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I.1

1. INDIVIDUAL DECISION-MAKING UNDER UNCERTAINTY

When an individual is required to make a decision in
which a utility function.for a problem 1s gilven, 1t
occaslonally happens that the true state of nature is not
known to him and he has only an oplnion regarding the
probabilities of the.relevant states of nature. Suppose
that the latter are indexed by a variable x, to which
probability density functions on some measure A(x) may
be attributed, and that the opinion of the decision-
maker is given by a probability density function f(x).
Let a be the set of available decisions d,\Mhén the
state of nature;is X, let u(d,x)bethe utility of decision «.

it is well-known that when the true state x 1s
unknown to the declsion-maker the @xpectedyﬂtility maxim e

would let him select that ¢ maximlzing

Yulam2(x) an(x),

if he 1is a rational decision-maker.
Let ué now introduce the concept of information

structure., The information structure of the problem will

be represenfed by a function I(x) defined on the set

of all possible states of natufe;-,It is usually a non-
stochastic many-to-one mappilng Qefihed over x and some-
times 1t 1s a stochastic variable indexed by x .. Wé' |

shall exhibit several examples of concelvable information

structures in the following.
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(1) complete information (denoted by I(x))

T(x) = x. The decision-maker 1s informed of the exact
value of X. | A 2
(11) null information (denoted by I, (x)) |

io(x) = ¥. The value of Io(x) is 1denticaliy equal
to the whole space of the states of nature. No information
s available to the declslon-maker.

(111) partition information (denoted by Ip(x)) |

Let : : i

N
& - (Ris..oRyd, A=Yy Ry, RyMRy = o(1 # J)

be'a given finite or infinite decomposition of %, i.e.,
N = o 1s allowed. |

Let

Ip(x) =1, 1f x € Ry (1=1, oee 5 N)o
In this case the decision-maker 1s only informed wpich.of

the sets R the true state x of nature belongs to.

i
(iv) random information

Sometimes the decision-maker can observe the tfue
state of nature only through the interference of some
random distrubance. Suppose that the nature of the random

disturbance is known and;that it 1s: représented by a pro-

bability density function r(+) on x.
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LetI(x) =x + z where z is a random variable on x with the
probability density function r(z).

Intuitively speaking, the information structure I(x) represents
the information on which decision « is based. Let A(I(x)) denote
any function of I(x), which maps onto a:, representing a decision rule
for a. Let f(x)d\(x)=dF(x).

We shall next show that the value of the information structure I(x)

can be defined by the amount

v(I(x) ]F(x)) = max Su(A(I(x)). x) dF(x) - max S u(e, x)dF(x). (1)
A(*) fo]

The above difference:measures the advantage or profit obtained by a
rational decision-maker under the information.structure I(x) compared

to the case of complete ignorance,

Theorem 1. We have

V'('I-lj?..)} = S max u(e x)dF(x) - max S u(a , x)dF(x) (2)
o a
| N
V(Iyl F) = max S u(A(i), x)dF(x) - max S ule, x)dF(x) (3)
AQL), . AN) Y o

1
(b) 0 = v(IOIF)

Proof: (a) Since I(x) =x and

max S u(A(x), %)dF(x) = S max ula, x)dF(x)
A(r) a .

we have the stated equality (2). (3) is also easily verified from (1) and the

definition of I’s,(x) .
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(b) Since Io(x) is independent of x, it follows by (1) that v(IolF) = 0,
The restriction of the class of admissible decision functions to the smaller
class {A(') = ¢ identically Iaf € u} yields the proof of v(IIF) > 0.
The last inequality v(IlF) < V(TlF) is verified from the easily proved

relation

max S u(A(I( ), x)dF(x) < S\max ula, x)dF(x) .
A(+) o

Sometimes we denote the value of information structure by

v(IIF ; u) to emphasize the use of the utility function u. Then

Corollary to Theorem 1. We have

V(IG' IF ;u) 2 v(16)|F ;u) for all F and u,

if and only if @ is a subpartitionof & .

Proof. The if-part is evident from (3). The only-if-part follows from

Example 3.
Example 1,

v(Iu‘:F(xl, XZ)) = fqn(a}})c SdF(xl) S u(A(xl) s X XZ) dF(lexl)
- mgx S u(a ; X1 XZ) dF(xl, xz)
where we have set dF(xl, XZ) = dF(xl)dF(lexl).
For a simple illustration assume that a’ = (- o, o), ¥ = (-0, m)z

and u(a ; X1 XZ) = -(a - (x1 + xz)/Z)z-' . Then we obtain the value

Xl) dF(x))

X1+X2 Xy + XZ
V(I]F(xl, xz)) =V | — -SV g

and the optimal decision rule
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. Xl + XZ
A¥(x)) = 5 —— dF(xz]xl)

where V(-) and V(¢ ]xl) are respectively the variance and the conditional
variance of the random variable. For comparison it should be remarked
here that in the complete -information case of I(Xl’ XZ) (Xl’ XZ) we

have v(T|F) = V(X + X,)/2).

Example 2, Statistical decision problems.

We shall consider the statistical decision problem of discriminating

among a homogeneous set of k distributions Fl’ cees Fk from our
information viewpoint.
Let OL= % = {l,....,kJ and
r , ifa=x (x =1,...,k)
X
u(a, x) = :
{0, if a# x.

The information structure is given by a random information I(x) =y,

where
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k :
K(é.] y) = Zl gxu(a,bvx) de(y) = garadFa(y) e lrga;cé k(gara)

551 1§a§k

With
Rj = {y]_] is the minimum number of j' such that gj, rJ.,dFJ.,(y)
= max §&_r _dF (y)}
1<a<k a’a " a
we have
A¥y) = j, if yE€R,  (j=1...,K
and
k . ,
V(Ilf,;u) = E\ rjgj §dFJ(y=-)-max (gara)
' j R.
3

One of the more instructive examples is the probiem of point estimation.
Let 0L = ¥ =(- o, ®) and u(a, x) = -(a-x)z. Let the information

structure be given by a random information I(x) =y where
Pr {y < I(x) y+dy]X = x} = p(ylx)dy ;

Denote by dF(x) the prior prdbability distribution over ¥ . Then

since

Sdmx)f a(A(y), x)ply [x)dy = -SdF(x) S(A(y)-x)zpw bay = 1Ll

= 'Sq(v)dyg (A(y) - X)Zp(XI’y)dx )
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where q(y) = Sp(ylx)dF(x) and p(xly)dx = p(ylx)dF(x)/q(y), we have
the optimal decision rule A¥(y) = Sxp(xly)dx = E[X y] , and the value

of information

v(I|F 5 u) = E[u(A™(Y),X)] - max E[u(a, X)] = V(X)-E[V(X]Y] .
a

Example 3. (Marschak and Radner, 1958, Chapter 3).

Suppose the price of a stock can change from this week to the next, by
any amount in ¥ = {—6, -5, .01, 1,...,5, 6} . Suppose you can use
the services of either of two informants A and B, each a faultless pre-
dictor of stock prices.hftwrmart.Asends only two kinds of messages:

(1) stock will fall, (2) stock will rise.Infasmant: B sends three kinds of
messages: (1) stock will fall by 3 or more, (2) stock will move by 2 or
less, (3) stock will rise by 3 or more. Your decision can be denoted

by the three-valued variable a with

+1 (buying)
0 (do nothing)
-1 (selling) ,

)
]

so that the payoff function is given by
u(a, x) = ax (a=-1,0,1;x=-6,...,-1,1,,..,6).
Let us assume that the prior distribution dFO(x) over X is uniform:

Pr {X = x} = —1-17 for all x € ¥ . Informants A and B give you

the partition information 163 and I@ s respectively, where
A B
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D

{{-6,...,-1} s {1,-0-’6}} :

QD

The messages given by the information structures are

Y+’
Ip (x) =
A v if x=-6,...,-1
Yy if x=3,...,6
I@ (x) = ’
B Yo? if x=-2,...,2
y_ if x = -6, y =3
respectively.

We can find that

{{-6,....-31, {-2,-1,1,2}, {3,.

.., 61}

\ Optimal decision rule

vilp|F? 5 u)

1, ify=y

% _ +
For @A A(Y)_ {_1, lfY=Y_
1, ify=y
For &B A*(y) = *
-1, ify=y_

arbitrary, if Y=Yq

7/2

Thus A can afford you the more valuable information than B, although

the amounts of information (in Wiener-Shannon’s sense) they provide are

log 2 and log 3, respectively. This shows that (i/r;fgrmation value and

«iﬁformation amount do not necessarily go together,

e \ A
eke e L of fvi‘;f GTF Al v

{
. 5

Al ol g1 . u f oy b0 M



Let us next consider a new payoff function

ax - 2, a
u'(a, x} =
o, a

1}
(@]

(which means that you have to pay 2 on purchase or sale). For this payoff

function we can find that

Optimal decision rule V(I@l FO ;u')
1, ify=y
For @ % _ { + 3
A A(Y)— _1, 1fY=Y_ z (-l 5)
1, fy=y
sy + 5
For @B ANy = ) i v = ¥ 5 (= 1.67)
-1, if y = Yy

This shows that the ranking of information structures by the information

values depends in general on the payoff function used.

This example raises naturally the question whether there are pairs

of information structures such that the ranking of their information

values is not influenced by the payoff function. The corollary to Theorem 1

shows that such '"objective' ranking is possible if one information structure

is a subpartition of the other. Moreover we may have the question:

Is there a class U of payoff functions such that there exists a numerical

function K(IIF) with the property that

v(I' |F ; u) > v(1" |F ;u) forall u€U ———93' K(I'|F) > K(1" |F)?
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A positive partial answer to this question is provided by Example §

Example 4.

Let the decision-making problem under uncertainty be given by the

following payoff matrix:

o~ 1 %

u(a, x) = ali T 0

(ry, r,>0)

az

We easily see that for any prior distribution £ , with the probability
§1 = Vl-gz for x,

a,, ifx-=
A¥(T(x)) = A%(x) = { ! T

az, if x =

v(T|&) = rg,+ ryd, - max(r §,, r,§,) = min(r £, rok,).

r
The maximum max v(T[§) is attained by g’;‘ = r—-l-ér_ , and equals
0§21 172
172
T 77— - Using the above fact let us consider the following two payoff
1" 72

matrices:

a ¥ X) X, X4
u(a, x) = a, r 0 O (r >0)
a, 0 r r

u''(a, x) =
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For any prior distribution £, with the probability gz =T,l’- for Xy

we have
- | 1
- - i (2 2
V(I lg y u ) =r mln(gl: 3 + £3)°
= . 1
V(Illg ;u') = r min(g |+ 3 &3)
The maximum values max v(I I§ ; u') and max 2 v(I lg ;u')
053 &153 |

are attained by E’I = % and %,'respectively, not by -;—. . The highest

degree of uncertainty does not correspond to the highest information

value to be paid to dispelling it.

Example 5.
Suppose that a dishonest expert tells that a stock will rise or fall.
Suppose the probability that the expert tells the truth is Py The state

of nature is denoted by X5 with

_ {l, if stock rises,
Xz =

1, if stock falls.
The information structure is given by a random information I(xz) =y,

where 4w ] ‘_

Pr{y=1]x,=1] =pr{y=-1]x,=-1}=p,

1
b
»
[\¥)
1
]
fe—
) S
|
o]
el
{
Pt
|
el
fe—

Pr{Y=-1x,=1} =pr{vy

The payoff function is given by



X — —
2 X, = 1 X, = -1
a
u(a, XZ) = s < T, i= 1, 2).
a=a, r) s,
a=a _ s r,

Let the prior probabilities over % be Pr(X2=l) =P, = 1 q, For a

given message vy, the function A*(y) is optimal if it yields the maximum

conditional expected payoffs. That is,

a, , according as
z +
A*(l_)_= a

rIPr.{X2=1|Y=1}+s2Pr.{X2=-1'Y=1}{:} slPr.{Xz=I|Y}:-x. B
+ 1, Pr. {xz = -1]y=1}, i.e. pl{:} qAp(rp-s,)

pz(rl'sl)+q2(rz'sz)

a, , according as
A¥(-1) = {;

r Pr. {x,=1[v=-1] +5,Pr. {X2=-1|Y=-1}{z} s Pr. [X2=1]Y=-l}
+r,Pr, {x2=-11Y=-1} ie., pl{} py(r;-s

Palry-sy)+ qz(rz'sz

Combining these results we find the conditions on P, under which each

of the four decision rules is optimal. We have the following table:
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On the other hand, consider the informant as a channel whose input

is X, , and whose output is y. The transmitted information is equal to

T(X, : Y) = H(Y) - H(Y|X,)
{- (PP,+d;4,) log(pyP,tq;q,) - (p1q2+q1p2)10g(p1q2+q1p2)}
- {- P, log p; - q;log ql} :
The capacity of the channel C = max T(XZ ; Y) is attained by
0< P, < 1
* 1

P, =5 independently of Py and is equal to

1 1
C=log2-(pllogﬁ+qllogd—l—).

Thus the information value v(Ip |F) remains zero as long as Ip1 - %l, ’
1

and hence C, does not exceed a certain critical level; v(lp |F) then
1
rises as a non-linear function of C.
This example provides a partial positive answer to the question

raised in Example 1. In fact, with

U = the class of payoff matrices (rl SZ> with s, < r, (i=1, 2),
‘ S r
1 2

K(I |F) = max T(X, ; Y),
P 0<p,<1

we have

v(Ip,lF;u) > v(I_|F;u forall ueuU,
) 2

Ipi"
if and only if

K(Ip,l |F) > K(Ipi'lm .

~~
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II. 1

II. Games and Strategic Information - Duels.

The concept of information is one of the chief essentials in the
game theory and it is quite distinct from that of Wiener and Shannon.

If one speaks of information in Wiener -Shannon’s sense as ''selective'',
then von Neumann’s sense could be called "'strategic''.

The theory of games may be viewed as a formal model embodying
three principal elements: (1) the preferences of the players of a game;
(2) the choices or decisions open to them; (3) their information regarding
the choices made by the opponent player at previous moves.

Strategic information in a game situation is the means of expressing
a player’s state of knowledge, at any move of a game, regarding the
choices which have been made at earlier moves. The problem of
rational choice of a plan of action (- the optimal strategy) and the
existence of equilibrium situations are both closely related to the
nature of the information pattern of the game.

We will show, by using several examples of duels in thig lecture
and poker models in the sabsequent lectures how the solution of a game
is related to the information pattern of the game. Before doing this
we shall explain some of the fundamentals of zero-sum infinite games

in order to help understanding.

80. Fundamentals of zero-sum infinite games.

In an infinite game, each player selects a strategy from an infinite
set of strategies. We consider, in the present and the sabsequent
chapters, infinite games in which the strategies are represented by

points on the closed interval [0, 1] . Player I chooses a strategy
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x € [0,1], and simultaneouSIy; Player II chooses y € [0,1] . These
choices d(etermine a play of the game, whose outcome is measured by
a payoff M(x, y) from I to II.

Suppose that I chooses his strategy x from [0,1] using the
distribution function F(x) and II chooses y by means of the
distribution function G(y). Then the expectation of I, if it exists,
will be

1p1
M(F, G) = S S M(x, y)dF(x)dG(y) .
0 0

Suppose the following two expressions exist:

max min M(F, G) = vy o
F G
min max M(F, G) = v,

G F

In general v < vy However, if V] =V, then there exists a pair
of distribution functions F¥* s G* , such that I can receive at least

frl and II can lose at most v, at the same time: that is

M(F,G*) ¢v; =v<v, SMF¥ G), forall FandG.
Thus F* , G* are called optimal mixed strategies for I and II,
respectively. The pair F*, G* is called a solution of the game, and

v = M(F*, G¥) is called the value of the game.  Every infinite game
does not have a solution. There are examples of infinite games which do

not have solutions. However it can be proven that if M(x, y) is continuous
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in x and vy, then both of vy and v, exist and are equal to each other,
so that the optimal mixed strategies F¥*, G* exist and the value of the

game is given by

1 1
v = min S M(x, y)dF*(x) = max S M(x, y)dG*(y) .
0 £yS1 0 0<x<1 0 '

There are also many examples of infinite games with discontinuous

payoff functions which do have a solution and a.vatuée.:. Duels and

poker.are examples. .

Let
1
M(x, G*) = S M(x, y)dG*(y)
0

be I’s expectation if he uses a pure strategy x and II uses an optimal

strategy G* . Similarly, let

1
M(F*, y) = S M(x, y)dF*(x)
0

be II’s expectation if Il uses a pure strategy y and I uses an

optimal strategy F* . We have
M(x, G*) <v< M(F¥, y), for all x, y €[0, 1] .
The following properties can be readily proven:

(a) If M(xy, G¥) < v then F¥(x; - 0) = F¥(x,)

If M(F¥, yo) > v then G¥(y, - 0) = G*(y) -
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A player’s optimal mixed strategy contains no strategy which does
not yield the value of the game when that strategy is used against the

opponent’ s optimal strategy, and hence

(b) If F*(xo -0) < F*(xo) then M(x,, G¥) Vi

If G*(yo -0) < G*(yo) then M(F*, yo) v.
Each pur"e,_,s_,,gjrategy in the optimal mixed strategy must yield the
value of the game when used against the opponent’s optimal mixed

strategy.

8l. Duel as a game of timing.

A game of timing is a competitive environment, in which the
actions the players may take are given in advance, but the timing of
the actions is selected by the strategic decisions of the players. Such
games are characterized by the following conflict of interests: each
player wishes to delay his action as long as possible, but he may be |
penalized for waiting.

The duel is a godd example of a game of timing. Each duelist
wishes to hold his fire as long as possible, since his accuracy increases
with time. However, if the duelist holds his fire too long, his opponent
may win the duel.

Let us consider the mathematical formulation of the duels. The
duelists staﬁting at a distance 2 apart, approach each other atconstant (unit)
.speed . with no: opportunityfor retneat... The;accuraciesyof firing are described by

the accuracy function

Pl(x) = the probability of I’s hitting his oponent if he fires

at time x .



Similarly, Pz(y) is defined for the player II. Assume that P.l(O) =0,
Pi(l) =1, and Pi(x)g'\\, (i =1,2)., Let the payoff be +1 to the surviving

duelist and 0 to each duelist if both survive or neither survives.

§2. Noisy and silent duels.

As in all games, we need to describe the information available
to the players. If a duelist is informed about his opponent’s firings -
as soon as they take place, we shall call the duel a noisz duel] If
neither duelist ever learns when or whether his opponent has fired,
we shall call the duel a silent duel.
Example 1. Noisy duel: one bullet each duelist.

