynomial
time in a useful class of so-called lim-
ited bilattices.

Keywords: logic programs, imper-
fect information, multivalued logics,
bilattices, assumptions

1 Introduction

One of the most used assumptions in logic
programming and deductive databases is the

so-called Closed World Assumption (CWA),
according to which the atoms that cannot be
inferred with the rules are considered to be
false (i.e. a pessimistic assumption). Such
assumptions are needed as the conventional
logic programs with negation can be seen as
incomplete logic theories, i.e. we cannot al-
ways infer any ground atom A or its negation
from a logic program. In order to enrich such
a theory we can make assumptions on the log-
ical values of atoms that cannot be inferred
from the rules. This is similar to the process
of reasoning by default.

One of the most successful semantics of con-
ventional logic programs based on the CWA is
the well-founded semantics [19]. However, the
CWA is not applicable in all circumstances
when information is handled, as for example
in a legal case, where a person should be con-
sidered innocent unless the contrary is proved
(i.e. an optimistic assumption). That is, all
the semantics based on the CWA, in particu-
lar the well-founded semantics, would behave
inadequately in such a case.

In this paper we extend the well-founded se-
mantics definition in order for it to be based
also on alternative assumptions, in particu-
lar on an optimistic assumption, according to
which, if in doubt then assume true.

Let us illustrate this using the following legal
case example represented through the set of
rules and facts P :

charge(X) + suspect(X) A ~innocent(X)
free(X) + suspect(X) A innocent(X)
innocent(X) + 3Y(alibi(X,Y) A —relatives(X,Y))
suspect(John) <« true



The only assertion made in the program is
that John is suspect, but we know nothing as
to whether he is innocent.

If we consider the pessimistic assumption,
then we are led to assume that John is not
innocent, and we can infer that John must
not be freed, and must be charged. If, on
the other hand, we consider the skeptical as-
sumption, i.e. we assume nothing about the
innocence of John, then we can infer nothing
as to whether he must be freed or charged.

If we consider the optimistic assumption then
innocent(John) is true and we can infer that
John must be freed, and must not be charged.

A fourth approach, less intuitive than the pre-
vious ones, is that in which in doubt we as-
sume the value inconsistent (i.e. an inconsis-
tent assumption). Let us consider the prob-
lem of information integration from multi-
ple sources which may be mutually contradic-
tory. This situation is common, as the sources
are independent, so contradictions may arise.
While querying such integration systems it
may happen that some sources would be tem-
porarily unreachable (e.g. connection prob-
lems, etc) so some inconsistencies may have
been omitted from the result to a query. If
the use of consistent integrated information
(that is, the information on which the sources
agree) is essential for the application, then
a solution would be to compute and use the
part of the answer which is safely consistent.
We can do this by considering the worst case,
i.e. by assuming that the part of the answer
based on unreachable sources is to be consid-
ered inconsistent, and rely only on the part
that remains consistent. That is, if in doubt
we privilege the inconsistency.

Considering our previous example, if we
choose the inconsistent assumption then we
get suspect(John) is true, innocent(John),

free(John), charge(John) and all the other
ground atoms are all inconsistent.

The basis of (default) negative information in
the well-founded semantics is given by the so-
called unfounded sets [19]. We extend this
concept by considering as default value for
underivable atoms any element of Belnap’s

four-valued logic [4]: true, false, unknown
and inconsistent. Thus we make an opti-
mistic, pessimistic, skeptical and inconsistent
assumption, respectively, that will be incor-
porated elegantly in the definition of the well-
founded semantics. Apart the generalization,
the difference between the definition in [19]
and ours is that the first one has rather a syn-
tactic flavour, while the second has a semantic
flavour. Expressing this concept in a semantic
manner allows an elegant extension.

As our previous discussion shows, the logic
we will consider contains at least four logical
values, corresponding to the four mentioned
assumptions. However, in fact many real life
situations require processing of imperfect in-
formation, that is incomplete, inconsistent,
and/or uncertain/imprecise. The use of mul-
tivalued logics to express the imperfection of
information may be needed. In order to illus-
trate this idea we use the following example.

