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INTRODYCTION

I believe that the concept of information is very important in
almost all branches of research in natural science, just as is the
concept of potential or energy. éenerally speaking, every time when
we make an observation or perform an experiment, we draw and use some
information provided by it. How much can we find on the basis of the
observed data or obtained experimental results concerning the problem
about which we are seeking? Of course these concepts are highly
abstract in nature, but various appreoaches have been made to provide a
quantitative analysis of information in the last 30 years. Especially,

the rapid progress of modern mathematical statistics has provided a

useful and powerful tool for the development of this analysis,



1. Fisher's amount of information and statistical estimation.

The most c}assic problem in mathematical statistics is that of
estimating statistical parameters. R. A, Fisher proposed that a
desirable statistic used as an estimator of a statistical parameter
must possess the following properties:

(a) unbiasedness

(b) consistency

(c) asymptotic efficiency, i.e., yilelding minimum variance ¢

among all statistics which are, when properly normalized,

asymptotically distributed as N(G,og),
and he introduced the concept of sufficient statistics to derive the
estimator satisfying these properties, Let the likelihood of the
sample be L(x3;8), the p.d.f. of the statistic T be &(t;8). We call the
statistic T(X) the sufficient statistic if and only if we have
(1.1) - L(x38) = (t;0)M(x),
where M(x) is a function of x only and independent of €, @(t;e) is a
function of & and the realized value t of T depending on X only
through t = T(x)., Let Tl(x) be a sufficient statistic and TQ(X) be
another statistic which is not a function of t1 = Tl(x)° After making
a change of variables

Y1 = Ti(%,000,%)s  ¥p = Tg(xl,,.,,xn), Y3 = Xgseees¥pK, In the
identity
L(x38) dx = & (t;30)M(; (x)ax

and integrating both sides with respect to y3,..,,yn we get the following
equation as the simultaneous probability element of Tl,TQ?
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(1.2) @(1-,1,1:2;;9)dtldt2 = él(tlge)m(tl,t2)dtl,dt2,

which means that the conditional probability distribution of T2 given
T1 = tl is independent of the unknown true value of parameter 8,

And we can say:

The realized value tl of the gufficient statistic T1 gives all the
information which the sample x can provide about the unknown parameter
8, and no information can be added even if the value of any other
statistic T, (of course not a function of T,) be known.

Since a sufficient statistic exhausts in the above sense the
information which the sample can gilve, it plays a fundamental role in
every statistical procedure, not only in statistical estimation.

Then what is the advantage of using a sufficient statistic as an
estimator of a statistical parameter? We shall consider the problem
of point estimator only. The following theorems will answer the above
question.

Let the p.d.f. of the population distribution be f(x,§). We
assume a set of appropriate regularity conditions which guarantee
validity of interchanging the order of integration with respect to x
and differentiation with respect to B about some quantities such as
f(x,8), s f(x,8) and so on, We call this set of conditions the

08
regularity assumption (R). Then we have

Theorem 1.1  Under the regularity assumption (R), the variance Vé(T)

of an unbiasged estimator T(Xl,,,,,xn) of the parameter 8 satisfies

the inequality




(1.3) V(1) > 1(8)™7,

where
DN 2
_ 3
(1.4) 1I(s) = E,l- e log L(Xy,...,X 38) 7.

If T is a function of a sufficient statistic, the equality holds in

(1.3) identically. (Crimer-Rao‘ " inequality)

Theorem 1.2 We assume the existence of an unblased estimator and a

sufficient statistic, Let T be a sufficient statistic. If the

efficient estimator, i.e., the estimator with uniformly minimum

variance among those which are unbiased and have finite variances,

exist, then it is a function of T, (Fundamental theorem of estimation)

Since L(x38) = f(xl,e)f(xz,e),..f(xn,e) we have by (1.4)
(1.5) I(e) = ni(s)
where

(1.6) 1(8)

>° (X,8)
[- & logrf(X,8)q.
9 392 ]

The function i1(8§) is a function proper to the set {f(x,8)]8€8@} of the

E

il

given family of p.d.f.'s which characterizes the estimation problem
together with the criterion measure of error in estimation; Theorems
1.1 and 1.2 state that we can measure the best-possible accuracy of our
estimation problem by use of i(e). Fisher thus coined for this the
name "intrinsic accuracy". When i(8) is large we can estimate accurately
in the sense of theorem 1.1. If the assumption in theorem 1,2 be
satisfied, and if we adopt an unbiased sufficient estimator Tl’ then it
exhausts the information which the sample can give, and the uniform
inequality in (1.3) holds. In this case we have by (1.1), (1.3), and

I



(1.4)

-1 52 4 -1 A
Ve(T) > I(8)"" = (Ee[——;gé 1og§(Tl,e)]) = Ve(Tl).