In this duel, if a duelist fires and misses, the opponent can obtain

a sure hit by waiting until they are

1
together. Thus if x and y are | >
strategies of I and II, respectively, the y L
payoff to I is T 7
ZPI(X)-I, x < y
M(x,y) = 4 P(x)-Py(y), x =y £ — ;
I—ZPZ(y), x>y Fig. |

We easily find that M(x, y) has a saddle point at Xgs Xo Where X0
satisfies P.l(x0)+ PZ(XO) =1. (Fig. 1). Thus the optimal strategy
for the duelistsisto fire their bullets simultaneously at time xq . The

value of the game is Pl(xo) - PZ(XO)‘

Example 2. Silent duel: one bullet each duelist.
In this duel, each duelist is ignorant of firing by the other. Assume

that Pl(x) = x and Pz(y) =y . Thenif x, y are pure strategies, the
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payoff to I is

X-ytxy
x-(l-x)y, =x<y 0
M(x, y) = {0 X =y X-y-Xy
-yt (l-y)x, x> y.

We find that

2N2 - 3 = max min M(x, y) < min max M(x, y)= 3-242 (£0.172). '
X Y y x . ,lA....

Therefore the game does not have a saddle point. Suppose that I and II

use mixed strategies F(x) and G(y), respectively. Then we can show

that

The optimal strategy for I and II is the following mixed strategy:

X1 -3 1 2 1 =
F¥(x) = S ;‘Y- d}’=§(9"xE )s '3-§x§1

1

3

The value of the game is 0,

1 y-0 1
Proof. M(F, y) = S M(x, y)dF(x) = S + S
0 0 10

: y-0 1
= y(F(y) - F(y-0) - 1) + {(HY)S + (1-Y)S xdF(x) .
0 y+0

Supposing that F(x) is a density function f(x) over an interval (o, 1),

we get
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1
-y + (1-y) 5 xf(x) dx , 0g ysa
M(F, Y) = a

y i
-y + {(1+y)§ + (l-y)S }xf(x) dx , agy £l.
a y

Since the game is symmetric, the value of the game is 0 and both

players have an optimal strategy in common, it follows that

M(F, y) =0, o

A

~

A
e

(%)

!
Differentiating this equation two times we obtain f (y')) = - % » from

1
3 (¢ $y<$1). This together with S f(y)dy =

o

which we get f(y) = Cy~

and (#%), yields a = +, C =

To show that an optimal strategy for I is actually given by (%),

we must check

M(F*¥, y) =

Example 3.  Silent-noisy duel: one bullet each duelist.

Let us consider the mixing case, i.e., the case in which I is the
silent duelist and II is the noisy duelist, In this game, II who gives |
information to the opponent stands at a disadvantage.

Let us assume that Pl(x) =x, Pz(y) =y . Then the payoff is
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x-(l-x)y, x<y

M(x, y) =40 . XxX=y

1-2y, x>y

. We can show that

Let a =n6 -2 (% 0.45). The optimal strategy

for I has the density function

0 0<x<a

*(x) = .
NZa (x®+2x-1)"3/2 a<x<1.

J

The optimal strategy for II is described by

2 y
My = —mS £(x) dx + 52= L(y) ,
0

where Il(y) is the unit-step function at y = 1. The value of the game

is v =1 - 2a (% 0.101).

Proof. Guided by heuristic considerations, we shall search for
strategies F(x) consisting of a density f(x) on an interval (a, 1) with
a weight a at x=l, and G(y) consisting of a density g(y) on the same
interval with a weight B at y=l. Then imanav;log:yl)toi-.tl're.;:':pi{e&/.-iblfs ;

example.

: 1
M(F,y) = S M(x, y) f(x) dx + aM(ly) = v, asysl
a ,
(%)
1
M(x, G) = S M(x, y) glyydy + B M(x,1) =
a

I
S
o
AN
%
AN
oy
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Two > differentiations give

3(1+ %) £(x) + (x%+2x-1) £'(x) = 0 SE(x) = C (x 25-1)"3/2

(%)

3+ y) gly) + (y2+2y-1) g'(x) = 0 S gly) = CylyPray-1Y/2

In order to determine the solution, we must evaluate the unknown constants

a, a, B, Cl’ CZ’ and v . (%%¥), together with (*) and the normalizing

1 1 :
conditions S f(x)dx = 1l-a, S gly)dy = 1-B results in the

a a
strategies F¥(x) and G*(y), stated in the theorem.
To show that the specified strategies are indeed optimal it is

necessary to check

M(F*, y) 2 v, O

UA

y <a

b3

M(x, G x< a

A
<
o

nA

We note without proof that the optimal strategies F* , G* are @actually
unique. Moreover, note that the noisy duelist, who stands at a
disadvantage has a positive probability of saving his bullet until the

end (Fig. 2). And the silent duelist calls for firing at a later time
than under the symmetric silent duel (Example 2). These fesuLtS are
not surpriging in view of the unequal information pattern available

to the two players.
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Some interesting variants of the simple duel are:

(a) Each player is unaware when his opponent has fired until : -
the time 0 > 0 has passed since his opponent had fired.

(b) Player I has m bullets and Player II has n bullets, ‘They.have
different accuracy functions.

(c) In (b) one player does not know how many bullets his opponent has,

But the analyses of these games are really complicated.
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III. Games and Strategic Information - Poker

Following otir previous chapters we continue to show how the
solution of a game is related to the information pattern of the game. The
three essentials in the theory of games are: (1) the preferences of the players
of a game; (2) the choices or decisions open to them at each move; (3) their
information regarding the choices made by the opponent player aé previous:
moves.

If we set in a game -situation both the choices and preferences for the
players symmetrically, then if, moreover, the information pattern is fair
for all players in the game, that is, if each player, for example, is
completely ignorant of the choices of his opponents, the value of the game
is zero and the optimal strategy, when it existed, is common to all players.
If we set the choices and preferences of the players symmetrically in a
game-situation, and if we let the information pattefn be unfair, then
symmetry of the game disappears. Consider, for example, the case
where the player I must take the first move in the game and his choice
is told to the player II who can use thié information and act optimally
at the second move. It is, as our common sense tells us, clear that the
player II stands to gainu.

We shall, in this chapter, show somewhat numerically this type

of information-unbalance by examples of continuous poker models.

Example 1. La relance (two-person stud poker with a single bet).
In our model the unit interval is taken as the representation of all
possible hands. that can be dealt to a pl_a.yér. Each hand is considered

equally likely and therefore the operaiion of dealing a hand to a player may
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be considered as equivalent to selecting a random number from the unit
interval according to the uniform distribution. The game proceeds as
follows: An ante of 1 unit is required by each of the two players I and II.
At the beginning of a play they receive fixed hands, x and y, chosen at
random from the unit intervals 0< x< 1 and 0 £ y < 1. ThenlI either
bets an amount a or drops out, losing his ante. If I bets, then II can
either see the bet or fold, losing his ante. If II sees a bet the hands
are compared with the higher card winning the total wager l+a.

The above procedure is summarized in the following diagram:

Player . Hand 1st Move 2nd Move . Payoff to I
I - X {dropsout R |
bets a ~——
I y ‘____7{folds...... 1
' sees . . . (l+a)sgn(x-y)

A mixed strategy for I can be described as a function P(x) whicﬁ
represents tbe probability with which I will bet the amount a when his
hand is x. A strategy for II can be represented by a function Y(y) which
expressed the probability with which the player II will see a bet when he

folds the hand vy.

Theorem 1. Let b= a/(2+a). The optimal strategies in this model are

as follows:

arbitrary, but subject to the constraint that

b
¢*(x) = S ¢*(x)dx=b(l-b), if 0<x< b,
0
1, if nggl,
0, if 0 < <1,
Y*y) = By
1, if b<y S

The value of the game is -(a/(2+ a.))2 .
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Proof. By enumerating all the possibilities we find that the

expected payoff to the player I is

M(¢, ) = -S (I - ¢(x))dx+ SS ¢(x)(1 - Uy))dxdy

(1) R
+ (1+ a) SS o(x)Y(y)sgn(x - y)dxdy..

The ranges of integrations are always from 0 to 1. Hence they are omitted
here and hereafter. Common sense tells us to guess that the optimal
Y*(y) is of the form

0, if y <hb,

(2) V*(y) = for some b.
I, if y2b

Under this assumption the part of M which involves ¢ can be reduced to

(3) S P(x)L(x)dx ,
where
-a + b(2 + a), if 0<x<b,
L(x) = N
2(a+})x-a(b+1),, if b <x<L

If we set b =a/(2 + a), we have

0, 0<x<b,
L(x) = '

2(1+a)(x -b), b<xgL

Thus it is clear that if I wants to maximize (3) he must take
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" arbitrary, 0 € x< b,
7 (x) =
1, b

A
X
A

—

The part of M which involves Y can be reduced to

(4) SHU(Y)K(Y)dY .

where

K(y)

y 1 1 y
- (S + S)ﬁ)ﬁflﬁ)‘dx-&(l+ a) S ¢*(’F) dx -S ¢)*(x)dx
0 vy

y 0

-y ~1
-(2 + a)‘S ¢*(x)dx + aS ¢*(x)dx .
0 y

It is clear that since K(y) is monotonously decreasing and the function
Y which minimizes (4) is of the form ¥ =1 if K(y) < 0, and 0 if
K(y) > 0, we must have the expression

¢

b 1
- (2+a) S ¢*(x)dx + aS ¢*(x)dx =0,
a b

in order to have the minimum of (4) with ¢ = ¢* given by (2). We

easily have from (1) and (3)

* a 2
M(¢*, Y*) = - ey

Thus we have shown that max¢ M(¢, 1[/*) = M(qb*,’;l/*) = min¢M(¢*, Y),

completing the proof of the theorem.
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Let us compare this result with that which will be obtained for the
cased aone-person game and for the casedof asimultaneous game. The

following diagram represents the rule of play for the simplest version of

Blackjack:
Player Hand 1st Move 2nd Move Payoff to I
I X {fold e v e e e e e . =1
bet a =)
I y L—» see . . . (lta)sgn(x-y)

A mixed strategy for I can be described as a function ¢(x) which represents
the probability with which I will bet the amount a when his hand is x.

Then the expected payoff to I using the strategy ¢(x) is

~
M(¢) S (1-9(x))dx + (1 +a) SS 9 (x)s gn(x-y)dxdy

-1 +S (2(1+ a)x - a) @(x)dx

which is maximized for ¢(x)=

N 0, 0<x< a/2(lt+a)
6" {

1, a/2(l+a)<x<l,
and has the maximum value

Mt = a?/a(1+a) .

Next, consider the simultaneous version of La relance:
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I,y
I;x B fold bet
fold 0 -1
bet 1 (1+a)sgn(x-y)

where the rule is described by a 2x 2 payoff matrix as above., It eas ily
follows by symmetry that the value is 0 and the optimal strategy is
common to both players and given by
0 0, 0<x<a/(l+a)
¢ (x) =

1, a/(l+a)sxg 1.

Nk _ 0 .0 ~ o+ .
Note that M(¢") < 0 = M(¢ ,¢ ") < M(¢') and that, for the betting

threshold, —2—(-%;7 (in ¢+ ) < —]9-+—-a- (in ¢0). These mean that the

strategy ¢0 is more careful. than ¢+ reflecting that Blackjack is
essentially a meperson game without any competitor, ¢+ and qbo
show that bluffing is useless for these games, as is seen by common

sense, whereas I can bluff in ¢* such as, for example,

1, 0 < x <b(1-b)
o*(x) = 0, b(1-b) < x<b
1, bSx<1.

Even with this extreme bluffing, however, I stands at a disadvantage
because of the rule of the game that he must move first and give in-

formation about his hand.

Example 2. Le her (two-person draw poker).
This game proceeds as follows: Before the play the two players I

and II receive fixed hands, x and y, each being randomly (and



III. 7

independently) chosen from the unit interval.

Now if I is content with his hand he may keep it. But if I is not
content with his hand he is allowed to change it for another ’éa:ken out of
the unit interva:l at random. The rule of the play is the same for player II,
and I has to take the first move. The main object is for each to obtain a
higher card than his opponent.

This procedure is summarized in the following diagram:

Player Hand Ist Move 2nd Move Payoff to 1
I X keeps x -
changes to u-1 v
_ _s  keepsy ....... sgn(x-y)
' changes to v .... sgn(x-v)
II y keepsy ....... sgn(u-vy)

changes to w ... sgn(u-w)

Ny

Let a(x) be the probability that if I receives x he keeps it. Let
B(y) be the probability that if I keef)s his.hand and II receives y II keeps
it. Let +(y) be the ptobability that Il kepps his handif he receives y |
and I has changed his hand. Clearly a mixed strategy for I can be
represented by «(x) and that for II by B(y) and +(y).

Theorem 2.’ The optimal strategies in this model are as follows:

0, x < X, ,
a*(x)' - { 0
1, xgxo s
2 v
0, y<b=(1+ xo)/Z = 0.65,
B*(y) = { .
1, y 2 b,

y. < 1/2,

y 2 1/2,

2
A*
=

it
S
- O
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where Xy 5 0.56 is the unique root lying in the unit interval of the
equation 4x3 + 4x - 3 =0.

The value of the game is

= -0.015,

O
'
) —
(e 2 \V}
] —

Proof. By enumerating all the possibilities we find the expected

payoff to player I is
M(a;B, v) = SS&(X) Bly)sgn(x - y)dxdy + SSQ(X)(l-ﬂY))dde SSgn(x-V)dv
(5) +SS(1'OI(X))Y(Y)dXdY SSgn(u-y)du
+SS(1 - a(x))(1 - B(y))dxdy SSSgn(u - wdudw .

It is natural to guess that the optimal B* and 'y* are of the forms

0, y < b’ 0: y < 1/2
(6) B*(y) = { v¥(y) = {
1, y >b, 1, y>1/2,

for some b, since player II has no opportunity to bluff.

After some calculation the parf of Mla; H'<, 'y*) which involves

a becomes expressible as follows:

(7) Sa(X)L(X)dx )

where



III. 9

2bx - 3/4 x <
L(x) =
{2(b+ )x -2b - 3/4 x

HA
o

1\Y4
o’

Thus it is clear that if I wants to maximize (7) he must take

< 1,

) 0, if xg Xg
a*(x) = for some 0 < X0

1, if x2 X
Now let us look at the part of M(a™*; B*, 'y*) which involves B* . This is

found to be

(8) 5B*<y>K(y)dy ,

where

2
x0-2x0+1, Y S Xy

K{y) = 2
x0+1-2y, y 2

It is easily seen that we must have b > X0 sir}ce II wants to minimize
by the optimal choice of B* . Hence xy and b must satisfy the
equations 2bx, - 3/4 =0 and xé’ + 1 -2b =0 respectively.

From the derivations of o* and B* we know that

M(a™; B, ¥*) = max M(e; B*, %) = min(e®; B,v %),
; : o

but we must also check that

M(™; ¥, v = rgin (@®; B, ).
Y
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This is found out from (5) by reducing the part of M(a™, B, v) involving

v to
S(l-a*(xndx S(l-ly)v(y)dy .

This completes the proof of the theorem.

In this game the degree of disadvantage for I who moves first is very
small, because he gives no information about his hand if he changes his
hand at the first move.

The simultaneous version of Example 2 is described by the following

payoff matrix

Ly keep y change to v
Iix
keep x sgn(x-y) sgn(x-v)
change to u sgn(u-y) sgn(u-v)

An analysis using symmetry of this payoff function gives the value of the

game 0 and the common optimal strdtegy

y 0, 0<x< (N5 -1)/2 (= 0.618)
(x) =
$l {1, (N5 -1)/2 $x<1.
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Example 3. La relance with a single bet and a pass. (Kuhn)

Player Hand  lst Move 2nd Move  3rd Move Payoff to I
{pass — ~ffold ....... |
I b4 B
bet — {see ce... (14+a)sgn(x-y)
{pass
bet

II y fold  ...... S |

—> {see : e eeves (lt+a)sgn(x-y)

This is the case in which I is allowed to pass when a bad hand is delivered
to him.

I’ s strategy is a pair of functions «(x) and B(x) representing the
probability of betting at the lst Move, and of seeing at the 3rd move,
respectively, if his hand is x. Similarly, II’s strategy can be represented
by a pair of £(y) and 7(y) which are the probabilities of betting and
seeing, respectively, in the 2nd move, if his hand is y.

Expected payoff is given by

M(a, B34, ) = -SS(I-a(X))ﬁ(y)(l-B(X))dxdy+(1+a)SS(1-a(X))i(Y-)B(;c)(sgn(x-y),dxdy.

+ SS ofx)(1-1(y))dxdy + (1 +a)SS a(x)n(y)sgn(x-y)dxdy.

It would be interesting to investigate how much can I recover his dis -
advantage due to moving first by the possibility of passing, and whether

a*(x) and £*(y), or B*(x) and N*(y) have the same forms or not.
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Example 4. Indian poker.

In Indian pokerceach player: must move knowing his opponent’s hand, ,
not his owni. An interesting problem is to find whether it is true, as is
commonly believed, or not,that the players in Indian pokers have to dare
to bluff fearlessly. |

Let us consider this problem for the simplest case, Example 1.
Strategies of I and II are to choose their betting probabilities #(y) and

Y (x), respectively. The payoff is

M(¢(y), Y(x)) = -S(l-ﬁb(y))dy + SS d(y)(1 - Y(x))dxdy

/

+ (1+a) §§ P(y)y (x)sgn(x-y)dxdy .

This is found equal to M(¢, ) in (1) of Example 1 by change of

variables x =1-x, y = l-y. Hence the solution of the game is given by

1, 0sy<b
d*(y) = arbifrary, but subject to the constraint that
S $*(y)dy = b(l-b), bsysl
b
" 1, 0x<b
vix) =
0, bSxZS1,
2
vo= - (a'/(2+a)) B

»

where b =a/(2+ a))2 » Therefore the strength of bluffing is the same as in
Example 1. Situations, however, would be different for more complicated

type of poker games.
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IV. Sequential Decisioning and Dynamic Programming

The ungrammatical name ''decisioning'' in the title of this lecture is
quoted from an excellent article by M. M. Flood. In this age of rapid
communication and transportation, people particularly in the fields of
management science and military operations, are very much involved in
stressful loads of rational decision-making. Of course we cannot say that
the mathematical scientists have solved the decision-making problem.
However, it is true that there is a rapidly growing and impreséi\'iely solid
litérature that deals mathematically with ingenious ideas and techniques
for solving various decision-making situations. Dynamic programming
techniques of Richard Bellman for multistage decision problems is
really one of them. Our concern in this lecture will be with some basic
concepts, rather than mathematical detail, and illustration of them by

several examples to help understanding.