Suppose we combine information from two
sources that are the experts £ and FEy which
express their opinion on a statement A. It
may be that the two experts are not sure
about the truthness of A, due to the imper-
fection of the available knowledge. The first
expert may believe that A is true with a de-
gree of 0.6 of confidence (so there is a degree
of 0.4 of doubt), while the second expert may
believe that A is true with a degree of 0.8
of confidence (so there is a degree of 0.2 of
doubt). If we want to combine the informa-
tion obtained from the two experts, a natu-
ral way would be to consider the consensus
of their beliefs: A is true with a degree of
confidence of 0.6, and a degree of doubt of
0.2. That is, the pair (0.6,0.2) would express
the maximal confidence and doubt the two
experts agree on. We see such pairs of reals
between 0 and 1, expressing degrees of confi-
dence and doubt (note that they are not nec-
essarily complementary w.r.t. 1), as logical
values, and we call the space of these logi-
cal values the confidence-doubt logic - let us
denote it by £°P. We have two orders on
LP | namely the truth and knowledge orders
denoted <; and <y, respectively, defined as
follows: (z,y) <; (z,w) iff z < z and w < y,



and (z,y) <x (z,w) iff z < z and y < w,
where < is the usual order between reals. In-
tuitively speaking, an increase in the truth
order corresponds to an increase in the de-
gree of confidence and a decrease in the de-
gree of doubt, while an increase in the knowl-
edge order corresponds to an increase in both
the degree of confidence and the degree of
doubt. The least and greatest elements un-
der <; are (0,1) and (1,0), representing no
confidence, full doubt, and full confidence,
no doubt, respectively. They may be iden-
tified with the classical logical values false
and true. The least and greatest elements
under < are (0,0) and (1, 1), representing no
confidence, no doubt, and full confidence, full
doubt, respectively. They may be identified
with the logical values unknown (denoted L)
and inconsistent (denoted T).

Note that £°P has an interesting double al-
gebraic structure of lattice (given by the two
orders). Such a structure is captured by the
concept of bilattice [13]. Bilattices will be
used here as multivalued logics in which we
define the extended well-founded semantics of
extended logic programs. The four assump-
tions to be considered correspond to a param-
eter a whose value can be true, false, 1 or
T (which, as we have seen in the example of
the confidence-doubt logic, are the extreme
values of the bilattice). Once fixed, the value
of « represents the “default value” for those
atoms of a program that cannot be inferred
from the rules. If we want to work under a
particular assumption, we choose the appro-
priate value for o, namely true for the opti-
mistic assumption, false for the pessimistic
assumption, | for the skeptical assumption
and T for the inconsistent assumption.

We show that, for the pessimistic assumption
our extended well-founded semantics captures
the conventional well-founded semantics [19]
and one of the Fitting’s multivalued stable
models [8], while for the skeptical assumption
our semantics captures the Kripke-Kleene se-
mantics [6].

The paper is organized as follows. In Section
2 we define the extended programs in multi-
valued logics expressed as bilattices. In Sec-
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Figure 1: The logic FOUR

tion 3 we define our extended well-founded
semantics providing a method to compute it,
and we show that it can be obtained in poly-
nomial time with respect to the size of the set
of facts from the program. Finally we present
related work and concluding remarks in Sec-
tion 4.

2 Preliminaries

2.1 Bilattices

If we consider the four extreme logical val-
ues from the confidence-doubt logic L¢P pre-
sented in the introduction, then we get Bel-
nap’s four-valued logic [4], called FOUR,
which is depicted in Figure 1. The horizontal
axis shows an increase in the degree of truth,
while the vertical axis shows an increase in
the degree of knowledge. As seen above, the
confidence-doubt and Belnap’s logics have an
interesting algebraic structure of double lat-
tice w.r.t. the truth and knowledge orders.
This structure is captured by the concept of
bilattice introduced in [13], defined as follows.

Definition 1 A bilattice is a triple (B, <y, <g
), where B is a nonempty set, and <; and
< are partial orders each giving B the struc-
ture of a lattice with a least and greatest ele-
ments.

For the bilattice B, join and meet under <; are
denoted V and A (called extended disjunction
and conjunction), and join and meet under
<) are denoted @ and ® (called gullibility
and consensus). The greatest and least ele-
ments under <; are denoted true and false,
and the greatest and least elements under <



are denoted T and 1. Note that the opera-
tions V,A,® and ® are monotone w.r.t. the
truth and knowledge orders.