2
Here we regard the quantity Ee[— é——2--log;§(T'l,e)] as expressing how
36

efficient the unbiased sufficient statistic Ti is in the point estimation
of 8. Let us define for any estimator T
2

(1.7) I(T) = Ey[-2logd(T,8)]

d6
where ? is the p.d.f. of T, Then we can see that if we equate the
efficiency of an estimator to a large amount of information which the
estimator provides concerning the point estimation of the parameter,
the introduction of this quantity (1.7) is quite reasonable.

That 1s, we have

Theorem 1.3 Under the regularity assumption (R), we have

(1) I(T) > 0, and the equality holds if and only if the distribution of

T is independent of 6,

(11) I(Tl) < I(Tl,Tg), and the equality holds if and only if the

conditional distribution of T2 given the realized value of T1

1s independent of §,

(111) I(Tl,Tg) = I(Tl) + I(Té), iAf T, and T, are mutually independent,

(iv) I(T) < I(Xi,...,Xh), and_the equality holds if and only if T is

a sufficient statistic,

Now that we have been making clear the important role of sufficient

statistics, several questions will arise, as a practical matter, of how



to derive these sufficient statistics, how to choose the "best"
sufficient statistic among many of those etc., It is one of the most
interesting facts in mathematical statistics that we can derive a
reasonable estimator automatically by use of the maximum-likelihood
method. The following theorems will show some connections of the
maximum-likellhood principle with the concept of information.

We shall say that a non-trivial solution of the likelihood equation

dlogL
o8

we have

= 0 is a quasi-maximimum-likelihood estimator. Then uwder (R)

Theorem 1.4 If a sufficient statistic T exists, every q.m.l. estimator

is a function of T.

Theorem 1.5 Some g.m.1l. estimator has the consistency property (b):

For any & > O we have

: logL .
lim PB { ésgg— = 0 has a root in (90—6, eo+6)} =1

b (Dugue,1937)

Theorem 1.6 The g.m.1. estimator, stated in the above theorem, 1s

asymptotically distributed as N(8,, I(eo)'l),

By theorem 1.1 and theorem 1.5, theorem 1.6 means that some q.m.l.

estimator has the asymptotic efficiency (c). Moreover we have

Theorem 1,7 Let us assume that (R) be satisfied and that a sufficient

statistic exists., Let g(x) be a g.m,1l, estimator, and let p be the

A
radius of curvature at the point 6 = 8(x) of the curve y = logL(x36).
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Then we have

2

(1.8) p—l =B [- 2 1o0gL] A= I(S) (Huzurbazar, 1949)
) 862 6=90

Proof. 8ince (R) is satisfied and a sufficient statistic exists we have
by the well-known Koopman's theorem

logf(x;8) K(G)u(x) + a(x) + b(e)

and hence
logL(x3;8) = K(8)t(x) + A(x) + B(e),

n
where t(x) = 3 u(x;) is a sufficient statistic, K(8) and B(8) are some
1
functions of &, and A(x) is a function of x. If we fix X, we get

dlogL(x,6)

0 = = 5" K'(8)t(x) + B' ()
aglogLéx,s) A = Kn(/e\)t(x) + Bn('é)
38 8=~0

And we have

0 = 5, [2LOE(X:0) 7 _ ki (0)E, (£(x)) + B' (o)

-I(8) = Ee[aglogyx’e)] = K"(8)Eg(+(X)) + B"(e)
o8

Eliminating:t(x) and Ee(t(X)) from the above four equations we easily

obtain the equality

aglogL(x,B) - B 821ogL(x,gl]
- 2 - - 2 A
30 8 08 8=0

il
@)

We thus have



2 2
p_l = 3%1ogL/38 ) BelogL
} 72| . T2 |eld
{1+(310gL/26)%} ) 207 [%=8
= EB[_ 32108;]:1] _ I(’e\)
aeé 0%

This completes the proof.

Corollary to Theorem 1.7. Under the assumptions above, the solution

of the likelihood equation is unique and maximizes the likelihood. (It

is no longer "quasi"-maximal),

Proof, Every solution of the likelihood equations gives a stationary
maximum, Hence, 1f there were two or more distinct solutions all would
be stationary maxima, and between two stationary maxima we should have
a stationary minimum, under (R). But there is no solution which gives
a minimum. Several examples of intrinsic accuracy i(8) are listed in

the following.