81. Basic concepts of dynamic programming.

A multistage decision process may be described simply in the

following form. We begin with

a set of positions p . . . . . position variable
a set of choices g .. .. . decision variable
successor state function T(p,q)

immediate return function g(p,q)

and length of the programming period N,

If Qpsdpsee sy is a sequence of choices, a sequence of positions will

be generated, starting with initial p = Py
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Ppr P2 = TPy ap)s Py = TPy qp)s - oo Py = Topp apy)-

We impose the condition that q; areto be chosen to maximize the value of

the criterion function

{=

R(Pps Pps v e v s Py 3y v - v 0 Gpy) = g(pys )t hlpypyy) »
t

I
ot

where h(pN+l) represents the utility of the final state PN+l

This assumption of additivity of ultilities from particular steps of the
process while apparently quite restrictive, is actually broad enough to
permit us to handle many significant classes of processes, including such
fields as the calculus of variations and the general theory of adaptive control
processes.

Let a sequence of choices of the q’s , {ql, “ue ,qN} » be called a

policy and a policy which maximizes R an optimal policy. To determine
y y p P ¥

optimal policies in an effective manner, we use the following intuitive

principle:

Principle of Optimality, An optimal policy has the property that

whatever the initial state and initial decisions are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the

first decision.

The functional equations of dynamic programming are derived by a
uniform and systematic application of the foregoing principle.
To derive an equation that will simultaneously permit the evaluation

of the maximum value of R and the determination of the optimal policy,

we begin with the observation that this maximum value depends upon p,
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the initial state, and N, the numbetr of stages in the process. We therefore

write, with p = Py

jp

1

0

fN(p) = max [
q1, o 0 0 ) qN

In so doing we are emphasizing the fact that p and N are not to be

regarded: as fixed constants, but rather as variable parameters. Now

N
fy(p) = max l:g(p, a)* . max z g(py» ) + blPygy)) ]

4 22+ AN =2

max [g(p, q,) + - 1(T(ps ql))] :
41

The original process with specified values of p and N has thus been
imbedded within a family of similar processes described by the above
functional equation. On the basis of this equation we can analyse the
: analytic structure of the maximum return and the optimal policy and
compute numerical solutions.

The method described above allows us to transform the original
N -dimensional maximization problem involving a choice of {ql, RPN qN}

into a succession of one-dimensional maximization problems involving

choices of qq» then q,, and so on. There are some important advantages

in this formulation, as is to be expected. For example,

(a) Absolute maximum, not the relative maximum , can be obtained without
much difficulty.

(b) Even if there are constraints in choice of q, it will simplify the

computations.
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(c) We can formulate the discrete problems in the same fashion.

(d) g(p, q) and h(p) need not be smooth.

We shall illustrate the above concepts by several self-contained examples.

The first one of these will be the simplest to show the idea most vividly.

Example 1. Consider the maximization problem:

c e X, . /> max,

N

*2
N

subject to z x. = a (a>0),
1

(B40)

Of course we know the solution of this problem by the arithmetic-geometric

mean inequality. Butwe try the functional equation approach.

Let the maximum value be denoted by fN(a). - Then we get

fN(a) =  max ,_fo_l(a-x):[ s .(N 22, fl(a) = a)..

0s$x<al
Successively we obtain

fla) = a" /NN, N

We thus establish the well-known inequality

N

l -

‘N‘}, x; 2 (xpxp e xy)
1

with equality if and only if X] 5 Xy T eee TXg

for xl,..,,xNgo

In the second example the dynamic programming formulation leads to

the usual "working backward' method.
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Example 2,.

The manufacturing process for a perishable commodity is such that the
cost of changing the level of production from one month to the next is twice
the square of the difference in production levels., Any production not sold
by the end of the month is wasted at a cost of $20 per unit. Given the
sales forecast below, which must be met, determine a production schedule

to minimize costs. Assume that December production was 200 units.

Month Jan. Feb. Mar. Apr.

Sales Forecast 210 220 195 180

Let fn(p) be the minimum achievable cost when last month’ s production

was p and there are n months to go. Then we get

() = min [26cp) 4 20x8) + £, ()]

(n=1,... ’,4 ;fo(p) = 0), where

$..... sales forecast for the current month
X ..... production for the current month
Using this formula for successive months starting with fl(p) for April

and working backward to f4(p) for January, we get

£(p) = min [2(x-p)® + 20(x-180)]
X 2 180

{ZOp - 3650, p > 185

2(180-p)%, p < 185,
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£,(p) = min [2(x-p)° + 20(x - 195) + £;(x)]
x 2195 ’
= min [2(x - p)% + 40x - 7750]
x 2195
{2(195; -p)2+ 250, p <205
40p - 7750, p > 205
£) = min  [2(x-p)® + 20(x-220) + £,(x)]

x > 220

min [ 2(x-p)2 + 60x - 12150]
x 2 220

- {2(220 - p)% + 1050, 210 <p <235

60(p - 210), p> 235

£,(200) = min [ 2(x - 200)% + 20(x - 210) + £ (x]
x> 210

min [ 2(x-200)% + 20(x-210) + 2(220-x)%+1050]
= min | 210 <x< 235

min  [2(x - 200)% + 80(x - 210)]
x 2 235

and the answer is

Jan. Feb. March April
210 220 210 205

The following three examples deal with mathematical formulations and
solutions for some of the interesting decision-making problems we often

encounter in real life.
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Example 3. (a search problem). Suppose that we are given the information
that a ball is in one of N boxes, and a priori probability, Py that it is in

the k-th box. Let

t . time consumed in examining the k-th box.

Ko
Qp +ovee probability that an examination of the k-th box gives no

information concerning its contents.

Find the optimal search procedure which minimizes the expected time
required to find the ball.
Let f(pl, c e p—N) be the expected time required to obtain the ball

using an optimal policy. Then

min [tk+ qkf(plsuo.,pN)

Wy opy) = min

(1-q,)(1-p,) £ ( ! % N )
+ -q -p ——— ey P
k k l—pk ’ 1 - pk.
t P N-% P
= min -1-:1<—+(1-pk)f (i-_—-l-,...,o,.-..,T_—F-)l—\I—>
1S k<N A Py k
With
frs = Expected time required if the examinations of the

r -th box, first, and then, the s-th, are followed by

optimal continuation,
we get

tr ts pl ‘ L (> pN
fl‘S - l'qr + (l-pr) I—:q—s- + (l—pr-ps)f —I_—p—_—p-—,...,o,...,,o,...,ﬁﬁ;

Therefore
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< t < t
_—_— = —b T = s
frs fsr ¥> } 0 4—- przl-qr) {> } psll-qs)

Thus the optimal procedure consists of looking in the box which minimizes

"k
P (1-qy) .
k C . s
If we arrange Py l'qk ln increasing order obtaining
t( 1) t 2 t

N

(2)
—_— < €. < —
PyT -d) = pyT-ap) =777 = by (T=a )

then we have

N
= P + p + ¢ +p
— (k) (k4) (N)
f(Pys - - -5 ) k}_l, T4

Example 4.

Assume that we are a contestant on a quiz program where we have an

opportunity to win a substantial amount of money provided that we answer

a series of questions correctly. Let, for k= 1,...; N,

K+ e+ @mount of money obtained if the k-th question is answered
correctly.

Py - o probability that the k-th question can be answered correctly.

Assume that we have a choice at the end of each question of attempting to
answer the next question, or of stopping with the amount already won.
Find the optimal policies to pursue under the following conditions.

(a) Any wrong answer terminates the process with a total return of zero.

(b) One wrong answer is allowed.
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Solution for (a): Let, for k=1,...,N,

fk = expected return from the optimal policy given that
he has already answered k-1 questions correctly
and is now facing the k-th question.

Then
S:rl+°° t T N,
fk = max , (k=2,..:,N;fN+1= ‘rk),
| A Pef 1

where S and A in the right hand side represent, symbolically, the
alternatives, available for him, 'stop"’ and "answer'', respectively.

Therefore

Pr T
Stopping region : rytrttor > N N
N-1 1 - PN
rs : r + ° + T .
f = max 1 N.-z
N-1 A £
PN-1'N
S Tyt rg o
= max | AS: pN_l(r1 + + rN-l)
AA

Stopping region : r + *++ + r

1

Thus the stopping region at the second stage (i.e., for fz) turns out to be
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N PoT, PyPa(rytrs) Pyt Pyl Fo et ry)
1= l-pz’ 1—p2p3 l-pz...pN

r

Solution for (b) : Let fk be defined as in the previous part. Let, for

l1<s< k<N,

g(s, k) = expected return from the optimal policy given that
he has failed the s-th question and answered the other
questions correctly and is now facing the k-th question.

Then we obtain

g(s, k) = max i=1

fs = psf's+1+ (1 - ps)g(s, s+1)

—_
1]
fi

N N
1,...,N ; {(N+1) = 2 Ty g(N, N+1) = 2 rk).
1 1

From the upper recurrence relation we can find g(s, s+1) for each s.

This and the lower recurrence relation give values of fs .

Example 5. (Marriage Problem)

A young man wishes to marry the finest young girl he can find. A
known number n, of younggirls are coming:up_ one at a time before you
in a random order. After inspecting any number r(lgr < ﬁ) of them he
must decide whether to marry the r-th girl or to continue his search for

a still better girl. What is his sequential scheme ?
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In order to give a mathematical formulation to this problem we must
assign a utility function: After inspecting any number r (1< r < n) of
the girls he is able ;co rank them from best (by rank 1) to worst (by rank r).
Let Ui be the utility of marrying the girl with the i-th true rank. Thus
U,z Uy 2 2U_ . Note that a girl’s true rank is distinct from her

apparent rank that she has when only some have appeared before him. Let

U(s, r) = the expected utility of the optimal sequential
scheme when starting from a situation where
the r-th girl has an apparent rank s.

Then we obtain

— -

nts-r o1 .
s: 2 (* )t v
U(s, r) == max i=s s-1/\r-s vor

r+ 1 _
| C: 2, U(s', v+ 1)[(x+ 1)
st=1

forall 1<s<r<in-l , with U(s, n) = Us’ since

Prob. {I—Ier true rank is i]Th.e r-th girl has apparent rank s}

)

Theorem. Assume that U1 =1, U2 = ... = Un = 0. Let q be the
n-1

minimum integer such that Z r 1 < 1. Then for a fixed n, the
r=q

optimal policy is to inspect the first g-1 girls and then marry any

subsequent girl of apparent rank 1. The expected utility is

r_};l
1+ (q-1) Z _
r=q

sl
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-1 e -1
(For large n, q = ne L = 0. 368n, and the expected utility e 7).

Proof. Since, by our assumptions,

nts-r _1,/(n)_r i _
. s ==, s =1
2 (! 11><n1>‘%/<?>= (o) /0
=P 0, if s> 2.
we have

S: r/n

U(2, r) = max | , (r=1,...n-1,U(1, n) = 1)
C: w

r+1
and U{s, r) = u, s if 2<s <1 where u, = U(s', v+ 1)/(r+1).
s'=1

The optimal policy requires to continue inspection if 2<s Sr. Now

u, = ;‘ql."j (U(1, r+ I)+rur+ 1).
We can first show that if
UL, rg) = _r_é_)
for some Ty then
U(l, r) =£—, for all rgro.

For suppose that

r
3r>r0; U(l, r) =Y > =

Then by (%)

(*)

(+)
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(U(1, r) + (x-Du) =u, > I,

]

which implies u._1 > — and hence from (%)

This argument continues until we get a contradiction to (+).

So next we have to find out how large r must be. Equations (+)

and (k%) give

u u u_
r, i 1 r0+1 o X 1 . r0+2
T nr g r0+1 nr g n(r0+1) r0+2

_ 1,1 1 .. 1 Yn-1

- —H(?—+r+l+ taz) n-1

Therefore, since u < Yo =U(1, ro), we obtain
0

Loy Loy Lo,

ry r0+1 n-1

n-1
Let g be the minimum integer such that Z r1< 1. Then
r=q

1 1 ) 1 1 1 _
5 + T t =g <1g 7T +-G-1-+ o=

From {(*%) we have
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tgy = 2 (84 @) -2 (q.l__ﬁ%Jr s _1_1) . (+4)

Again from (**) with r < g-1 we have u.=u. ., SO that U(l, l)=u1=_.° cezu .,

q-1
the utility of the optimal policy starting at the beginning, is given by (+ +).

If, in real life, this process works between 18 and 40 (i. e., for 22
years) one should never propose until age 18 + 0,368 x 22 % 26, A sound
conclusion is that either many people do not pursue an optimal policy, or else

they have a different utility function.
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V. Interpretations of Information by Decision-Making Models

1. Optimal betting policy of a gambler.

Consider the following two decision-making problems:
(a). Consider a coin with the probability p of heads. A gambler knowing
the probability is required to place a bet on the event of head. He is
allowed to bet a quantity a, subject to the restriction 0< a<x, where x
is his capital at the present stage. If he bets correctly he then wins,
otherwise he loses. Continuing:;this betting process for N stages and
assuming that the tossings of the coin are independent at these stages
and that the gambler wishes to maximize the expected value of the logarithm-

of the final total at the end of the process, find an optimal betting policy.

(b) Consider the situation in which the gambler makes bets of amount

Z.1 on the random event Ei » subject to the restriction that Z.1 > 0

(i=1,...,n0), Zli zZ, = x. Assume that he has the following information

-+... the probability of occurring AEi (i=1,...,n).

s (>1..... the return from a unit winning bet on E We

i .
assume that Zr-'l < 1,

Find the optimal betting policy for the N-stage problem.
We show the solutions as follows,
(2) Let the maximum expected value of the logarithm of the final total

be denoted by fN(-x) Then, with g = 1-p,

f{x) = max (pf (x+a) + qgf (x-a})
N 0<a<x N-1 N-1

(N=1,2,... ;fo(x) = log x).



Therefore

fl(x) = max (plog (x+a) +q log(x-a)),
O<:a<=x

in which the maximum in the right hand side is reached at a =

o] =

(2p-1)x, if p >
a¥(x) =
0,

A

If p>%, then

f1(x) = p log(2px) + q log(2gx)

= log x + C(p)

where

C(p) = plog-.l%-2+ q log -%7—2 > 0.

It is easy to show that, for each stage N, the optimal betting strategy is

given by (*) and
{log x + NC(p), ifp> —21‘—
x) =

log x, <

(b) With the same definition of fy(x) as in (2) we have the recurrence

relation

n
fN(x) = . max 2! pifN~1(r1Z1) s
_ . i=1



(N=1,2,.. ; fo(x) = log x).

Therefore
n
fl(x) = nmax Zpi log(rizi)
£z, =x 1
1 z. >0
i=
n n
z; <
= nmax Zpilog -—}-{—> +Zpilogri+ log x .
z z./x =1 =1
71
zi/x >0
Since
L z L%
i \
p; log — < ZPIIOg P; »
i=1 i=l

e}
for all z, >0, with 2. z. =x, with equality if and only if
= 1

z, = z;*(x) = px (i=1,...,nkn (+)

we get

fl(x) =logx+ K

where

n
K = E p;log r, - p; log(1/p.)
1

HMS



‘

n-—-Mf;s

P.
i -1, -1
e A L (Zex )
r, { T, )

which is positive because of the assumption riml < 1. It is easy to
show that, for each stage N, the optimal betting strategy is given by (+)

and
fN(x) = log x + NK (N'=1,2,...)

The optimal policy is independent of the number of stages remaining,
independent of the amount of money available, and independent of the
interest factors r. . It always divides the available money proportionally
to p; -

We have seen that in each of these two models, if a gambler bets on
the input symboel to a communication channel optimally, his capital will
grow exponentially, and the maximum value of this exponential rate of
growth is equal to the rate of transmission of information. It is clear,
however, that this is decisively due to the logarithmic nature of the
payoff function chosen.

The foregoing models naturally suggests two rays of generalization,
the one using another utility function ¢(x) instead of log x and the other

converting into the game situation, i.e., the analysis of max-min

equations.

§2. A multi-stage game in which Nature is introduced.
Consider the same gambler treated in (b) of the previous section
again. Sitwations are the same except in the following two points. The

probabilities P; of the events are assumed to be unknown by the gambler,



and he wishes to maximize the expected value of a function ¢(w) of the
final total at the end of the process. ¢(w) is a continuous, non-decreasing
and concave function'defined for w > 0.

Let us define the sequence of functions

fN(x) = the expected value of ¢(w) obtained using an optimal N-stage

policy, starting with a capital of x,
for N=1,2,... and x> 0, and = 0 for x< 0.
The min-max principle forces the gambler to act as if Nature’s choice
of {pi}‘ were the one least favorable to him. Then the principle of

optimality yields the recurrence relations

(1) fl(x) = max min”Zpli'(l)&(}l;izi),
Z2;=x {pi}
zig 0
(2) fk(x) =  max min Z pifk-l(rizi)’ 2<k<N
Zzizx {pl‘}
z.>0
1=
for x> 0.
We have the

Theorem. (i) We have

n N
(3) f(x) = ¢ x(zr;1> , N=1 2,
T

The max-min policy of the gambler is independent of the number of

stages remaining, and of the quantity of money available. It leads to:

always divide the quantity available proportionally to r{l yz, = xri—l(z,ri—l)-l

Gi=1,...,N).



(ii) We have

(4) max min » pi¢(r.z.) = min max \ P:9(r.z.) =¢[ ﬂ\r.-1>-l] .
Zzizl {pi} ? | i%i {pizzzfl, ir Vit (Z i

>
z1=0

Y

z.> 0
1=

Nature’s min-max policy is determined b
policy d by

(5) pi=r;1<2r{1>—1.

and this is the unique min-max policy if - ¢(w) 1is strictly concave.

Before proceding to the proof of the theorem we show a

Lemma. If r;s (i=1,...,n) are the given positive numbers, we have
1) -1
(6) max min (rizi) = min max (rizi) = Z s .
Z',zi=1 I<i<n Zzi=l 1<ign
z.2>20 z.20
i= i=

Proof. We shall show that max-min = (Z ri_l) -1 Since the other half
of the lemma can be readily proved by the similar way we shall omit it.

Take any z with 2,20 and 2oz, =1 and let

K(z) = min (r.z‘i) .
I<ig<n !
Then we have for every i
z, > r_lK(z)
i i ?

and so



1= z\ z, 2 K(z)?r{l.

Hence we get

-1
K(z) < (Erl'l)

for any z. The equality sign is attained by the special z: z=r, (Z 1-1 -1

Thus we have proved that

max K(z) (Z '1>

Zz. =

(i=1, ...,n).

1

ny

1

Proof of the Theorem.

(i) We have from (1)

fl(x) = max min 2pi¢(rizix)
Z =1 P;
20

2, 2

[0} (v,2,%)

= max min
z 1<i<n’

¢[ max min (r;2,x)]
z IKi<n

(by monotonicity and continuity of ¢ )

i

(7) (l)[x(Zri-l)-l] (by the lemma).
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Next we have from (2) similarly

™ -1
fz(x) = max min Zpi(,b[rizi (}r;ﬂ) ]

Thus inductively we get (3). It is evident from the derivation that the
max-min policy of the gambler is just determined by the max-min strategy
in (6).