A bilattice has a negation, denoted -, if —
is a unary operation which is antimonotone
w.r.t. the truth order and monotone w.r.t.
the knowledge order. In addition —true =
false, = false = true, -1 = 1 and =T =T.
Note that — is an extension of the negation in
the two-valued logic.

Note that the binary operations (taking into
account the two orders) and the negation of
the bilattice L¢P are given as follows:

(z,y) A (z,w) = (min(z, z), maz(y, w)),
(z,y) V (z,w) = (maz(z,z), min(y, w)),
(z,y) ® (z,w) = (min(z,z), min(y, w)),
(x,y) & (z,w) = (maz(z,z), maz(y, w)) and
~(z,y) = (y,z)-

Note that the operation used in the introduc-
tion to combine the two experts’ opinions is
®, that is the consensus.

A bilattice is said to be distributive if all the
distributive laws built with the extended con-
junction and disjunction, consensus and gulli-
bility, hold. Note that the bilattices FOUR
and L£EP are distributive.

We use bilattices as spaces of logical values for
the extended programs we define in the next
subsection.

We introduce the concept of limited bilattice,
used when we evaluate the complexity of the
evaluation of the semantics we will introduce.

Definition 2 The bilattice B is limited if
there exists a polynom p such that for any set
of elements A = {a1,...,a,} from B, the clo-
sure of A w.r.t. the bilattice operations has
no more than p(n) elements.

A trivial subclass of limited bilattices is that
of the finite bilattices, obviously.
the limited bilattices class contains also in-
finite bilattices, as the following proposition
shows:

However,

Proposition 1 The confidence-doubt logic
LEP is a limited bilattice.

2.2 Extended programs

Conventional logic programming has the set
{false,true} as its intended space of truth
values, but since not every query may pro-
duce an answer, partial models are often al-
lowed (i.e. L is added). If we want to deal
with inconsistency as well, then T must be
added. Fitting extended the notion of logic
program, that we will call extended program,
to bilattices as follows. Let B be a distributive
bilattice with negation.

Definition 3 [7]

- A formula is an expression built up
from literals and elements of B, wusing
AV, ®,®,-,3,V.

- A clause or rule r is of the form
P(z1,...,xn) < ¢(z1, ...,y ) where the atomic
formula P(z1,...,z,) is the head, denoted by
head(r), and the formula ¢(z1,...,2,) is the
body, denoted by body(r). It is assumed
that the free variables of the body are among
L1yeery Ly

- A program is a finite set of clauses with
no predicate letter appearing in the head of
more than one clause (this apparent restric-
tion causes no loss of generality) .

Example 1 Let P be the following program con-
sidered in the context of the confidence-doubt logic
LEP, where all the atoms are ground:

A+~ (CeD)VB; B+ ~C,
D + D ® -A4; E + -C® ~F;
C+ CAE; F «+(0.7,0.1).

Note that the rule defining the atom F is a fact.
Here F will be assigned the logical value expressing
the grades of 0.7 confidence and 0.1 doubt.

A conventional logic program [7] is one whose
underlying truth-value space is the bilat-
tice FOUR and which does not involve
®,®,v, L, T.

3 Extended well-founded semantics
of extended programs

In the remaining of this paper, in order to sim-
plify the presentation, we assume that all ex-
tended programs are instantiated programs,
called simply programs.



3.1 Interpretations

We can extend the two orders on bilattice B to
the set of all interpretations over B, denoted
by V(B). An interpretation I of a program P
is defined as a partial function over the Her-
brand base HBp, and a completion of I is any
total interpretation I’ such that I(A) = I'(A),
for any atom A in the domain of definition of
I, denoted by def(I). When comparing inter-
pretations, we consider their least completion.
The least completion of an interpretation [ is
defined to be the completion J of I such that
J(A) = L, for every atom A not defined under
I.

Definition 4 Let Iy and Iy be two interpre-
tations having the least completions I} and I,
respectively. Then Iy <; Iy if I1(A) <; I}(A)
for all ground atoms A (and similarly for
<k)-

The total interpretations can be ex-
tended from atoms to formulas as fol-
IXANY) = I(X) ANI(Y) (and
similarly for the other bilattice opera-
tions), 1((32)¢(z)) = Vieor I(6(1)), and

I((Y2)p(z)) = MecrI(4(t)), where GT
stands for the set of all ground terms.

lows:

However we are interested to see now how
partial interpretations can be used to evalu-
ate formulas. If B is a closed formula then
we say that B evaluates to the logical value
B with respect to a partial interpretation I,
denoted by B = 8 w.rit. I, or by B =1 (3,
if J(B) = p for any completion J of I. The
following lemma provides an efficient method
of testing whether B =; 8 by computing the
logical value of the formula B w.r.t. only two
completions of the interpretation I.

Lemma 1 Let I, and It be two completions
of I defined as follows: I,(A) = L and
I+ (A) = T for every atom A of HBp not in
def(I). Then B =1 B iff I,(B) = IT(B) =
8.

We use also the concept of compatibility of
interpretations, defined naturally by:

Definition 5 The interpretations I and J
are said to be compatible if, for any atom

A, I(A) and J(A) are both defined implies
I(A) = J(A).

3.2 Semantics of extended programs

Given a program P, we consider two ways of
inferring new information from P. First by
activating the rules of P and deriving new in-
formation through an immediate consequence
operator T'. Second, by a kind of default rea-
soning based on the assumption we make in
each of the optimistic, pessimistic, skeptical
and inconsistent approaches, respectively.

The immediate consequence operator 1" that
we use takes as input an interpretation I and
returns an interpretation 7'(7), defined as fol-
lows: for all ground atoms A,

T(I)(A) = Bif (A « B € Pand B =1 p),
and is undefined, otherwise.

Example 2 below illustrates the computation
involved in one application of the operator 7.

Each assumption is expressed as a hypothesis
H® which formally is an interpretation I that
assigns the value a (for a = true, false, L
and T) to every atom of its domain of defini-
tion def(I). Roughly speaking, the hypoth-
esis concerns some of the atoms of the Her-
brand base whose logical values cannot be in-
ferred by rule activation.

Definition 6 Let P be a program and I a
partial interpretation. A hypothesis H* is
called sound (w.r.t. P and I) if the follow-
ing hold:

1. H* is compatible with I and

2. for every atom A in def(H®), if there
is a rule v of P with head(r) = A then
body(r) = a w.r.t. I UH®.

Intuitively the above definition says that a
sound hypothesis must succeed in being tested
against the sure knowledge provided by the
rules of P (condition (2)) and by a given
fixed interpretation I (condition (1)). Note
also that if we restrict our attention to con-
ventional logic programs, then the concept
of sound hypothesis for a = false reduces



to that of unfounded set of Van Gelder et
al. [19]. The difference is that the defini-
tion in [19] has rather a syntactic flavour,
while ours has a semantic flavour. More-
over, our definition not only extends the con-
cept of unfounded set to multivalued logics,
but also generalizes its definition w.r.t. the
optimistic, pessimistic, skeptical and incon-
sistent assumptions (corresponding to a =
true, false, L and T, respectively).

As we explained earlier, given a program P
and a partial interpretation I, we derive in-
formation in two manners: by activating the
rules (i.e. by applying the immediate con-
sequence operator to I) and by making a hy-
pothesis H* (obtained from one of the four as-
sumptions) and testing it against P and I. If
H“ passes the test then it is sound and the in-
formation represented by H* can be derived.
In the whole, the information that we derive
comes from 7'(I) and H?®, which are compat-
ible interpretations, as the following proposi-
tion states.

Proposition 2 If H* is sound w.r.t. the pro-
gram P and the interpretation I then T(I)
and H* are compatible.

We note that, for any given P, I and «, there
is at least one sound hypothesis H* (the ev-
erywhere undefined interpretation), thus the
set of sound hypotheses is nonempty. The fol-
lowing lemma shows that the union of two
sound hypotheses is a sound hypothesis:

Lemma 2 If HY and H$ are sound hypothe-
ses w.t.t. an interpretation I, so is their
union H U HS.

In fact, it is straightforward to extend this
lemma to the union of any set of sound hy-
potheses w.r.t. I. Therefore the class of sound
hypotheses has a greatest element which is ob-
tained by the union of all sound hypotheses
H* w.r.t. I, that we denote by HZ . (I):
Proposition 3 Let P, I and a be fized.
Then there is a sound hypothesis HS,.(I)
such that: T(I) UH® <, T(I) UHS,.(I), for
all sound hypotheses H* w.r.t. I.