(ii) To show the validy of (4) we shall first show that max-min 2
min-max. The inverse inequality is evident.

We have

1]

the middle term of (4) min max Z gi(b(r.lzi)

P V4

HA

min max ¢ (Zpirizi> (by concavity of ¢ )
Pz

¢ (min max E p.r.z.)

p z 111

(by monotonicity and continuity of ¢ )

I
-
-

/—\
~H
=y
—
~"
=
| S—
-
~
ot
fop
(0]
e
o
3
3
L

and we have

the left-hand side of (4)

Il
8
fol}

»
8
-
)
T
-
=
L1
-
N
-
]
©-
~
/\
L |
o
1
[y
—



by (7). Thus we have established the inequality wanted.
The remaining parts of the theorem is again evident.
The max-min expected value is log {x(z r{l) "N} , if ¢(w) = log w.
i

In (b) of the previous model in which {pi} were known to the gambler

the maximum expected value was log(xeKN). Since

n
Pj -1\t -1\ -1
K = zpilog ——_l—z———_-l—_l + log Zri > log Zri
1 ry (&r7)

we can see that

-N
log {x(g ri_]‘) } < log(xeKN).
1

The difference of the both sides of this expression measures value of

informations of probabilities {pi} .

§3. Incentive fee to the forecaster,

In an article '""Measures of the value of information", J., McCarthy
(1956) attaches to this term a different meaning. He defines what we
might call an efficient incentive function and discusses about ''a payoff
rule to keep the forecaster honest.'" The payoff in question is not the .
value of information in our sense, but his approach might give the

promige of a fruitful analysis of the '""economic' theory of information.

Denote by p = (py,...,P,) S Zn the probability-n vector of
alternative events i =1,...,n. A client does not know p but has an
a priori knowledge § = (Zl, e f-_;n) (5] Bn . An expert will tell the
client an estimate y of p, y = (yl, R y_n) € Bn , and receive a fee

h(yi) if event i happens. We shall call the function h an efficient



incentive function if the following properties are satisfied:

(a) the expected fee is largest when the expert’s estimates are correct:

n

pih(yi) pih(pi), for all y € Z » with equality

N
A
e

if and only if y = p.

(b) the expected fee is zero, if the client’s knowledge is cofrect and the

expert does not know more than the client:

D3P

£.h(£) =0.
i=1
[ Theorem]  The function
n
b(y;) = Allogy; +2§ log%-) A>0;i=1, »n)  (¥*)
i=1 '

is an efficient incentive function.

Proof. Any function

h(yi) =Alogyi+B (A>0;i=1,...,n)
n
satisfies (a). Condition (b) requires that B = A z E,i log El_ .
‘ . i
i=1

This efficient incentive function yields the maximum expected fee

log -
pilog - )

a linearly decreasing function of the entropy that characterizes the true

n
1
A : ‘Ei log T -
i=1 ooy

Nl

it
-
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probability distfibution of the events. In the particular case where the

client has a belief a priori that all events are equally probable, the max-
n .

. ‘ Pi

imum expected fee to the expert becomes A éi P; log 75

It must be noted that the logarithmic incentive function is not the

only efficient one. M. Beckmann constructed the following example with

n=2:

Vi 1 2
| t- > . o
b(y;) =S Gl Z'I)dt (i=12 3y€ )
1/2 t

where g is an arbitrary positive-valued function. The expression

VAl P - t 1
plh(yl) + (l'pl)h(l'yl) = S _t_(l—-_tT g(lt -7 l)dt

1/2

is maximized when and only when Vi =Py - Thus

Vigle-2h) & gl 1))
h(yi)=A,S ——t——-—dt-ZS,if ———dtt (A >0 ;i=l,2)
1/2 1/2

is another efficient incentive function, which reduces to (%) if we take

g(z) = 1.
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VI. Statistical Decision Problems and Bayes Solutions

1. Notation.

Suppose a choice has to be made from a set D of possible decisions
and that the value of an "unknown' parameter w determines the ''negative-
utility' or 'loss'' of a decision d € D by a known loss function L{w, d).
To assist the choice of d, there is the observation of a r.v. x with the
probability density f(x, ) depending on the unknown "true' parameter
value W€ Q. The observation of x can give some information about the
unknown true value of w. How is d to be chosen on the basis of x, when
given the decision problem (2, D, L) and the sample space
[(X, B) {(x, w) | weg ]} ? This is a usual formulation of statistical
decision problems.

Let 6(x) be, for each x € X , a pfobability distribution over D,

so that 0(x) describes a decision rule by which a decision d is selected

with probability Pr {G(X) = le = x} . The risk function of the

decision rule 0 1is defined by

r(w, 6) = Ew[L(w, 8(XN] = § Z L{w, d)Pr {5(x)= d IX = x}f(x, w)dx,
X deD

i.e., the expected loss of using the decision rule §, when the true

parameter value is .

2. The evaluation of decision rules.

Roughly speaking, we consider a decision rule & "gooti" if r(w, 0)
is "small" for all W€ . To be more precise, suppose we are con-

sidering two different decision rules 6(1) and 6(2) , and suppose that
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r(w, 6(1)) < r(w, 6(2)), for all w€  and < holds

for at least one: Ww.

Then we say that 5V is better than 5(2) », and we would not use 5(2).

A decision rule 6 is called admissible if

16' ; 0' is better than 6.

Whatever decision is finally used should be an admissible decision rule

and therefore a method for finding admissible decision rules is needed.

3. Bayes decision rules.

The Bayes principle of statistical decision problems makes w
random with a priori probability distribution £ (w) and chooses 0

which minimizes the average risk § r(w, 0)dE(w). As is readily found,
Q

the Bayes principle leads to the Bayes decision rule which selects any

decision, with probability 1, which minimizes
S L{w, d)f(x, w)dé(w) ot SL(w,d)f(x,w)dg(w)/ f(x, w)dé(w).
Q

i.e., the expectation of L(w, d) in the posterior distribution of W
given x, evaluated by Bayes’ theorem. (If for some x, this expression
is minimized by more than one value of d € D, then there is more than
one decision rule which is Bayes r.t. §).

Suppose that there is a finite number k of possible values of W,
so that we assume that = {1, . ,k} . The prior distribution &(w)
over § 1is a probability k-vector § = (Zl, ce ,'Ek). Suppose that the

statistical decision problem is given such that the set
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s = {(x(1,8), ..., r(k, )N]|6€ D}

of all risk vectors attained by all possible decision rules, is a bounded,
convex and closed subset in Euclidean k-space. Then some of the basic

theorems state

[Theorem 1] For any point s*¢ S,

I‘S S
let
* 5*
T 4 = {tlti>si (i=1,...,K}. -
k i
Then s* is Bayes r.t. some £ €4 , 0
if and only if
TS*Q S = ¢ .
[Theorem 2] Let
k

7+ }

= {g] £, >0(i=1,...,K), Zgi = 1}

a/ = set of all admissible points in S

6 = set of all Bayes points in S

@+ = set of all Bayes points in S r.t. some & € Z+

Then (a) 6+(; AC B .

(b} Both of a, and 6 are complete:

Completeness of (. is defined by (Va' Q'a,) 3 a Ga, ;a is
better than a'. Theorem 2 says thatto find the Bayes decision rules is
a useful step in searching for the admissible decision rules. Besides

it is so simple to find its Bayes decision rules.
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4. Bayes principle leads to likelihood ratio.

In many decision problems in which @ is finite, the Bayes decision
rule is a rule based on the likelihood ratio.
Consider the following simple example, § = {l, 2_} , D= {dl, dz}

and the loss is given by

d

w d, 4,
] 0 ]
2 1 0

Here nature’s states are represented by one of two densities fl(x)
and fz(x). Statistician has to decide which is the true p.d.f. when
observing the value x. The Bayes decision rule r.t. £, 1-¢ is

the rule which

d
takes { 1} according as (I-C)fz(x) {é} Cfl(x).
>
d2
This is a probability-ratio decision rule. As ¢ varies 0 ~ 1,

TC-‘E varies 0 ~ @. Thus by varying Tg_—z- from 0 to @ we generate

all Bayes rules. It is known that a statistical decision rule based on the
likelihood -ratio often provides a seemingly peculiar example.

Let us give two examples.
[Proposition 1] Suppose that the data consists of a single observation X

with Cauchy density

1 1
Mo @) = 7 Tiwz @ "®<x<o.
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This density is symmetric and centered about @ and resembles the normal

density. The Bayes test of

H

1, w= -1

Hl:w=1

r.t. §, 1-§ has the acceptance region of H, :

(- ©, o), if  £< 2-2{? = 0.147
v -N 2 1
(- oo, }\_I(C)) U(x](t)v ), if: Z < §< 5
(M8 2 (ED), if % <g < 2*}? 5 0.854
null set, if £ 5 2+;\{‘z
. N (b = 2lENI1-2(1-2 %
where +1 = T - 20
The Bayes test r. t. % ) % » for example, accepts H1 when X is large

enough ()\1(%):‘:; -0.35) or very small ()‘l(_;') '=_ -5. 65).
Proof. Let { be the prior probability assigned to H_1 . The Bayes test
r.t. €, 1-€ accepts H, if and only if

fx, 1) _ x°t2xt2 &

fe, -1 2kt 2 ° I

e, (1-20x%+ 2x+ 2(1-28) > 0.
It should be remarked that, although an intuitively appealing strategy,

such as ''accept H, if and only if X > -0. 35" is not admissible, it is

1
almost so, and its risk point lies close to the boundary of the set S.
The above peculiarity is based, to some extent, on the property of

Cauchy densities. But the following example applies fof acconsiderdbly

wider« class 6f densities.
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Suppose that we have to decide between two hypotheses H1 and H2
and that we can have the choice of observing a variable X alone or of
observing two variables X and Y. While observation of the two
variables is more informative than observation of the one variable, it

is also more expensive.

X Y

(€) Hy| fi(x) g,(y)

(l'g) Hz fz(x) gZ(Y)

The question is whether it is worthwhile for us to pay the additional cost
c(> 0) for the variable Y.

Let £ and 1-{ be the prior probabilities of H1 and H2 , respec-
tively. And let us assume O-or-1 loss function. It is easily conjectured
that if £ is small or large the Bayes decision rule will be based on
observing X alone. The question is whether the value of { for which

the Bayes rules are based on X and Y constitute an interval,

[Proposition 2] (a) Let the average risk of the Bayes decision rule

based on X be denoted by RX(J;’) , and that based on both of X and Y,

by R Then forrany fl, fz, g1 and g, we have

X’ Y(C)'

RX,Y(C) S Ry(f), forall 0g ¢ <1.

(b) Suppose that the observation of Y needs the additional cost c(> 0).
Then the set {C IRX Y(C) +c< RX(C)} does not necessarily con-

stitute an interwval.
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Proof of (a).

Ry ¢(&) = CSS f,(x)g; (y)dh(x)du(y)

£5(x)g,(y)
2 2
TE 60 rr

+(1-0) SS £,(x)g,(y)dN(x)av(y)

£,(x)g,(y) ¢
2 2 <
AEEA G R

- gg max(8;(x)g,(y), (1-0)f,(x)g,(y))dN(x)dv(y).

But

max(tfl(x)gl(y) » (1-€ )fz(X)gZ(Y))

§f,(x) g (y) = max(ff;(x), (1-0)f,(x)gly), if x€gW

n

(1-0)E,()g,(y) = max(SE,(x), (1-0),(x)g,ly) if x €W
f,(x)
where W = {xl ?T—(X—) > IL_C-} . Thus we get

Sf max(Zf | (x)g)(y), (1-0),(x)g,(y)) d(x)du(y)

> [ waxite 00, 1-05e0000 = 12RO
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Example of (b). An example is given as follows (Anderson, 1964).

\Exp. 6
Hyp. X 6?
H a, W.p. 1/3 A, w.p. 1/2
r; 1 X = 1" =
b’ B, 1
C, 1]
a, w.p. 1/6 A, w.p.1/3
(1-€ H2 X = Y =
b, "o1/3 B, " 2/3
c, "o1/2
Both of

and
(X)g,(Y) £,(X)g,(Y)
_ 2 2 2 2
Ryyll) = tor {f gy > g df + 00w {W 1, e

and hence, RX(C) - RXY(C) are all linear, in €, in intervals. The values

are shown in the following table.
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S ¢ R (€) Ryyl-c  Ry(f)-Ryul(f)+c
0 0 0 0 0
1/3 1/4 1/4 0
1/2 1/3 i3 1/54
2/3 2/5 11/30 0-

5/12
1 1/2 7/18 1/36
4/3 4/7 8/21 1/42
3/2 3/5 2/5 1/30
2 2/3 1/3 0
® 1 0 0 0

Both of RX(C) and RX Y(C) are concave in 0 < £ <1 and have the

graphs shown below.

. 1
Hence if 0< ¢ < vl {C |RX(§) - RX,Y(C) -c> 0} does not

constitute an interval.
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5. Robustness of Bayes solutions.

Let us turn our attention to the more practical view point. In most
cases the Bayes decision rules are derived on the basis of two assump-
tions:

(i) f(x, w) has a mathematically ideal, but in many cases practically
impossible shape, for example, normal frequency function with
mean ' and variance 1.

(ii) The prior distribution §(w) is exactly known and has a shape

mathematically convenient to treat,

We can, in many practical situations, agree with the opinion that
£(w) is unlikely to be known with much accuracy because the effort
necessary for its accurate information is too great. Moreover, even
in the case in which Z(w) is used to denote the subjective probability
distribution for w, 'the vagueness associated with judgements of the
magnitude of personal probability' (quoted from L. J. Savage) will
usually preclude realization of &(w). So, in practice, one has often
to use a supposed distribution on ':E’(w) as an approximation to (w).
If 'g is used in place of §, the Bayes solution r.t. 'E, G'g.’ yields

the average risk g r(w, ;5'E)d£(w). Thus
Q

A :E) = S (r(w, 5{) - r(w, Qg))di(w) (2 0)
Q

if the average increase of risk which the statistician will suffer
A
through using & instead of &.
Let us take as an example a typical problem of estimation. Suppose

that each month a company sells a certain amount of its product, and
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that the amounts sold in the various months are independent, identically
distributed r.v. with mean p and variance 0_2 both of which are
unknown. The problem is to estimate this unknown mean, using the
observations available.

The following proposition.is readily found:
[Proposition 3] Let Xqowoes Xy be independent observations of a r. v.
having mean p and variance 0'2 » both unknown. We are required
to estimate p with squared-error loss functions. Suppose that &(w)
is an a priori distribution over § = {(p., G‘Z)} and we consider the

n

estimators linear in y = Z, x:l/n . Then the Bayes estimator of y,
1

r.t. &(w) is given by

dgly) = (1 -aly + ¢ E(p)

and the Bayes risk, by

S r(w, dp)d § = (1 -a)’E (zﬁ>+ 2V(p)
Q n

where E(*) and V(.) are expectations and variances in the distribution

((w) and o= E (‘f—nz) AV(H) + E (‘-’é>

Proof. The average risk of the estimator ay+b is

2
§ at(, o3 layrb-wPety 5 uoodiay = ale (‘%) +(a-1)2V(p)+ (@-DE()+b)

which is minimized by choosing a = l-@, b = a E(u).
Apparently we require only partial information about £(w). This

is because of the rather unrestricted shape of f(x ; u, 6'2). More
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precise knowledge of § would, of course, be required if the shape of
f(x ; 6“2) is specified.
[Proposition 4] In Proposition 3, let dg(y) be the Bayes estimator

n~ ~
r.t. . Then the increase of risk by using & 1is given by

B = [ o g - ro, gpnag)
Q
~J 2 ~J S ~
= (-8 - (- @)PE (S )+ @2 AV + FAEw - B)?
where

dg = (1 -Q)y +”3fﬁ(u)

2 ~s ~ [ ~
and @ = ﬁ(‘%) /(V(p) +E (%) ), in which E(-) and V(-) are
[4¥)
taken in the distribution &(w).
Several deductions may be made from this result:

(i) If @ =1 (i.e., we use f)(p,) as the Bayes estimator) then

~ 2 A
[(agson, o V) o+ (B - Bu)?
V(p) +E (E_)

(ii) If @ =0 (i.e., we use the usual estimator y) then

E° (é_)

[A(E: §)]a=0 = V(p)+E(°:;>

(iii) [A(E E)] < [A(g :Ag)],u i.e., E(p) is "better than" vy, if
=i a =0

and only if
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o 2
Ef(p - E(p«))z] < E(G—n-) :

~J
In other words, if the prior estimator E(u) is chosen good enough, the

estimate using no observations is better than the usual estimator v.

~ ~N
(iv) [A(§ : g)]u < A(g : %), i.e., y is "better than' dg , if and only
a =0
if

2 2

A 2 E{g”) ~ g
El{(p - BN <2 22 V() + ().
E(G‘Z) ( n>

NI
Thus, if n increases the range of § in which y is better then dg’

is reduced.
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VII. Information, Experience and Learning.

Today’s topic is information, experience and learning. The concept of
information is a basic one in many fields of modern science. It is particularly
penetrating and illuminating in the domain of mathematical statistics. Add to
this classical theme the modern noticn of ""decision' and we have the basic
ingredients of a new field of statistics, the theory of information and decision
processes. To make good decisions is always hard work. In this age of rapid
growth of industry and technology, engineers and scientists spend much of
their time trying to obtain more information about the problem at hand, and
finally making a decision based on the information which is available. It
would be fatuous to assert that they use mathematical optimization techniques
in their cases, or even that they might hope to do so. But certainly there
is ample room in this direction, and we are moving steadily toward the
quantification and objectivization of our decision-making.

I illustrate some central ideas of utilization by showing several examples
in mathematical statistics. We start our consideration with a very simple
example. Suppose that a 2 x 2 game against Nature is repeatedly played by

a rational decision-maker. In each play the loss is given by

Decision-Maker

Decision dl dz
States
W 0 1
W, 1 0
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Suppose that the decision-maker knows that Nature uses a fixed policy by
which the state W is selected by a fixed but unknown frequency 0< p < 1
at each stage. If the frequency p were known to the decision-maker the

situation would be very easy: His best choice at each stage is to

choose , according as p {f } 1/2,
d
yielding the expected payoff min(p, 1-p) at each stage. This optimal behavior,
which is a Bayes decision rule, is crucially based on his exact knowledge
about whether the value of p is greater than or smaller than 1/2.

Reasoning by use of statistical theory, however, enables us to act
optimally in some sense, even if we have no information originally about the
value of p, provided that we can play the game repeatedly under the invariant
situation gathering the increasing information about the unknown value of p.

The following Example 1 show this fact.