Let us illustrate the concept through the ex-
ample below.

Example 2 Let P be the program considered in
Example 1 in the context of the confidence-doubt
logic LT and let us consider the interpretation:
- [ A B C D E F ]

(1,0) (1,0) (0,1) {0.7,0.1)
where the Herbrand base atoms are displayed on
the first row, and their corresponding logical val-
ues on the second row. Note that D and E are un-
defined under I, as no value corresponds to them.
Here A and B are interpreted as true (i.e. 1.0
confidence and 0 doubt), C is interpreted as false
(i.e. 0 confidence and 1.0 doubt) while F is as-
sociated with the grades of 0.7 confidence and 0.1
doubt.

If we wish to evaluate T(I)(A) we have to evaluate
the formula U = (C @ D)V B w.r.t. I. Note
that D is undefined under I, so we apply the least
and greatest completions of I to U (according to
Lemma 1), and get: I, (U) = (1,0) and IT(U) =
(1,0), so U = (1,0) w.r.t. I and thus T(I)(A) =
(1,0).

Similarly, T(I)(D) is computed by trying to eval-
uate the formula V = D ® =A w.r.t. 1. We have
IJ-(V) = (05(]) ® _'<]-50) = <030> ® <03 1) = <030>;
then IT(V) = (1,1) ® =(1,0) = (1,1) ® {0,1) =
(0,1). As the two values are different, T'(I)(D)
remains undefined. Continuing similarly, we get
the interpretation

) = [ (1?0) (1],50) c P (of, 0) (0.770.1) ]
Now, let us consider the logical value o = (0,1)
(i.e. false), and let us try to construct the greatest
sound hypothesis J = H*(I). According to Defi-
nition 6 A, B and F have to be undefined under
J, otherwise J would not be compatible with I.

If we consider the remaining atoms we would have

J— [ A B c D E F ]

(0,1) (0,1) (0,1)
Howewver, J is not sound since, according to point
2 from Definition 6, the body of the rule with the
head E should evaluate to (0,1) w.r.t. IUJ, and
we see it evaluates to {0.1,0).

Now if we consider the remaining atoms we have

J:[ A B le; D E F ]

(0,1) (0,1)
If, again, we evaluate the bodies of the rules with
the heads C and D w.rt. IUJ we get {0,1),
so J is sound. By construction J is mazimal with
this property, so it is the greatest sound hypothesis

w.r.t. I.



We have seen that there are two ways of de-
riving information from a program: By ap-
plying the rules and by using sound hypothe-
ses (namely the maximal ones, for deriving
all possible information). Hence the idea to
build the following sequence, where I* is the
everywhere undefined interpretation:

I, = It
Ii+1 = T(Il) U Hfr[ba:v(li)
I; = Ui<j I; if j is a limit ordinal.

We hayve:

Proposition 4 The sequence I;>, is in-
creasing w.r.t. the knowledge order, and has
a limit denoted 1 fp*(P).

Note that, intuitively speaking, [fp*(P) rep-
resents all the information that can be in-
ferred from the program P. Obviously it is a
fixpoint of the operator T'U H};,,,.. Moreover,
we ca show that [fp®(P) has an important
property namely that it satisfies the rules of
the program P.

Definition 7 An interpretation I is a model
of a program P if for every rule A < B of P,
I(B) <t I(A).

This definition comes from the intuitive re-
mark that, as the consequence is derived from
a premise, the degree of truth of the conse-
quence should be at least the degree of truth
of the premise.

Proposition 5 The interpretation [fp®(P)
is a model of P.

This justifies the following definition of se-
mantics for P.

Definition 8 The interpretation [fp*(P) is
defined to be the extended well-founded se-
mantics of P w.r.t. the logical value «, that
we denote by ewfs*(P).

Considering the four different assumptions,
we have the following relationships between
the semantics obtained:

Proposition 6 If P is a program then:
ewfs(P) <y ewfs*(P) <y ewfs' (P)

for a € FOUR.