Example 1

Consider the guessing game

6=1,0 £(x) x

£(%)

with the loss function
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decision d,:guess "@=1" d,:guess '@ =0"
1 0
state
o= 1 0 2,(>0)
6= 0 a,(> 0) 0

Let the decision function be denoted by §&(x) : that is, choose d1 with prob §(x),
if the observation is x. If the prior distribution of the unknown signal 0 is

binomial with parameters 1, p, then the average risk of the decision function

0 is
=(p, 0) = pr(1, 8) + (1-p)x(0, 0)
= pay| (-000gE0a + 1eplag [[oxitymaan
= pay -§ 9,(x)0(x)d
where

d,(x) = payhy(x) - (L-p)agfy(x) .

Hence the Bayes solution r.t. this prior distribution is given by

1\
o

5; - {1, if ¢ (x)
0, if <

The Bayes risk is

+
r(p, 007 = pr(l, 87) + (1 -p)r(0, 0% = pa —S‘[sbp(x)] dp .
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Now suppose that the value of p is unknown so that we cannot adopt the Bayes
decision rule 6% , but that the problem of guessing the value of 0 from obser-

vation of x 1is presented to us a total of n times:

1 n-1 n
*1 =2 Zn-1 *n
(91, ..,Qn) fl(x) | (xl,...,xn)
! S
fo(x)

6

R Gn are considered as independently and identically distributed, each with

binomial distribution with parameters 1, p. The observations x cs X

1°°° n-1

are independent of Gn, but they give some information about the unknown value

Sf P
Let the decision function for the n-th component problem be denoted by
‘;@n(xl, e xn) (with the same meaning as in the first component problem).

It has the average risk

r(p, 6)) = pr(l, 6 )+ (1-p)r(6, 6 )

n-1
= Pal = S‘ ¢p(xn) HI (pf].(xi) + (l_p)fo(xi))ﬁn(xl’ v xn) dp.
1=

and hence the corresponding Bayes solution is given by
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Bayes decision function =

: if the value of p is known to the decision-maker. The Bayes risk is, as

r before,

+
- f [9,x )] dulx,) .

[Theorem] Define the decision function for the n-th component problem by

(SO(X’“,X)E 1, if ¢, (x)2>0
n'"1 n Pn
0, if <,
A N . i 5
where P, = pn(xl, e xn) 1s any consistent estimater of p. Then

o)
{ég(xl, S xn)} is asymptotically optimal in the sense that
n=1

%
lim r(p, 50) = r(p, 60 ), forall 0< p < 1.
n —>co = P/ 7 =

Proof.

r(p, ) = S\ B, (x)du(x) SH (PE () + (1-PMg(x,)8 (5, v x)ap™ L,

For any fixed value of x,

ik 0 1
S H (Pfl(xl) +(1'p)f0(xl)) 6n(xl’ e ’Xn-l’ X)dIJ-n_
i=1l



VIIL. 6

= Pr. ¢ﬁ(x)20},—> I if q)p(x)go,
" (@ —> o) 0, if <

0

Since for the integral with respect to x,

-

Iintegrandl < l(pp(x)l

and

gltbp(X)ldu(X) < pa; +(l-pla;, < max(a, aj),

we get, by the Lebesque theorem of dominated convergence,

pay - 1im o0 (oen 1 au

lim r(p, Gg)
n =00

n—= @

pa, -S[q&p(x) I dpix) = =(p, 5% -

And we can actually find a consistent estimater of p. For, with an arbitrary

unbiased estimater h(x) of 0:

E9 ih(X)} = S h(x)fe(x)dp = 0 (6 =0, 1)
let us define
, 1 B
0, if = h(x.) < 0
Py sx ) = L
T 1, if C |

n
L Z h(x.), if otherwise.
n 7 i
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Since }ri' Za h(X,) is a consistent estimater of p (. E[h(X,)] = pEl[h(Xi)] +
1

+ (l-p)Eo[h(Xi)] = p). gn(xl, “ e ,xn) is also a consistent estimater of p.

An example of h(x) is given, for any set A with y(fl(x) - fo(x))dp. # 0, by
A

h(x) = (A,(x) - g £4(x)au)/ (S (£(x) - £4(x)dp),
A A

where AA(X) is the indicator function of the set A. The important conclusion

of this theorem is that the knowledge of the successive empirical distribution

of past states makes it constructively possible to do almost as well at reducing

the average risk as in the case where the value of p :is: known in advance.
Important results concerning the same kind of effects of the knowledge

of the successive empirical distribution of past states are also given in the

"non-Bayesian' approach. In this approach we consider 0 URERE Bn, R

as a sequence of unknown constants, instead of a sequence of independent

random variables each with a common unknown distribution. See Samuel’s

papers cited in References.

Example 2.

Suppose in the previous example, that we can not assume that Nature
selects "6 =1" with a fixed probability p. Nature can choose =1 or 0
quite arbitrarily, so that we must consider 0 RERE Gn as an unknown
sequence of numbers.

For simplicity let the two densities be specified as follows: We are given
n independent, unrelated decision problems, each with the same simple-

deciding problem (£, D, L), where § = {]N(-l, 1), IN(1, l)} or equi-

valently @ = {1, 1};D= {a, a,} , with
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d_(d : decision that the time mean of the normal distribution is

J)
-1(+1), and L(w, d) is the usual 0-1 loss function. Let

91 62 9r1

Xy Xy e X
The problem is to guess the whole sequence 91, A ,Gn after observing
 ITRREPE Let 5(x1, cees Xn) be the decision function with values

(dl(xl’ v 9Xn), sees dn(xl" o sxn))s

where di(xl’ .o ,xn) = T 1 is the decision about 9.1 . The risk function

is given by the average number of wrong decisions, that is,
n
_ 1
r(@, 6) = EQ > z IBi - di(Xl" "’Xn)l
i=1

where 0 stands for (@ IERE ,9n).

We can see in the following theorem, that the minimax solution for
our problem- is not so reasonable. Generally speaking, there are some
classes of problems in which minimax solutions do not provide reasonable

answers. For example, the minimax estimator of the parameter p of a

¥. X Nn 1

binomial distribution with n and p is given by 0 = +

B o+l 2(Wm+ D)

Comparing this estimator with the usual one )?(1- we find that
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(risk of -}EC) - pU-p) 1

o = 4(1+'\/E)‘2

Hence when n is large }H( has the smaller risk

~

than 0 except in a small interval about

The solution like this estimator )H( is called an

asymptotically subminimax solution.

[Theorem] The decision rule

J: Ei(xl,...,xn) = sgn x, ,

is minimax. And the decision rule
5*'d*(xr x ) = sgn(x. - x*
e R LR gnix; - x.

where

© -
% _ 1 1-x
= jzleeTn

-0 R

is asymptotically subminimax.

n

)s

i

.
(risk of 0 ), if and only if

_l|>'\[l+2'\/z

le = 2(1+N7)

[\

minimax risk

It
I
=]

A
]
[o—
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Sketch of proof. Evidently § has a constant risk

- (xi-9 i_)z

Consider the prior distribution £ over {91, ...,0 |9 = 1] ;i=1, ... ,n}

n'’i
such that
(91,..., Gn) =bk’ if k of 91 s are 1
for k =0,1,...,n. It can be shown that the Bayes decision rule is given by
n-1 3
(i)
T it
1§ dl(xl, ,xn) =sgn | x; —-Z-log =5 : , i=1, , 0
by ,,5{!
k=0 k+l" k
where
. ™ z(x., +° " +x, )
{Jl’ o sJk}C {13 ’ i‘la i+1' . > n}
8 corresponds to the & with b, =1, (k =0,1,..., n). Computing the risk

of 6% for large n and comparing it with that of § we can find that 6% is
asymptotically minimax.

A striking fact seen in this example is that while values xj (j # i) give
no information about Qi » the good decision rule has di(xl’ - ,xn)v a

function of all variables Xypeoe s Xy not of a single variable X, .
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VIII. Relationships Between Information Theory

and Decision Theory

The problems I wish to discuss this evening are of importance in informa-
tion theory, but are essentially problems in statistical decision theory. We
shall consider some relationships between information theory and statistical
decision theory. Inequalities of Wald type for testing hypothesis or Cramer -

Rao type for point extimation will be derived for various statistical procedures.

81. Statistical experiments and information provided by them.

An observation of a univariate random variable X is said to be a performance
of an experiment with the random variable X. Hence the experiment will result
in an observation x, belonging to a space ¥ . The space ¥ has a o -field
B of subsets. We shall suppose to have a dominated parametric set of probability
measuﬁes, each defined on the measurable space (¥, IB). We shall describe it
by {p(x [9) |9 €®}, where p(xl@) denotes the generalized p.d.f. with respect

to a common dominating measure, and ® is any parameter space. Then the

couple

(1. 1) € = X, B), {p(x|6)]6 ¢ &)}

characterizes an experiment 8 .

With this definition, the notion of the experiment corresponds to the
following communication system with noise (Fig. 1. 1). It consists of essentially
two parts:
(i) The input space in the set () of symbols 6. These symbols are transmitted
one by one by some discrete stochastic process, in which each choice of §
is made with probability p(f), successive choices being independent.

(ii) The noisy channel is such that the output space is a set ¥ . We assume
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that successive symbols are independently perturbed by the noise, and

the channel, therefore, is described by the set of transition probabilities

p(xle), 8 € ® , the probability of

transmitted symbol 8 being received .
=TT 0Ee® x€ ¥
as x€ X . | p(@) ! —>—— | pix]e) | ——

Statistical decision problem
of deciding which 6 is the ''true Fig. 1. 1

transmitted symbol will be represented

Decision Space

Decision ‘
Rule e

Noise Space

The part in the frame of the broken line in Fig. 1. 2 is the '"communication
channel with noise'' and this part has no relation with statistical decision
theory. Fig. 1.1 is equivalent to this part. In order to clarify the input

and output spaces we sometimes write (1. 1) as
(1. 1) €= [®. [px|6)]6 c®}, %] .

The transmission rate of the noisy channel is defined by Shannon as the
amount of'decrease of input entropy to the received -conditional entropy.
Hence, then if the a priori p.d.f. of input symbols 8 is p(f), it is given

by
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-Sp(@) log p(6)do + Sjp(e, x) log p(0 I x)df dx

i ,‘XSP(G) P(x|6) log P%}]%) d6 dx

where p(x) = .Sp(G) p(xl@)d@ . In these notations for the sake of simplicity,
we shall not distinguish between random variables and the values assumed
by them, nor shall we attempt to be specific in describing the density
functions. Thus p(#) and p(x) denote the density functions of the random
variables § and x, respectively, without any suggestion that they have

the same density. Moreover we shall denote integration with respect to
the dominating measures on ¥ and ® by dx and df respectively,
again for simplicity of notation. We can define the amount of information

provided by the experiment & with the prior knowledge p(f) by

(1. 2) J[E, plo)] = SSp(G)p(le)log %‘)9_) df dx

82. Testing hypotheses.

Consider the problem of testing simple hypothesis
H0 : f(x) = fo(x)

against a simple alternative

H1 : f(x) = fl(x) .

The observation of x corresponds to the performance of the dichotomous
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experiment ¢ = [(¥, B), {fl(x), fo(x)} ]. Suppose that a measurable
subset R of ¥ is considered as the critical region, i.e., acceptance

region of the alternative hypothesis H. . Then the probabilities of two
g | p

kinds of errors are

a = S‘fo(x) dx and B = S fl(x) d\

R RS
Because of the above definitions, the two error probabilities & and S
can not be made arbitrarily small simultaneously. One explanation of

this fact is given by a pair of the well-known information inequalities

f
_ 0 l-o ,_

g : £) = Sfologzl— d\2 « log ’1aT/3' + (l-a)log—ga— (= F(a,B), say)
g 1-g B
I(fl fy) = Sfl logq d\ 2 (1-B) log = B log T -

For any fixed 0 < ¢ < 1,' F(a, B) is, as a function of B, strictly convex
and tends to + oo\, as B —> 0. Thus the upper one of the above inequalities
implies that the possible value of 3 has a positive lower bound provided

that I(:f0 : fl) < o . Moreover this lower bound is monotone increasing

_a_s_oz\I,O.

Proof. Let b(g, a) be the smaller one of the two roots of the

equation

Fle, B) = g (0< g < )

in B for each fixed 0 < a < 1. Then



Since b(g,a)< 1 - «a. g \ /

|
I
|
l
l

|
0 b(g,a) l-o 1
_— B
Graph of F(a, B) for a fixed «.

§3. Finite deciding problem.

Let

(3.1) €= X, B), {f;(x),...,5(x}]

be a finite experiment. Let £ = (&1, S £k) denote a probability-k

k .
vector, i.e., §; 20 (i=1...,k) and 2 g€ = 1. The prior distribution
1

£ over @ = {1,. a-p k} has uncertainty, a priori, which is measured

by Wiener-Shannon entropy

The amount of information provided by the experiment 6/ is defined by
the expected reduction of Wiener -Shannon uncertainty after observing the

random variable x

H(%) - E[H(EX)]ET,



VIII. 6

where §&(x) = (gl(x), Sme ,ﬁk(x)) with

E(x) £f(x)/z gjf (%) (i=1,...,k)

is the posterior distribution over & , and E[h(X) IE] = Zﬁigh(x)fi(x) dx

denotes the average expectation taken under the prior distribution £. Let
{Rl, s .- ,Rk} be a measurable decomposition of ¥ , i.e., a collection

n
of measurable sets such that R, n Rj =g, (i#j) and U Ri = X

The set R is considered as an acceptance region of hypothesis
k
H s f(x) = f (x). Let Sf(x)d)\ = aij . Then ; aij =1(i =1,...,k).

R.
J

The probability of error due to the decision rule {Rl’ ces ’Rk}

k k
E Ea,. = ES ££,(x)dn
G

1 i=1 RC
1

Now the conditional entropy at the receiving end is

E[H(§(X)) £]

Z S-‘.?. f.(x) log ik/ (£)f(x) dx

I
ANAT R
+

A
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Pe 1-P_,
g -<Pe ].Og =1 + (l-Pe) ].Og € >

1
= - Ré log Pe - (I—Pe)log(l-Pe) + Pe log(k-1),

and hence we have

P
e 1-P
(3. 2) P log —— * (1-P_)log e < logk - E[H(§(X))]4
k-1 1/k
k
with equality if and only if
£.f.(x) P
i'i _ e . C
Z}-J‘Ij(x) = T for alli and x € Ri ;

The above extreme case corresponds to a maximum likelihood rule since

§fi(x) Epfplx) i .
LA S R mEm TEr AN

if X€R_i.

We call the experiment

8(11) = [(%ns an): {fgn)(xl, L .,Xn)'i = 1" "’k}]

n
where fgn)(xl, pep ’Xn) = H fi(xj) (i=1,...,k), an n replication of a
j=1

common experiment E defined by (3.1). The amount of information

provided by a(n) is
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E™, €1 = mi) - E[HEX,. ... X ) ]E] .

[Theorem]. For an n replication 8(n) of a common experiment £,

the information é)[ e(n), E] is a concave, increasing function of n

for any fixed §.

Proof. It suffices to show that

o
A

e € -€

- <
n en~}-l = "n-1""n

where e = en(E) = E [H(ﬁ(Xl, cees X)) IE] . For any finite experiment
(3. 1), it is an easy exercise to show that E[H(.E(X))lg] is concave in .
Hence each function en(i) (n=1,2,... ; eO(E) = H(E)) is concave in .

We have

enf) = EfEMHEX )X, ,....X ) &x]1E]

Ele__,(&(X})]&]

1A

e, (E[E(X)DIED) = e__(E).
Now the recurrence relation

en(8) ~e  1(8) =Efe, [(B(X)) - e (B(X)]E]

n=12,... ;ey(&) = H(§)), together with the concavity, in &, of

eld) - e (&) = HO® - E[H(E(X))]E]
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- £,(x)
SDLAECETS =eE Y
i=1 3

gives en(i) - en+1(§) < en_l(g) - en(i) , for all n. For an n-replication

of the finite experiment (3.1), we have, from (3. 2),

P P
e e
P, log — + (L - Pe)log17—k < log k - E[HE(X . .. ,Xn))]g]
K

k
where Pe = § §ii§n) (xl, ces ,xn) d\? is the probability of error.
i=] RiC

Since E[H(E(Xl, s ’Xri)) |§] is decreasing in n , the possible lower

bound to Pe decreases in n.

84, Point éstimation.

For point estimation we introduce
g(x) = point estimator of "true' @

L(6, g(x)) = loss defined for 8 €E® and x€ ¥ .

If d&(8) is the prior distribution of 6, the posterior probability element

of 0 given that x is observed is

p(8]x)ag = Bxl0)dE@)
Sp(xle)d‘z.(e)

The posterior risk from g(.) for a fixed received signal x € X s
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r(x) = SL(B,— g(x)) p(d |x) df .

Let

q(f |g(x)) = e")‘L(e’g(x))/Se'XL(e’g(x)) a4, (A>0)
®

be a probability density of 8, and let

Alx) = ép(@lx)logi%qug—)({);ﬂ a0 .

Then we have
w0 = (L0, gt p@lx 00 = & (H(@.l x) -log Se_”"(e’g(x))d%é().
® ®

where H(@Ix)® = -Sp(@lx)log p(Glx) dé .
®

r(x) 2 sup (H(@ |x) - logS e~ M6, g(x)) d9> .
A>0

If ® is s-dimensional and if L(f, g(x)) is a bilinear form

LO, gla)) = ) a0, - g(xE; - ()

L,j=1

where (aij li, j=1,...,8) is a positive-definite and symmetric matrix,

then

1/s -g—H(@Dlx)

(4. 1) max % (H(@]x) - logS e‘)\L(G,g(x)) d0>= 27sr_e ]aijl e

A>0 ®
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and hence

1/s —E-H(@lx)

> S
(4. 2) r(x) 2 =— ]a.ijl e
The factor 2
1 e-s— H(@'X)
2me ?

in the right-hand side is the entropy power per dimension of the

s -dimensional conditional density p(6 P BS Ix) .

Proof of (4. 1).

1 At
- 'z p.< X
Note that if Ce (in vector notation: A isa positive -definite

and symmetric sx s matrix) is ans-dimensional normal density.

1
C = R
(Z.?T)S'Zz |A| -1/2

and (E(xixj)) = /A"l The maximand of the left-

hand side in (4. 1) is equal to

1/2 -s/2
%{H(@Ix)+ log(laijl T )+%10g)\}.

The function -){—(a-+ b log\) (b > 0, X\ >0) has a unique maximum at
1-g- 2

—-1
AN =e and the maximum value beb
Jensen’s inequality gives a lower bound to the average risk of the

estimator g(-) as

5
2me

1/s %H(@I*)
|aij e N

(4. 3) S r(x) p(x) dx =
*

(4. 2) or (4. 3) is an inequality of Cramer-Rao type. This also shows the

extremal property of normal distributions.
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IX. 1

IX. AMOUNT OF INFORMATION PROVIDED BY A
DICHOTOMOUS EXPERIMENT

This lecture considers the amount of information provided by
dichotomous experiments under various uncertainty functions. Four
types of concave, continuous uncertainty functions are investigated.
Special attention is paid to the problem of maximizing information with
respect to the prior probabilities. (Section 2). In Section 3, we derive
conditions under which the information provided by a dichotomous experi-
ment is convex with respect to mixtures of experiments and conditions
under which information increases concavely to the original uncertainty,
under independent replications of the same experiment. In the final

section effects under grouping of observations are examined.

§1. Statistical experiments.

An observation of a univariate random variable X is said to be a
performance of an experiment with the random variable X. Hence the
experiment will result in an observation x, belonging‘to a space ¥.

The space ¥ hasa g -algebra IB of subsets. We assume a dominated
parametric set of probability measures, each defined on the measurable

space (¥, B). We shall describe it by {p(xle)le € ®} ,» where p(xl@)
denotes the generalized pdf with respect to a common dominating measure,

and ® is any parameter space. Then the couple

(1. 1) € = [(£, B), {p(x|9)|9 G‘B’}j

characterizes an experiment.
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With this definition, the notion of the experiment corresponds to the
following communication system with noise. It consists of essentially
two parts:

(1) The input space is the set ® of input symbols 6. These symbols
are transmitted one by one by some discrete atochastic process, in which
each choice of § is made with probability p(f), successive choices
being independent.

(2) The noisy channel is such that the output space is a set % . We
assume that successive symbols are independently perturbed by the

noise and the channel, therefore, is described by the set of cenditional
probabilities p(xl@), 6 € ® , the probability of a transmitted symbol 8
being received as x € ¥ .

The transmission rate of the noise channel was defined by Shannon
as the amount of decrease of input entropy to the received conditional
entropy. Hence, if the a priori pdf of input symbols 8 is p(9),, the

rate is given by

S p(6) log p(6) dé - (-S p(x) dx Sp(e.l x) log p(6 | x) d6)

(1. 2) - SSp(@)p(xl 6) log P—g‘(-g)— df dx

where p(x) = Sp(G) p(xl@)d@ and p(GIx) B (QLPS; 6) (here, for

simplicity in notation, we do not attempt to be specific in describing

the density functions. Thus p(f) and p(x), denote the density functions
of the random variables 6 and x, respectively, without any suggestion
that they have the same density., Moreover we denote integration with

respect to the dominating measures on 6 and x by df and dx
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respectively. )

Lindley [5] proposed to define the amount of information provided
by the experiment (1.1) with the prior knowledge p(d) by the Shannon
information (1. 2). He studied various interesting properties of information

(1. 2) by exploiting certain additive properties of the functional

H(p(-)) = -| p(6) 10g p(6) a6

for composite experiments. Recently DeGroot [2] showed that similar
arguments can be made quite generally for information functions derived
from any other concave function (in probability distributions) which

plays the same role as of H(p(-)) . This paper discusses in some

detail the amount of information provided by a dichotomous experiment, -
i.e., an experiment with an input space which consists of only two
elements. Some of the main results (Theorems 3.1, 4.1 and 4. 2)

obtained can be extended without difficulty to the case of finite experiments,

i.e., experiments with finite input space.

82. Amount of Information Provided by a Dichotomous Experiment.

Let ® be a two-element set -[l., 0} , and let £ be a dichotomous

experiment

where (¥, IB) is a measurable space and N (i = 1,0) are probability
measures with dpi = fi(X) dN (i =1,0). The ordered pair of the two
densities {fl, fO} means that fe(x) (8 =1,0) corresponds to the input

symhol 6.
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The two probability densities fl and fo generate a parametric

family of densities
(2. 2) T= {fm = ¢+ -0 mlose s},

where € may be interpreted as the proportion in the mixture of two
densities or the prior probability for the hypothesis H1 which states
that fl(x) is the true probability density.

An uncertainty function U({) is a non-negative measurable function
defined on 0 < { £ 1. Intuitively, the value U(€) is meant to
represent the uncertainty of an experimenter (before performing an
experiment) about which hypothesis is true when his prior knowledge
is the probability { for the hypothesis H, .
The information in this dichotomy with the uncertainty function U,

is defined by

(2.3) JIE, £;U = U - E[uexy]e] ,

where ¢ (x) = §f1(x)/fc(x) is the posterior probability for H1 after
observing x when using { as the prior probability for H and where
the expectation E[ - |{] means CEI[] + (1 - C)EO[-] .

It is shown by DeGroot [2] that

I[E, ;U] 20, forall 05 ¢<T,

if and only if the uncertainty function U is concave.
We discuss some examples of concave uncertainty functions in the

following. All of these uncertain functions are also continuous unimodal
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(in fact, symmetric about ¢ =—;- » except (d) ) functions with

U(0) = U(1) = 0.

(a) Shannon entropy function

(2. 4} U(f) = - Llog £ - (1-8)log(1-8) (= H(E), say)

Then we have

f (x) (1 C)f (x)
w10 €] = - ¢ {00 1ogT - 010 fgaton—r—

f(x) f (x)
= H({) —<§ (x)logf ( j dx+ (l-C)S (x)logT d>.

Hence
(2. 5) OLE, €5 HY = 8ulsy = £) + (1 - (g, < £p)
where
£, (x) .
(2. 6) I(fi : fc) = Sf (x) logfc( 3 dx (i=1, 0)

is the Kullback-Leibler information number (Kullback [4]) for
discriminating between two densities fi(x) and fc(x) ;

Under some regularity conditions which guarantee the validity of
interchanging the order of integration with respect to d\ and
differentiation with respect to £ , we can find that the function

O[E€, & ;H] is twice-differentiable and concave with
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a%&[E:C;H] €—0=I(f1:f0):ad§'&[€’t:H]| ='I(fo:f
= C=l

and

d'2 2 /.
_2" &[E} C;H] = = S(fl'fo) /ft d)\,
dg
where the last expression is equal to the negative of the Fisher infor-

mation in :-I for estimating the proportion ¢ :

]

2
i(e) S{- a%z log fc(x)}ft(x) a

— S(fl . fo)z/fc an .

(b) The other important concave uncertainty function is

(2.7) U(€) = min (£, 1-§) (= Y(), say.)

Using this uncertainty measure,

IIE, §;v1 = Y - ElY (4x) €]
= Y() - C} f1<x)dx+(1-c)/§ £o(x)dn
£/, 78/ (1-2) £o/528/01-0)

is the reduction of the risk of Bayes decision rule deciding between two

densities fl and fO with usual zero-one loss. We can:show that

1)

)
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the above information attains its maximum value at £ = 1/2. The proof

is as follows: we can rewrite as

IIE. ¢ sy = min(e - E[yexN]el, l-t- E[ ygxN]el)

= min(h (), by(€)),  say.

Since E[Y({(X)) I €] is a continuous and concave function in 0 $¢ £ 1,

hl(ﬁ) and hZ(C) are both continuous and convex, with hl(O) = hz(l) = 0.
The desired result follows from the fact that the minimum of two convex
functions has a maximum at one of the end points or at the point at which

these functions have equal values.

(c) Let us take

(2. 8) u) = t1-¢ (=u’L), say).
Then
(2. 9) ILE. ¢ 5 U’ =g(1-0)(1 - S ffg/Ep AN ).

Since Fisher’s information in ? for estimating the proportion ¢ is

i(¢) = S(fl -£0) %/ AN = - iy S(fc-fl)(fg-fo)/fcdx

t;'(li—ET 1 - Sflfo/f§ a) ,

we obtain
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0 2 2.
JIE, £ U] = €71 - L) .
A power series expansion was obtained by Hill [3] for

(2.10) S(¢) = Sflfo/fc dx

which was then investigated in detail for the case of two exponential
densities and for the cases of two normal densities with equal variances.
From (2.9) and (2.10) we see that the information as to which
population an observation comes from in the mixture fc , compared
with the initial uncertainty, is reflected in the factor J[&, € ; UO] /UO(C) =
1 -8(C).
Under the usual regularity conditions S({) is a twice-differentiable,
convex function with 0 £ S(§) £ S(0) = S(1) = 1, and hence has a unique

minimum value. Thus

0
(2.11) max JLE, % L) =1 - min S(€)
0<E<1 U (&) 0sgfs1

(d) For 0 < t< 1, the function
(2.12) ug) = ¢-0"" (= UL,  say)

is also continuous and concave, and we have

JE. 5 v = cfantta - (ddtan.

In the above expression, the integral
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_ t 1-t
(2.13) My(t) = S[fl(X)] [fo(=)]" " ax

is the moment generating function of the random variable z = log fl(X)/fo(X)

under H, and is continuous and convex in 0StZ1, with
0% M, (t) < M(0) = My(1) =1, My(0) = -I{fy+5,), My(1) = I(f,:£,).

The number - log p = - log( min Mo(t)) is called Chernoff information
0=t 1

number [1] for deciding between f,(x) and f,(x). We at once obtain,

for all 0< t< 1,

(2. 14) AE &0 M,(t) € 1-¢7(-108P)

—oqr— -

independently of 05 € 1.

In this connection it is natural to consider the family of pdf
B= {het0 = [560° (g1 Myt | 0ses 1)

regarding £ as an unknown parameter. We can show

Theorem 2.1 (a) The Fisher information contained in FL is

2 2
. = ) _ o~
i(f) = S {- -a? log hg(x)} hc(x) d\ = 31;7 log MO(C).

(b) The maximum likelihood estimate of § is given by
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. r—1 < - .
0, if ZN < I(f0 . fl)
= 7 > .
Y 1, if ZN 2 I(f1 C fo)
The unique root of the equation
_Z-.N = Mb({)/MO(C) Y if otherwise

where
N
— 1 :
Zy = w ) Loslf(X,)/fg(x,))
i=1
Proof. Since

log hc(x) = logf,(x) + (1-8)log fo(x) - log MO(C)

(a) is evident. The logarithm of the likelihood of the sample Xps o s Xy is

N N N
LC(Xl’ ce ,xN) = log .Hl ht(xi) = € z log fl(xi) +(1-€) § log fo(xi)-N log Mo(g).
1= i=1 i=1

Now log MO(C) is twice-differentiable and strictly convex. Therefore

LC(Xl,. ‘e ,xN) is twice-differentiable and strictly concave with

N

F:l il ki K N 4 ng(Xi) MO<§) )
i=

The (b) part thus follows from the fact that Mb(ﬁ)/MO(C) is strictly
increasing in 0< ¢ 1 from -I(fo :fl) to I(f1 :fo).

As an illustration let us take

G0 = W2 o) exp[ - =o)L (62 1,050 < by,
a
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Letting W = (p0+ p,l)/Z, 0= (p.l—po)/o- we readily obtain that

Mo€) = exp. [- £(1-£)8%/2]

2
i) = 8—17: log M(£) = 6°
_ 2
I(fg:f) = I(f, s £5) = 6 /2
N N
£(X.)
1 1 o= - - _ -1
N Zl log fl(x') (X'N - ) 6/ (XN =N 1L/Xi )
i=

and hence

0,
A —
€ = Jlxg - mpl/ (kg = 1)

1,

83. Independent Replications of an Experiment,
Let &(n) be an independent replication of a dichotomous experiment £
i. e.

3

(n)

€ =¥ B, [, fgn)(xl,...,xn)}]

n

. ’Xn) = H fi(xj)(i =1,0). Then
=1

(n)
where fi (xl, ..
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(3.1) JIEM, €501 = u) - BluEx,. ... x )Ll

First we show

Theorem 3.1. If U(f) is a concave uncertainty function, then

9[8(“), € ; U is increasing in n. Moreover, if Q[€, £; U] is concave
in £ then [ S(n), € ; U] is concave in n.

Proof. For any dichotomous experiment, as is easily proved, E[ U(¢(X)) {¢T

is concave in § if U({) is concave (DeGroot [2] ). Thus each function
en(C) = E[U(C(Xl,. .. ,Xn))] €], for n = 1,2,... , is concave in {. By

Bayes theorem and concavity of en_l(C) we have

e (8) = E[E{UGX X, ....,Xx N]Ex)} L]

Efe__(&(x ) [¢]

en 1B DI = e 1(6),  (n=1,2,.. ;e,({)=UK).

A

Thus the increasing property is evident since 9[8(“), ¢; Ul =u - en({f).

To prove the concavity bf [ E(n), €; U] in n, it suffices to show that

(3.2) e (8) - e 1(6) S e (&) - e (£).
Since
(3.3) e (8) - e 1) = E[e _(&(X)) - e_(Ex N]E] ,

we use mathematical induction. If eo(t) - el(t) = U(¢) - E[U(C(Xl))lC]

is concave in € , then
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e (8) - e,(8) = E[ey(8(X))) - e (&(x ) [¢]
is also concave, and
§ eo(E[ C(XI)IC]) - el(E[C(Xl)IC]) - eo({) - el(C) .

The recurrence relation (3. 3) yields (3. 2).

Theorem 3.2 If U({) is continuous in 0S¢< 1 with U(l) =0 and if

lim U(£)/€ exists, then
£—>0

1im IEM™, £;u] = U .
n >
Proof. I#et {Zn} be a sequence of independent random variables
identically distributed as a random variable Z with finite mean. Let
{gn(- )} be a sequence of functions which satisfies (a) {gn(' )} is
uniformly bounded, (b) ign(- )} is uniformly continuous in some interval about

E(Z), and (c) 1lim gn(E(Z)) exists, then
n =

lim E[g (n (2| +... 4 Z )= lim g (E(2)) .
n —= o n -
The proof of this fact is not difficult, so it will be omitted (see, for
example Parzen [6] ).

Now en(C) is rewritten as

n

a - %Zi
WE+(1-8)e )]

~Mo

e () = E [UE/+(1-0e

f.(X.)
V1

with Z. = log . The sequence of functions
i folXi)
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g, (t) = (€ + (1-0)e YU/ (L +(1-8)e ™)
satisfies (a), (b) and (c), by the assumption of the theorem. Thus

Jim gn(El(Z)) = €Uu(l) = 0.
n — o

This completes the proof of the theorem.
The discussions in the previous section on the four examples of

uncertainty function U({) , give, by Theorems 3.1 and 3. 2, the following

Corollary 3, 2. 1 g[g(n), € ; U] is (a) an increasing function of n,

for U(f) = Y(€) or UO(C) » (b) an increasing and strictly concave

function of n, for U() = H({) or Ut(C) and (c)

lim &M, ;U] = U

n—= o

for U(C) = Y(&) or uo(e).

84. Grouping of the Observations.

Let R be any measurable subset of ¥ , and let us consider the
decision rule which accepts H1 is x € R and H0 if x € R. Or equi-

valently, we define the random variable

{l, if x€R
y = Tx =
0, if XGRC

The probability densities of y under the two hypotheses are binomial:
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g(n) = (1-8)78'Y,  (under H))
(4. 1)

aey(l-oz)l-Y » {(under H

o)
where y =1,0 and

(4. 2) a = S fo(x) dx and B = S fl(x) d\

R RC

Thus @ and B are probabilities of the two kinds of errors due to the above

decision rule. Let

(4. 3) £, = [(Y, T gy goly) ]

be a dichotomous (binomial) experiment, where 'g = {1, 0} and C is an

induced ¢ -field of subsets, Then we obtain

Theorem 4.1, For any R and for any concave uncertainty function U

we have
Il E5U1 2 O[E, ¢;U), forall 0S¢ €1
with uniform equality in § if and only if

fl(X) _ 7 (I'B)/a: in R
B B/(l-a), -~ in RC .

Thus there is always some loss of information due to grouping of the
observed values of x. The corresponding theorem for the case of

U(f) = H(L) is given in Kullback [4] .
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Proof. Since

S(1-B)+(1-8)a , y=1

gely) = Cgi(y) + (1-8)galy) = 4
¢ ! 0 [§B+(1—C)(l-a) , y=0

C(I’B): y = 1

Srigely) = Lgy(y) = {CB ’ ;=0.
we get

E[UE(Y)|E¢] = (C(I'B)+(I'C)Q)U(C(l_%()li:i?)l-t)a)
(4. 4) + (8B + (1-8)(1-a))U (@-ff?—gm)
But

E[U(§(x))] €]

(§+1)) (i) o

< (S fg(x) dx> U(I;‘ Sfltx)d /S fc(x) dx>
R R R

+ (SC fc(x) dx> U (g Scfl(x) dn / S-Cfc(x) dx)
R R R

by concavity of U, and this last expression is, from (3. 1) and (4. 4),
equal to E[U(§(Y))]|€]. This completes the proof of the theorem.
Because of the definition (4. 2), the two error probabilities o and B

cannot be made arbitrarily small simultaneously. One explanation of this
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fact is given by a pair of the well-known information inequalities (Kull-

back [4] ).

f
0 o . 1:a .
I(f:f)=S+S folog — dN 2 ol +(1-a)log—=% (= F(a,B), say),
0 £ ( >Oogf1 aogm(aogﬁ( a, B), say
RRC

f
I(flzfo) =(S+S >f1 logf:—)— a\ 2 (l-B)logl—c;é- +Blog-T?-&- .
R RC

For any fixed 0< a %1, F(a, B) is, as a function of B, strictly convex
and tends to +© , as 8 —> 0. Thus the upper one of the above inequalities
implies that the possible value of B has a positive lower bound. Theorems
4.3 and 4.4 which we are going to state and prove later in this section give

another explanation to that same fact.

Let
&= (¥, B), {£,0x), £,0]],
€= [(X, B), {b60, by}]
be two dichotomous experiments with the common input space ® = {1, 0}

and the same output space ¥ . For any 0St<1, we call an experiment
[(E, B), {860+ (108 (x), t2()+ (1-t)hg(x)] ]

! 1"
denoted by t(‘:'*(l—t) E_” symbolically, a mixture of & and £

(with weight t on 8'). We shall show the following

Theorem 4.2  For any fixed 05 £ €1 and concave uncertainty

function U({), the information J[&, € ; U] is convexin &, i.e.,

for all 0% tg 1,
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Ilte'x(1-1) €7, £; U] < tIE", €; U+ (1-t) I &", ¢; U]

Proof. Writing the information J[€, ¢ ; U] simply by I[€],

' . C(tf, (x) + (1-t)h,(x))
It€*(1-t) £ = UE) - SU e+ (T-0h, (%)

(4. 6)

(tf +(1-t)h)) ¢hy
U +“ t)h ) C—_ +(1 t)h C /(tf +(1- t)hc)

2 thU(Cfl/fc) + (l-t)hCU(thl/hC) } /(tf,; + (l-t)hc)

Since

by concavity of U, it follows from (4. 6) that

It E"(1-t) €] < u(e) -S{tfc(x)U(Cf 1) )+ (1- t)hg(x)U( e (x) } ax

I

t{U©) - m[ueen 165 €} + -0 {u) - soee 1¢; e}

tI[ € + (1-y I E"].