Fitting [8] introduced the (multivalued) stable
models for extended programs in bilattices.
This concept extends that of stable model in
the conventional bivalued logic [12]. We show
that if we consider the pessimistic approach,
our semantics coincides with Fitting’s (multi-
valued) stable model that has the least degree
of information.

Theorem 1 Let P be an extended program
and mstable,(P) be its least multivalued sta-
ble model w.r.t. <y, as defined in [8]. Then
ewfs/¥s¢(P) = mstabley(P).

This equality may seem surprising since
ewfsf*s¢(P) advantages negative informa-
tion while mstableg(P) prefers the lack of in-
formation, as it is minimal in the knowledge
order. However, as Fitting shows in [8, 9],
in the definition of (multivalued) stable mod-
els there exists a preference for falsehood, in
the sense that, whenever possible, the truth
value false is assigned to atoms. See [9] for
an approach of building a theory that prefers
falsehood.

The last result of the subsection compares
our semantics with the well-founded seman-
tics [19] and Kripke-Kleene semantics [6] of
a conventional program P, denoted wfs(P)
and kks(P) respectively.

Theorem 2 If P is a conventional pro-
gram and the bilattice is FOUR then
ewfsfs¢(P) = wfs(P) and ewfs-(P) =
kks(P).

3.3 Computing the extended
well-founded semantics

We now give a method for computing the
greatest sound hypothesis H? . used in the

max
definition of the semantics we have intro-

duced.

Given the interpretation I, consider the fol-
lowing sequence (PF;(I)), i > 0:

PFy(I) = 0;

PFi(I) ={A| A« BecP and B #
a w.rt. Jir}, for i > 0, where J; r is the in-



terpretation defined by:

I(A) if A edef(I),
aif Ae (HBp\ PF;) \ def(I),
unde fined, otherwise.

Ji1(A) =

We have the following results:

Proposition 7 The sequence (PF;(I)), i >
0 is increasing with respect to set inclusion
and it has a limit, denoted PF(I).

Theorem 3 Let P, I and « be fized. If J
is an interpretation defined by : J(A) = «
for any A € (HBp \ PF(I)) and J(A) =
undefined for any other ground atom A, then
Hioe(I)=J.

We note that, if we restrict our attention to
conventional programs in the logic FOUR
and the pessimistic approach (i.e. a = false),
the set PF(I) corresponds to the set of poten-
tially founded facts of [3].

We illustrate the computation of the extended
well-founded semantics through the following
example:

Example 3 Let P be the program considered in
Ezxample 1 in the context of the confidence-doubt
logic LCP.

Let a = {0,1) (i.e. a pessimistic assumption).
The following sequence of interpretations is ob-
tained by iterating the operator T U HS, .., start-
ing with the everywhere undefined interpretation
Iy = I*. Note that the greatest sound hypothesis,
as a part of each I;, is indicated in bold, and it is
computed using the method presented above.

A B C D E F
L= [ {(0,1) (0.7,0.1) ]
I _[ A B C D E F ]
2= (1,0) (0,1) (0.1,0) (0.7,0.1)
A B cC D E F
I3 = [ (1,0) (1,0) (0,1) (0.1,0) (0.7,0.1) ]
A B C D E F
I = [ (1,0) (1,0) (0,1) (0,1) (0.1,0) (0.7,.1) ]
If we compute Is we get Is = Iy, so I repre-

sents both the whole information that can be de-
rived from P making assumptions w.r.t. a = (0,1)
and the semantics of P. So in the semantics of the
program A and B are true, C and D are false, E
is associated with the grades of 0.1 confidence and
0 doubt while F is associated with the grades of
0.7 confidence and 0.1 doubt.

If we compute the semantics of the program
P provided in the introduction, for each of
the pessimistic, optimistic, skeptical and in-
consistent approaches respectively, we get the
following table, where we have included on
the first row only the ground atoms built with
predicates defined by the program rules':

Tablel: ewfs*(P)

[ [ s@ohn) | i(John) [ f(John) | c¢(John) |
false true false false true
true true true true false
L true L 1 N
T true T T T

We conclude this section with a complexity
result showing that our semantics can be com-
puted in polynomial time with respect to the
size of the set of facts from the program.