The corresponding theorem for the case of U({) = H(f) is given by
Lindley [5] .

The mixture tE&'%(1-t) ", defined by (4.5), can be thought of as
follows: A value x is obtained through the experiment E' or E” with
probabilities t and 1-t respectively. The experimenter is informed only

of x, and not of which event of probability t or 1-t took place. Using
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the above Theorem 4. 2 we shall prove the next Theorem 4. 3.

Consider the dichotomous binomial experiment & , defined by (4. 3),
where two densities have probability of Y =1, 1-8 and «, respectively.
Suppose that the experimenter performs 8Y and suffers cost diy (i, y=1, 0)
if he receives the output y when the input was i. If the prior probability

of sending the input i=1 as { and the cost is given by

(d” dm“) =(0 1)
do1  dpo 10

then the expected cost due to performing the experiment éY is
EB+(1-8)a
Now we consider the information Q[@Y, € ; U] as a function of

(@, B). Takeany 0<t, o', B', ", B' £ 1 and let
y

Ey = LYy, ) {8}y, ghn?]
(4. 7)
€y = Uy, e ey, gynd]

where ('LJ, » €) 1is the same measurable space defined in (4. 3) and g'l(y)
and gb(y) are binomial densities with the probability of Y=1, 1-8' and o'
respectively. Similarly g"l(y) and gb'(y) are binomial densities with 1-8"

and a', respectively. Then from the definition (4. 5) of the mixture,

-

(4. 8) 8 x(1-0 €5 = [(y, ©), {ny(y), by},

where hl(y) and ho(y) are binomial densities with the probability of
Y=1, t(1-B8") + (1-t)(1-8") =1 - (+B"+ (1-t)B") and ta' +(Il-t)a",

respectively. Therefore it follows, from Theorem 4. 2, that
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Corollary 4.2.1. J[ EY’ €; U] is a continuous convex function of

0 $a, B £ 1, if the uncertainty function U(£) is continuous and concave in

¢

These considerations lead to the following minimization problem:

0 1.

nA
HA

For any fixed QG < < 1.

IEy: €Ul = UE) - E[UK(Y)]E] —> min.

a,

where E[U(E(Y))| €] is given by (4.2) and (4. 3), with the constraints that

B+ (1-8)a S d

+
0%a,B, atp 1.

Since from (4. 3); Q[ €Y’ £; U] is symmetric about a= B =

D] —
&
(0]
8
)
«

consider the points with o+8 £ 1 only.

Let the minimizing value be denoted by, R(d ; £, U) . For the case
in which U({) = H({), this is the rate-distortion function, introduced by
Shannon [8] , for the binomial dichotomous experiment. 8Y 3

Theorem 4.3. For any fixed 0 < < 1 and concave uncertainty function

U. R(d; £, U) is a convex decreasing function in 0% d< max(f, 1-), from
U(€) - CU(1)-(1-E)U(0) at d =0, to 0, at d = max(f, 1-¢).

Proof. The decreasing property is clear. Hence we shall prove

the convexity only. Take two arbitrary points on the curve. Let the
minimizing choice of values for the problem corresponding to d be denoted by
(@', BY) , and for d", by (a", B"). Consider t(a',BY)+ (1-t)(a", B"), for

0 £t < 1. Using the definition (4. 7) and the result (4. 8), we get, by

Theorem 4. 2 and the definition of R(d; £, U),
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,Q[tE;{*(l-t)E,;,, ¢; U]
(4.9)

tQ[S;, ;0] + (14),9[5;, SRY

tR(d"; £, U) + (1-t)R(d"; §, U)

for any concave function U.

Now since

C(tB' + (1-tB"HI-E)(ta'+ (1-t)a ™)

= (HEB'+ (1-0)a™) +(1-t)(EB"+ (1-8)@") S td'+ (1-t)d",

and

0Sta + (I-t)a", tp + (1-t)8", tla'+B8") + (1-t)(a"+B") <1,

we obtain from (4. 9) that

R(td' + (1-t)d";¢ , U) = min J[t&’ *(1- t)EY, ¢; U]

S tR(d; §, U) + (1-t)R(d"; £, U).

Thus we have proved the convexity of R(d; £, U) in d.

We show, in the following, various amounts of information after

applying the decigion rule.

(a) From (2.4), (2.5) and (2. 6), we obtain

]

HEy. L Hl = Lilg) @ gp) + (1-0)lgy, : ge)

: 1-
C’(U-B)hg CTpT e * Blos TN >

+(1'§)(1 log prrpyrTeys + (1-e)log §B+Il E(I-HT>
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(4. 10) = H(E(1-B) + (1-8)a) - §H(1-B) - (1-§) H{a).

(b) From (2.7) and (3. 2) we get

E[W((T)]¢] (§<1-3>+<1-r;>a)w(g(f8;§’1_;)a)

(€B+(1-E) 12 )Y m;éﬁm>

+

min® (1-8), (1€ )a)+ min(EB, (1-§)(1-a))

Er if 0% ¢<a/(l+a-B)
at§(B-a), if af(Ma-B)SE <(l-a)/(1-atB)

1-§, if (l-a)/(1-atB) SE £1,

if ot B8 <1. We thus have

I(Ey: w1 = (&) - EDPET) €]
0, if 038« a/(1+a-p)
€ (1+a-B)-a, if af(l1+a-B) S € <1/2
) l-g =€ (1-a+B), if %éc < (l1-a)/(FT=a+B)
0, if (1-a)/(1-atB)SES 1.

(c) From (2.8), (2.9) and (2. 10) we obtain

Sy(8) = S g180/8¢ AT ()

(1-Bla
C(1-B)+ (1-D)e

B(1-a)

BT (10 (T
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and
IEy, L5 07 = T (1 T - ﬁ%‘ﬁ’m)
Since the convex function C(Ax+B)-1 + D(l—Ax-B)_l, (C,D > 0 # A),

has the absolute minimum value (NC + ND )2 at x satisfying

NT (Ax+B) ! = ND(1-Ax-B) !, we get by (2. 11)

max

g€y GU%
0<gsl

v’ 02

1 - (VT-Fla + NBlT=aT )2

W{T=alT-p) - Napg )°

(4.11)
(d) From (2.12), (2.13) and (2. 14) we have, for all 0< t< 1

€y 5yl = 1-(-pfa’ Tt + g 1)

% *
< 1 - exp. {- (p*log % + q*log l_q-E )}

independently of 0 2 ¢ £ 1, where

p¥= 1-q% = Gogﬁ%)[(log%+logﬁ> .

In what follows we want to give some examples of rate -distortion
functions. Let us take the uncertainty function H({). The information
‘qu’ €; H] 1is given by (4.10). Since H({) is continuous and strictly

concave, we find that, by Corollary 4. 2, 1, ‘9[EY’ ¢ ;H] isa
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continuous and strictly convex function of (a, B).

Theorem 4.4. For any given § and d with 0% d X max({, 1-£),

the minimum value

min J[E,, ¢ H]
EB+(1-§)a =4 =

0La,B g1

is attained at o* = B* = d, independently of €.

Proof. Using the Lagrange multiplier £, we compute equations

aa—a and % of [H({(1-B)+(1-8)a) - EH(1-B)-(1-E)H(a)- LEB (1-C)a)] = O

and obtain, by eliminating ﬁ,

B +(1-¢)(1-a) = NB(1-a)
NB(1-a) +Na(1-B)

This equation, together with the condition
(4. 12) €B + (1-€)a = d

gives after eliminating &

- NaB
N(T-a)(T-B)+NaP

(4. 13) d

or equivalently,

-1 2

(4. 14) (@' -7ty = @t -y
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Equation (4. 14) represents a hyperbola

2 42 _ a2(1-q)2

d 1
(@ - 53— B - 357 ) , i dFE
2d-1 2d-1 (Zd_l)z 2
or the straight line o+ B =1, if d=1/2. For any d one branch of
the hyperbola passes through the three points (0, 1), (1.0} and (d,d).
We can show that this branch and the straight line (4. 12) have one point

of intersection in the region 0% o, B8 £ 1. This proves the theorem.

We note the following remark.

Remark. Some minimizing problems in the same line as in Theorem 4. 4

have the same minimizing points. Let

Fla, B) = alog—l%g + (1l-a) log%—oi

This is the Kullback-Leibler information I(g0 - gl) for binomial densities
gp and g, defined by (4.1). It is well known that F(a, B), together with
F(B, a), represents the efficiency of the best sequential test deciding
between two simple hypotheses with the probabilities of two kinds of errors,
a and B. (For example,lWald [8]).

F(a, B) is strictly convex in (a, B), for the matrix of the second

order derivatives

P Fa> @10t (a1-pn~!
N -1 @ 1-a
Fpa Fpp BU-B) Tigzt 2

is positive definite in 0 L o, B§ 1. Now consider the minimizing problem
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min (EF(B, a) + (1-8)F(a, B)) .
£B+(1-8)a = a
Oéas Bél

Legrangian equations give, by straightforward differentiation and by

eliminating the Lagrange multiplier,

a(l-a) )
(4. 15) Gl (ig'

Hence, from (4. 12), after eliminating €, we again obtain (4. 13), or
equivalently, (4. 14).
We shall give one more example. As was already shown by (4. 11),

the expression

Gla, B) = (W{T=2)(I-B) - NaB)>

represents the maximum relative information provided by the experiment
(4. 3) when using the uncertainty function Uo(ﬁ) =€(1-f). G(a, B) is also

strictly convex in (@, B), since the matrix of the second order derivatives
(Gaoz GaB )
where
G G ’
Ba BB

o (B(I-B)él//zz, Gy - 2{1_ @1/28:1/2)
@ 2a(1-a)) ) feB (1-)(1-p)}

can be shown to be positive definite in 0 S¢, 8 £1. Now, Lagrangian
P g g

equations for the minimizing problem
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min Gla, B)
BH1-Ca=d
O=¢, B =

give, by straightforward differentiation, the same equation (4. 15) as in

the foregoing example.

Thus the minimizing point is given by o = B* =d,

independently of £ .

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]
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X. Some Examples of Bayesian Adaptive Programming

Abstract: The Bayes learning in adaptive control processes is defined by the
learning structure in which the unknown probability distribution is reestimated
a posteriori by use of the Bayes’ theorem after the random variable is observed
at each stage of the process. Three kinds of measures which evaluate the

effect of the Bayes learning are presented. Giving three examples in which

the adaptive control problems are completely solved it is shown that the

Bayes learning is sometimes unreasonable, in a certain sense, if the pro-

gramming horizon is not large.

This work was supported in part by the Office of Naval Research
(Grant NRO42-247).



I. Purpose of This Note

In the last few years, the mathematical theory of control processes has
attracted a great deal of attention. In many control processes or multistage
decision processes we face the problem of dealing with random variables
whose distributions are initially imperfectly known, but which become known
with increasing accuracy as the process goes. The processes that occur are
'learning’' or 'adaptive' processes in which it is required to act and learn
simultaneously. ''Adaptive control" consists in finding the best sequence of
rules of action when properties of the relevant probability distribution, to
be used in choosing actions, have to be inferred from the effects of previous
actions and observations. In problems of this type, which we shall call
adaptive model of control processes, the best sequence of rules of action
can be determined in two steps of data processing: 1) reestimating the
unknown probability distribution a posteriori, and 2) computing the action
on the basis of new estimate.

The Bayes learning is defined by the learning structure in which the

unknown probability distribution is reestimated a posteriori by use of the

Bayes' theorem after the random variable is observed at each stage of the
process. In this paper we specify the category of ignorance about the
unknown true distribution as. follows: the unknown true distribution is deter -
mined by specifying a single parameter 6. The purpose of this note is to
give some examples of Bayesian adaptive processes with worked computations
of théir efficacies (Sakaguchi, 1963). Though, in general, the optimal

action in the Bayesian adaptive programming, is itself a functional of the

posterior probability distribution given past observations, it will be shown



that the optimal action is characterized by a small number of parameters if
the prior distribution of 6 is appropriately chosen for the control problem.
It will also be shown that, in some sense, the Bayes learning is not always

reasonable but it is possible that it would be worse than no learning.

II. General Formulation and Solution of the Problem

The foundation for a general theory of adaptive control processes in a
mathematical framework was laid by Bellman-Kalaba (1959) and Bellman (1961).
In this paper we formulate the problem as follows: we are required to choose

N
a sequence of decisions {at} in a given space @ of all available decisions.
t=1

The state of the process is represented by a variable x. We are given a

system of two random variables R, S and a real-valued function @,

[R(a» X, 1'), S(Ss X ;T), Q(X)]

where r represents a random variable and we interpret R{a, x ; r) as

the 'immediate return' to the action when decision a is employed in state x,
S(a, x ; r) as the 'successor state' following x at the beginning of the
succeeding time period if decision a is employed, ®(x) as the 'value' of

the final state x of the process. We assume that i_rt}N is a sequence
t=1

of independent random variables with a common distribution function G(r).

Of course, if G(r) is known and if we consider an N-stage decision process,

then we are led to the problem



N N
g- - S\ ? R(A(x)sx 5 x) + @(x,)) I dG(r,) —> . maxg (2.1)
t=1 t=1 {At(. ) t=175

N
where {At(- )} is the 'policy', i.e., a sequence of decision functions
t=1

At(xt) and X = S(At(xt)’ X, rt) (t=1 ..., N).
When we are forced to take action without a complete knowledge of
G(r) then the problem of adaptive control arises. Let us define an

information pattern as a sequence of information structures (Sakaguchi,

1963), i.e.
- o
= {It(rl, 2 8., rt-l) o2

and define a learning structure as a sequence

L = {&I(r), G,(xlL,), ..., aN(r]IN)} ,

of each estimate of G(r) based on the information It , available on the
time period t. al(r) is an a priori estimate of G(r) without use of any
information about G(r). Let us now specify the category of ignorance
about G(r) as follows: The unknown true distribution is determined by

specifying a single parameter 8, so that
dG = p(r, 8)dr ,

where p(r, ) is the density function of r for fixed §. We assume complete



information [3], [5], that is, at each time t we can know and use all
observations Tis vnns T already observed. Moreover, we assume the
Bayes learning structure, i.e., the unknown parameter is reestimated

a posteriori by use of the Bayes theorem at each stage of the process. Thus,

if &(0) is the prior distribution of 8, at time t is given by

N
th(rtlrl""’rt—l) = drtSp(rt, 9)d§t_1 s (2. 2)

where
p(ry,0) -+« p(r,_1,0)dE(6)
dgt_l = dg(rl, R rt-l) B
Splr),0) -+ p(r,_1.0)dE(0)
is the posterior distribution of 8 given that rl, e rt—l are observed.

A
(For t =1, let dGl(rl) =dr) \S\p(rl, 8)dg. This is an a priori estimate of

G(r) without use of any observations).

Let It stand for (rl, N rt—l)' Since
N » | N
H th(rtIIt) = drk s drN S H p(rt,e) dgk_l (2. 3)
t=k t=k
(k=1, ..., N; £0= £), a rational decision-maker under the complete

information would choose the Bayes learning structure



* A A A }
L* = {Gl(rl), Gy(r,]1,), ..., Gyl 1 Iyy)
with at(rtllt) given by (2. 2), and then solve the maximizing problem

N

S g z R(A e Ty % 51) + 8 (%)
£51

N
dG(r |I) —>  max (2. 4)

1 {At(' ))N
t=1

§i —Z,

N
where {At(- )} ] is the 'policy’, i.e., a sequence of decision functions
t=

At(xt’ It) each based on X, and on the information It , and X, =
S(At(xt’ It)’ % rt), (t=1, ..., N; I1 = null information).

In principle, problems (2. 1) and (2.4) can be solved by the "working
backward" technique of dynamic programming (Bellman, 1961). For

the problem (2. 4), for instance, defining -

b N I = maxN S S z\ R(A(x, L)y x, ;1)
] =t
t=k

N A
= @(xNﬂ)Il [[ dGrl1)
t=k

for k=1, ..., N, the principle of optimality (Bellman, 1961) yields



hk,N(X’ Ik) = mzx ‘S\[R(a, X ; rk) + hk+1, N(S(a., X ; rk), Ik+l)]

Gy (r I8) k=1, ..., N; bagsn, 0O Ing ) = 209), (2. 5)

The problem can be solved by computing hN N(x, IN) first, and then
hk N(x, Ik)’ s downwards recursively. The sequence of the maximizing

N
a’s at each stage determines the optimal policy {Ai’:(xk, Ik)] k=1 *

III. Bayes Learning and its Efficacies

N
Let the optimal policy of the problem (2. 4) be denoted by {A? ( )}t—l

A
and let that of the problem (2. 1) with G replaced by Gl be written as

N .
{AE ( )}t=1 . Then we are led to the following three types of definitions

of the efficacy of the Bayes learning structure L* under the complete

information and the given 'true' distribution function G(r) of the random

parameter (Sakaguchi, 1963), as

N
el(L*lP) = S‘ . 5[ z R(A:‘(Xt, It)’ Xi: ’ rt) + Q(X-I\l}_l_l)]
t=1

N L N
. aG I - S Lt S\ R AO 0 s 0;
IECENEN [; (ad (), x0; )
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N A
+ 8(x) )] Hl aG(r,),
t=

e,(L*|P, G)

N N
- {z R(A?(x?), x?: rt) + @(xlgﬂ_l)}] H dG(rt),
t=1 t=1

and

A
es(L*|P) = e,(L*|P, G) with G(r,) replaced by G(r,|L)

where x;f and x? are defined by

* % % *
Xppp = S(AY (xpy L)y %7 51y
0o _ 0,0, 0
Xppp T S(AL(x) x5 7))
for t=1, ..., N ; x”l‘ =x; ;I = null information.

N
S e g[{ z R(A:‘ (x5 1), xf, r)+ Q(x:]ﬂ)}
t=1

(3.1)

(3. 2)

(3. 3)

(3. 4)

In the expression of definition (3. 1), the second term represents the

maximum expected-overall-return when using the 'null learning"

structure, i.e.,
0 A A A
LY = G r ), Gylry) oo, Gy}

It immediately follows, by the definition and (2. 3) that e3(L*|P)



= S\eZ(L*IP, G)d§ > 0. This represents the average increase of expected-

over -all-return which the decision maker will get through using the Bayes
learning o instead of null learning L0 . It will also be clear that the
definition of ez(u* |P, G) by (3.2) has the similar meaning. It should be
remarked that the Bayes learning is reasonable, if we could say so, only
in the sense that e3(L*|P) ; 0. We may have, for Bayes learning L¥,
el(L*lP) < 0 and it is quite possible, as is shown in the later section, that
eZ(L*IP, G) < 0 for a class of G. Let us now compute the efficiencies e,
and ey for some special models of adaptive processes. For somewhat

trivial cases in which the state x remains constant we have the following

THEOREM 1. For the Bayes learning L* and complete information

pattern P, if S(a, x ; r) =x and &(x) =0, then the optimal policy of the

adaptive problem (2. 4) is given by

A
* _ c )
At(xt’ It) = the maximizing a, of ~SﬂR(at, X rt)th
(r,]1,)

Proof: It suffices to prove for N = 2. By (2.5) we can get

A
hl, z(x) = n;]ax iS\ R(al, X ; rl)dGI(rl)
1

A / A
+ gdGl(rl)-m:x S\R(az, X rz)dGz(rzlrl)
2

Now the second term in the right hand side is not smaller than
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' A A A
maax SS R(az, X ; rz)dGl(rl)dGz(rzlrl) = m:x SR(az s X} rz)dGl(rz) .