Formally, let B be a limited bilattice and let
P = Pprytes U Prgets be a program with no
function symbol, where Ppgy.s is the set of
facts (i.e. the set of rules of the form A + ¢
where ¢ is a logical value from the bilattice
B) and Ppryes is the set of rules (i.e. the re-
maining part of P). Note that as the program
is function free, the fixpoint computation of
our semantics terminates in a finite number
of steps.

Theorem 4 The time complezity of the com-
putation of the extended well-founded seman-
tics of the program P in a limited bilattice is
polynomial w.r.t. |Ppgcts].

4 Related work and concluding
remarks

We have proposed an approach for handling
imperfect information in logic programs by
defining the extended well-founded seman-
tics. We consider imperfect information to be
missing/incomplete, uncertain and/or incon-
sistent. In our semantics, the missing infor-
mation is completed by using optimistic, pes-
simistic, skeptical and inconsistent assump-
tions. The imperfect information is handled
by using bilattices as multivalued logics. We
provide a method of computation of our se-
mantics and show that, for the pessimistic as-

L All the other ground atoms are assigned the cor-
responding logical value «, and have been omitted.



sumption our extended well-founded seman-
tics captures the conventional well-founded
semantics and Fitting’s least multivalued sta-
ble model, while for the skeptical assumption
our semantics captures the Kripke-Kleene se-
mantics.

The conventional logic program semantics are
mostly based on pessimistic and skeptical ap-
proaches [6, 12, 18, 19], which is also the case
with the most extended semantics expressing
uncertainty [21, 17, 15, 14, 8, 10]. Although
useful - as we have shown through our exam-
ple in introduction, the optimistic approach
has been uncommon. In [9] Fitting proposes
a mechanism of building a theory of truth that
prefers falsehood, that is, the logical value
false is assigned to atoms whenever possible.
It is suggested that this mechanism, used also
for defining the (multivalued) stable models
for extended programs [8], can be straightfor-
wardly extended to build a theory that prefers
truthhood, which would correspond, in our
terms, to using an optimistic assumption. We
have shown the connection between our se-
mantics defined in the pessimistic approach
and the least (multivalued) stable model.

Our semantics can express also total or par-
tial inconsistency. For instance if we con-
sider the confidence-doubt logic L¢P total in-
consistency refers to the logical value (1,1),
while partial inconsistency to logical values
as (0.6,0.8) where the sum of the two de-
grees of confidence and doubt is more than 1.
These inconsistencies may emerge from com-
bining contradictory information in the pro-
gram as for instance (1,0) & (0,1) = (1,1),
or by using an inconsistent assumption. Note
that one characteristic of our semantics is that
inconsistency is pinpointed, i.e. it does not
lead to entailment of any conclusion. That
is, our semantics is paraconsistent. [1]| pro-
poses a declarative semantics for programs
with conventional negation and negation by
default, which deals with inconsistency. This
semantics is paraconsistent as our semantics
is, however it is limited in expressing only in-
formation which is true, false, undefined or
inconsistent, and not having other grades of
uncertainty. [5] provides an excellent sur-

vey of paraconsistent semantics of logic pro-
grams. In [11] one considers ordered logic
programs with negative heads, and two ap-
proaches of resolving conflict between rules
leading to different notions of program models
limited to the three-valued logic. [11] defines
three-valued (or partial) models, in particular
the credulous and sceptic models as a maxi-
mal and minimal c-assumption free c-partial
models, w.r.t. set inclusion (that is, they rep-
resent a maximal and a minimal degree of in-
formation). [11] shows how these concepts re-
late to those of well-founded model and sta-
ble models, but no comparison is made with
the skeptical Kripke-Kleene semantics. One
of differences w.r.t. our approach is that in
[11] inconsistency is avoided by ignoring (con-
flicting) rules, while we allow inconsistency,
total or partial, as part of imperfect informa-
tion represented in programs, and rules are
preserved. On the other hand imperfect in-
formation in [11] resumes only to missing in-
formation.

We have also shown that the complexity of
the evaluation of the extended well-founded
semantics with respect to the size of the set
of program facts is polynomial time, if we con-
sider a useful class of bilattices which may
be finite or infinite, namely the limited bi-
lattices, containing also the confidence-doubt
logic £¢P and the four valued logic FOUR.
We are currently investigating the possibility
of using our approach in the area of intelli-
gent agents used for retrieval and integration
of imperfect information.
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