2

Hence we have

N
el(L*IP) = hl, 2'(x) -2 rr;ax 5 R(al, X ; rl)dGl(rl) >0.
1

A
Moreover, denoting the maximizing 2, of the integral SR(aI’X;rl)dGl(rl)

by ao(x), we obtain

2
e5(L¥|P) = by ,0x) - Sf? R(2%(x), x ; r)aGgr)) dG,(r, |x))
£=1

by (%) - 2 ‘g R(a%(x), x 57 )aG,(r)) = e (L*|P).

This completes the proof.

For other simple cases in which, for example,
R(a, x;r) = 0, &(x)=x
we cannot expect el(L*lP) > 0 unless we assume a special form of the
function S(a, x ; r). Let us coamsider an interesting model of adaptive

control processes which was treated by Marschak (1963). Let

R(a, x;r) =0, S(a, x ;r) =x - gla-x-r), &x)=x, (3. 5)
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so that the control problem be given by

- N A
- o i — e, -

where

X t:'l’ n-l’N (3-7)

g + - B [ L - F— o :

We set the assumption: the function g(y) is differentiable and satisfies

some appropriate second order conditions. (3. A)

THEOREM 2. For the adaptive control problem given by (3. 5) and (3. 6),

and for the Bayes learning L* and complete information pattern P, the

optimal policy is given by

% _ Ca L, pid
At(x s It) -x, = the minimizing a, of Sg(at - rt)th(rtllt)
(t=1, ..., N; I1 = null information)

and we have

e (L¥|P) = e5(L*¥|P) 2 0.

Proof. It suffices to prove for N=2. Let us denote the minimizing a’s

of the integrals

S‘g(a-rl)dal(rl) and S g(a-rz) déz(rzlrl) 5
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by a® and a*(rl), respectively. Then by (2.5) it is easy to show that

!

hy Hlxp) = % - S g(a? - rl)daltrl)

* A .
- SS gla (rl) - r‘,.-,.)dGl(rl)dC-‘rz(r2 lrl) (3. 8)
and that the optimal actions are given by

AT (xl) = % +AatO

(3.9)

A’g (x5, I,) = x, + a*(rl)

Proceeding the analogous way we obtain, for the case of null learning L0 ,

§§

m

-0 A
hl, (%)) dGl(rt)

NS

t
0 la)
= x - ZS gla™ - rl)dGl(rl) ) (3.10)
and the corresponding optimal actions

0 _ o
At(xt) = xt+ a ,t=1, 2. . (3.11)
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by a0 and a*(rl), respectively. Then by (2. 5) it is easy to show that

I

by plx) = %) - S g(a? - r,)aG(r,)

VS ! A
- SS gla®(r)) - r,)dG(r,)dG,(x, [r ) (3. 8)
and that the optimal actions are given by

AT (Xl) = x, + ao

(3.9)
A’g (x + a*(r

2 1) = %, !

0

Proceeding the analogous way we obtain, for the case of null learning L~ ,

0 N
by ,(x) = SS x5 ] aG(r,)
£=1
= x, - zS ga? - rl)dc'il(rl) , (3.10)

and the corresponding optimal actions

0
At(xt) = Xt+ a ,t=1, 2. (3.11)
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Thus we get

e, (L*|P)

by (%) - hi)’ Sy = S g(a® - rl)del(rl)

SS gla*(r)) - rz)dal(rl)daz(rzlrl)
(3.12)

A
min 5 g(al - % - rl)dGl(rl)
a
1

SdGAl(rl) {rr;ins‘ g(a2 - %, - rz)daz(rzlrl)} 2 0.
2

Moreover since we get from (3. 7), (3.9) and (3. 11)

3 Xy - g(ao - rl) - g(a*(rl) - rz)

»
"

0 0
Xy - gla -rl) - gla -rz)

"
w
1]

it follows that

0% e (L*|P) SS‘ (=} - x3)aGy(r))aG,(x, |x))

§§ {g(ao-rz)-g(a*(rl)-rz>} 4G (x ady(r, |r )

e (L¥|P) .

This completes the proof of the theorem.
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IV. Examples of the Efficacies of the Bayes Learning

To help understand. .the_ . results in the previous section we shall give
three worked examples. Examples 1 and 2 belong to the adaptive model treated

in Theorem 2.

Example 1.

Assume that the control process is given by (3. 5) and let N=2. To
give better insight, the adaptive model will be preceded by a corresponding
stochastic model (dG(r) known).

(a) Stochastic model.

Let G(r) be the normal distribution function with known mean p and

. 2
known variance G :

2
)

dG(r) = l . 40 dr (4. 1)

Thus our control problem is described by (2. 1) together with (3. 5) and
(4. 1).

Let us denote the root of the equation

2
®
0 = E_ {g’ (y-r)} =-§; g'(y-r) 127r e =4 dr (4. 2)

by g5(uw, 0'2), which is assumed to exist uniquely by our assumption (3. A).
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By tracing exactly the proof of Theorem 2 we can easily find that

the solution of the problem is given by

S 2
AT(xl) X, + g (p, 67)

A¥x,) = xte o 60 = x) g T xS P (43)

max E(x3) =% - 2E {g(gs (s ‘5‘.-2')‘ = 1'1)}

Marschak (1963) called gs(p, 0_2) the '"transform of g appropriate
2
for the stochastic model'". For example, if g(y) = 'YT , then

870w 6= Al = x, tp (=1, 2) and maxE(x) =x; - 6.

(b) Adaptive model

Assume that, in the previous model (a), we know the value of d—,
but not the value of ., and that only an a priori distribution £ of p
is known before the first action a, is chosen. Let the priori distribution
be &:

normal with mean m and variance v2 » where m and v are

given constants.

Then, by Bayes’ theorem, the a posteriori distribution £(rl) after

observing the random variable ry is

mv_2+r &2
El = ,g‘(rl) : normal with mean — 1 5~ and variance ———-_21 5 -

v "+ o v "+ a
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Hence by (2. 3)

A
Gl(rl) : normal with mean m and variance 0‘2 + v2
mv-2'+rl<!"_‘2 0__2/v2+2
Gz(rzlrl) : normal with mean — — and variance —5—
v + & v +6

Again, by (3. 8) and (3. 9) appearing in the proof of Theorem 2 we get the

solution of the adaptive control problem described by

A¥xp) = x4+ g5 (m, o84 VP,
-2 )
mv -+ r,6 2, 2
% S 1 O'/V + 2
Al(x,, I,) = x,+ g s ,
N 2 v"2+<s-'2 v'2+¢-'2 >

2 2 ‘
maxEHE(xs) = % - EHE[g{gS(m, o+ V) -rl}]

=2 -2
g [ mv +r10" 0‘2/v2+ 2
-EHE[g{g — A > 5 —rz}].

vi24 ot v “to

where EHE [--+] stands for S‘[ <] dél(rl) or
SS [--] dal(rl)daz(rzlrl).

We also obtain by Theorem 2 and (3. 12)

(4. 4)

(4. 5)
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o
ItA

e (L¥|P) = e,(L*|P)

EE[g [£°(m, % +v%) - r}]

-2 2
mv +r10," G_z/vz+2

- S
- B E[g{g , n PSP
B v2ia2 L 2}

and we can easily find that ez(L*lP, G) is equal to the above expression

with EHE replaced by E, i.e., SS [+--] G(r)dG(r,).

If g(y) = y2/2 then after some computations el(L*IP)‘= e3(L*IP

is equal to

/
s

,2
2(1 + a2 /v

2, 2
+v2)-i 0‘/V+22

2 V-2+ o

2

%(0_ >0, (4. 6)

and

] > mv_2+rlo-—2 2 2
e,(L*|P,G) = Z-SS‘{(m-rz) = s -1, HdG(rt)

v +to t=1

(4. 7)

2

1 2 2¢ 2

= ( - ) (1+ ) - a } )
201+ o2 /v2) % { . e

<

which is {2} 0, according as (p —m)z(o:z+ Zv_z) {%} 1. (By (4. 6)
and (4.7) we can check e3(L*|P} = S\ez(L*lP, G)d%). Thus, in this case,

even with the ''sufficiently good" learning structure, i.e., a prior estimate
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very close to the true probability distribution (for example, v =& and
m= pt € 2 for sufficiently small £ > 0), and Bayesian inference, it

is quite possible that eZ(L*lP, G)< o0,

Example 2

Let us consider the same control problem as before for the case of a
binomial distribution. Assume that Ty and r, are identically and inde-
pendently distributed, each with a binomial distribution with parameters 1
and unknown «. (Marschak, 1963).

Let the prior distribution of o be given by
£: Pr {a = ai}= P,

RS
(i=1, ..., k;pl, Ve pk>0; Zpli:l)'
il

and so the posterior distribution after observing Ty, is

Pr {a= ail ry

£ = &r) s '
Pr {a= ail ry 0}= pi(l_ai)/ Zpi(l—ai),

and thus by (2. 3)

[ A
G (r;) : binomial with parameters 1, a(§)

P
Gl(rzlrl) : binomial with parameters 1, 3( El)

where &(Et) (t =0, 1; EO =£ ) is the mean of the distribution Et i

k
A
so that o8 = 2, p,a; and
i=1
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k

3(&1) = &‘(g(rl)) = z oz.lPr {a = ai'rl}'
i=1

s 2 :
E‘ P;a; /? pe; » if 1= L

L? p;a;(l-a,) /2 p;(l-a;), if r =0.

Let us denote the root of the equation

°=Er{g"(y-r)} = agl(y-1)+(l-a)g'(y) = 0

by again gs(a) » which is assumed to exist uniquely by the assumption

(3. A).

Then, from (3.8), (3.9) and (4. 8), the solution of this adaptive

control problem is given by

ATx)) = x, +g2(@(E)

Ajlxy 1) = x, +g>@( &) ;

max E E(X,) X, -EE[g {gs(3(§)) - rl} ]

e el {S@E -5},

(4.9)
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We also obtain by Theorem 2 and (3. 12) that

0 < e (L*|P) = e (L¥|P)
= E Elg {gs('a‘(i) - rl} ] -EEls {gS(o?(gl) - rz} 1,

and that ez(L*IP G) is equal to the above expression with E E replaced
s1mp1y by E, i.e., S‘S‘[ -] dG(rl)dG(rz) Let us put o = Z P

k
and @ = Z piari . Then if the problem is given by the special successor

stated function with g(y) = yz/Z, then gs(a) = a and we can find, after

some computations,

e (L¥|P) = a(1-a) (a—a)(a+a 26%)

e, (L¥|P) 1 28(1-8)

k 2

A2
@ 53?2 {Z (a;-a) Pi}

_ (x-a7) = 1 > 0
22(1-8) - 28(1-8Y ’

and

]
D] =
L/j\
L/}
—
R
i
H
)
®>
by
H
=
1
H
R
w
—
joN)
L
2]

e,(L*]|P,G)

2 ,a-8\2
) = 1 [0
-

RMIRL



Let the quadratic function above be denoted by f(a). Then since we have

A & A
0 <a(,§:(rl=0)) =717 <ac<

Q>

= S(E(rl =1)) <1 (4. 10)

[

by definitions of & and 3;, f(a) is strictly convex with £(0) and £(1) > 0.
After some infinitesimal calculations we can find that f(e) can have negative
values in an interval of o values, if for example, k =2, @; = £ , and
a, = 1- €, for sufficiently small & > 0.
Example 3.

Let us consider the control problem in which the random variable

has a binomial distribution with parameters 1, a (0 <@ <1) and

1]
i

wld ue

xta, if r
R(a, x ;r)=0; S(a, x;r) = { ®(x) = log x

x-a, if r

I
o

The action space when given Xy s Ik is the interval 0 <acg X -

This model corresponds to the following betting problem (Bellman 1961,
Sakaguchi 1963). Consider a coin with probability « of heads. A
gambler, without knowing this probability is required to place a bet on the
event of head. He is allowed to bet a quantity a, subject to the restriction
0<a<x, where x is his capital at the present stage. If he bets
correctly he then wins, otherwise he loses. Continuing this betting
process for N stages, and assuming that tossings of the coin are
independent at these stages and that a gambler wishes to maximize

the expected value of the logarithm of the final total at the end of the



process, the problem is then to derive an optimal betting policy.
Let the prior distribution of « be the same as in Example 2. With

the functions hk N(x, Ik) defined in Section 2. We have, for N = 2,

A
max S log S(az, X5 rz)dGz(rzl rl)

0§a2§x2 :

hy alx, 1)

max  G(§(r))loglx,+a) + (1-a( &(r)))log(x,-2)
0< a, <%,

log x, + C(max(&E(t)), 5 ))

in which the optimal choice is given by
E 3 A
AZ(XZ’ I,) = maxg(Za(g(rl) - x,, 0} (4.11)
and C(«) is defined by

l-a

Cla) = alog + (l-a) log

—
o]

R
1l
3V

which is > 0 for all O

HA

a £ 1 and equals 0 if and only if

Now



A
hl, 2(x1) = max S‘hz, 2(S(al, X1 ;rl), Iz)dGl(r1
0§a.1<=x1 -

"
= max S log S(a,, xq ; r{)dG,(r,)
Ogaléxl e L i A |

+ g C(max(a(E(x)), 3))dGy(r))

where the first term in the right hand side is

max [310g(x1+ al) + (1—3)10g(x1 - al)]

log x, t C(max(a, —%-)

and the optimal action is given by

Af(x)) = max {(26}-1):;1, o}.

Considering the inequalities (4. 10) we finally get

N
1 . 1,
hy ,(x)) =logx +C(max(a, ») + &C(max(% y 3 )
2~ 3 -3:' 1
+ (l-a)C(max ( —I-—A R E')) .
-0

that

In an analogous way we can find for the case of null learning L



0 1
hl,z(xl) = log x, + ZC(max(a, —2-)

Af(xt) . {(23-1)xt, o},

And thus
" A ¥ 1 A a-5 1 Al
e, (L¥|P) = aC(max( % =)+ (l-a)C‘(ma.x(—l—j- » 5)) - C(max a, 5))
(4. 12)
1 and

which is > 0, since the function C(max(e, zl) is 0 for O §a§7

strictly convex for -%— <a< 1.

For another efficacy eZ(L*IP, G) of Bayes learning L* we can find

that with x) =%

2
SSlog S(ag s x’g ; rZ) H dG(rt)
t=1

* *
N az(l) az(l)

= a{log(x+a1) + «a log(lt ——— )+ (1-a)log(l - ——— )}
x+a] x+ al

2%(0)
+ (1-a) {log(x - af) + a log(l + —i—*—

x-a
il

a%(0)
+ (1-a) log (1 - o )} i
X-a.l
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2
Sg log S(ay , x9;7,) || dG(r,)
t=1

o ad(1) ag{l)
= log(x+a1) + a{log(1+ 5 ) + (1-a)log(l s ——— )}
xta xta
1 1
0
a,(0)
+ (l-a) {log(x - ai)) + o log(l + 2 )
xta
1
0
a_ (0)
+ (l-a) log(l - —2——0 ) } :
X - a;

and hence

'

* £
ez(l.-‘ IP: G) = ‘SS\ log S(az: xz H 1‘2)
0 0 3
- log S(a2 s Xy rz) H dG(rt)
t=1
{ a¥(1y “a¥(1) a }
= allog(l + + (1 -a)log(l- - log(l + —
gll + ——) + (1 -a)log(l-—=—-) - log(l + — )
1 1 :
a%(0) a3(0)
+ (1-a) {a/ log(1+ = ) + (1-a)log(l- ™ )
X-a X~a
1 1
log(1 - ) }
- log(l -~ — .
where
a™ ao aO(l) a-O(O) ,
S = % = {2“ I 0}
? = B = 0 = 0 = max o - s )
xta

1 S|
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a,(1)
2 = max {2&(§(r1=1)) - 1, 0} ’
x*l'»é’af
a’(0)
2 A
x-a¥ = max {Za(i(rl =0)) - 1, 0}-

Consider the case in which the prior distribution of « satisfies

AN
o -

7 > -é— (e.g., k=2, @)= -& and a, = %+€. for sufficiently small

NI

€ >0). Then we have

1-¥/8

* o/8
eZ(L IP,G) = « {af log - + (1-a)log %

A A A A
+ (1-q) {a log M + (1-a)log 1-(a-af),/\(l-a) } (4.13)
o -a

Let the quadratic function in the right hand side of the above expression be
denoted by f(a). It is easily seen that f(a) is convex with f(0) and
f(1) > 0 and assumes negative values in some interval about @ = &.

It is interesting to find, after taking expectation of (4. 13) and
comparing the result with (4. 12), that
AN

A 1.2 a-a
o) + (1 a)I(la’ :

R>
nv
o

IR

e (L*/P) = e, (L*|P) = &1(

where
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w: o) = wlog + (1) 0g 12 05w, wg

is the Kullback-Leibler information (Kullback, 1959) descriminating

between two binomial distributions with parameters (1, w) and (1, «').

V. Concluding Remark

Summarizing the foregoing discussions it would not be useless to
note the following remarks.
(a) The optimal policy of the adaptive control problem (2. 4),
generally, does not coincide with the one which would be

A
obtained by, at first, finding the best estimators Gt of
the unknown parameter 0 at each stage t and then solving

the stochastic control problem (2. 1) with ﬁ dG(rt) replaced
N A t=1
I P(r,, 0 )dr, .
t=1

(b) From (2.2) and (2. 5) we see that the optimal action in the
Bayesian adaptive programming, is itself a functional of the
posterior probability distribution given past observations.
But as we have seen in the three examples ((4. 5), (4.9) and
(4. 11)), the optimal action is characterized by one or two

parameters if the prior distribution of # is chosen from the

family which is closed under sampling (i.e., and E(rl)

belong to the same family). This simplifies the computations

very much.



(1)

(2)

(3)

(4)

(5)

(c) The Bayes learning L* is reasonable only in the sense that
e3(L*|P) 2 0 for all prior distributions. And at the same
time it is unreasonable in the sense that eZ(L*lP, G) can
be negative for the prior distributions very close to the true

distribution if N is not large.
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