(x,9) 1(8)
binomial: (gjex(lfe)N‘X N/{6(1-8}
Poisson: e'GBX/(XZ) o-t
2
normal: (2n)_1/2é'(x’e) /2 .
2

normal (21-r)_1/2e_X /(28) og ™1
exponential: e—le-x/B g2
gamma.s Xe‘le'x/r(e) aglogr(e)/aee
beta: {X(1~X)}e"1/B(e,6) bzlogB(e,e)/Beg

o0 1

where we have set I'(8) = fxe_le_xdx and B(8,8)= [ Xe'l(l—x)eﬁldx.
o o

8



2. Kullback-Leibler's information and testing simple hypotheses.

Consider the probability spaces (I,ﬁ,ui) 1=0,1, where u, is a
probability measure defined over the measurable space (X,B). We assume
that My = “1 (absolutely continuous with respect to each other)., Let
A be a probability measure such that My = (1=0,1) and fi(x), i=0,1

are generalized probability densities with respect to A measure:

ui(E) = [ £ (x)an, for all E € &, (i=0,1)
E

The easiest problem, probably, in statistical inference is that of
testing a simple hypothesis against a simple alternative., Suppose that
the hypothesis Ho specifies that n independently distributed observations
Xl”"’Xn have density fo(x) whereas the alternative H1 specifies the
density fl(x).

In testing statistical hypotheses we generally have two types of
errors, that is,

(a) Type I error: the error of accepting H1 when Ho is true,

(b) Type II error: the error of accepting Ho when Hl is true.

Since we cannot derive a test which simultaneously minimizes the
probabilities of both types of errors, we try to derive

(A) a test which minimizes the probability of one type of error among
all other tests with fixed probability of another type of error,

(B) a test which minimizes some welghted averages of probabilities of
the two types of errors,

or



(C) a test which minimizes the maximum of the probabilities of the two
types of errors.

A leading principle in this test problem is the so-called likelihood-
ratio principle, This principle insists that when we have a sample
X = (Xl’°°°’Xn)’ the sample should be considered to support the hypothesis
H1 if the likelihood-ratio

n
Ly (0/8,(5) = 1183 (%)/7,(%))
is large, and to support the hypothesis HO if the likelihood-ratio is
small. It is well known that the class of best tests are "likelihood-
ratio tests" characterized by critical regions (i.e. the rejection region
of the null hypothesis Ho) which are given by
{x|L, (%) /L, (%) > a)

for some positive constants a.

Kullback-Leibler defined "the mean information numbers for

discriminating two probability densities” as

I(0:1) = E_ |1log fo(X) = [ £ (x)log fo(X) dx
° (X © T (X)
(2.1) L 1
I1(1:0) = E, |log ii(;()] = [ fl(X)log f‘i(z) ax

It should be mentioned here that, if ¢ and 1-( are the a priori

probabilities that HO and Hl are the true hypotheses respectively, we

have
log f'1(}{) = = log 1-C - {-1lo (1-C)f1(X) gfo(x)
£ (%) 3 CT X (I-0) 17 (%) [ TE (X)F(I-C)T (%)

10



in which the first and second terms in the right-hand side express
logarithms of the prior probability ratio and the posterior probability
ratio, respectively.

The numbers defined by (2.1) are really "information numbers" since we

have

Theorem 2.1 (i) 1I(0:1) > 0 with equality if and only if fo(x)=fl(x)[1].

A similar result holds true for I(1:0).

(11) For independent random variables we have
(1)
ffi(x,y)logfl(x’y) A (x,y) = ff(iI‘RX)logfl (

fo X,y fo 1 (x)

x) dk(l)(x) +

ffi(g)(y)logfl(g)(Y) al?(y)  (1-0,1)

where f,(x,y) = fi(l)(x)fi(g)(y) (1=0,1), x(l)(x) = ffl(g)(y)dyx(x,y),

and A\ B (5) = 12 D iyan (x,1).

(111) Diminishing property under transformations: if gi(y) is the p.d.f.

of a statistic y = T(x) under each hypothesis H;, then

(2.2) fr(x)10gf1%) @ » Je, (01081 ) an 1 1(y)

foixi goiy5

with equality if and only if T is sufficient, 1. e.

(2.3) £y(x)/f (x) = g;T(x) /e, T(x)  [A]

Proof (i) follows from the inequality Zlog(2/2') > Z - Z' for any

Z,2" > 0.

11



(ii) is evident.
In (2.2) we have
(the left-hand side) - ( the right-hand side)

= [ (x)log(f) (x) /£ (x))an - [ (x)log(g,T(x)/8 T(x))ar

] £log £y A >0

fo~g1T/gOT

since

[£,(x) (g, T(x) /g T(x))ak = fg,(y)AT (y) = 1.

Corollary to theorem 2.1, For any set E ¢ 8 with 3 (E) > 0, we have

é fo(x)logfo(x) a > uo(E)log“b(E)

%_ixi pllEi

with equality if and only if £.(2) _ const. [A] in E.
T (%)

Proof. Use Theorem 2.1(1) for gi(x) = fi(x)/pi(E) (1=0,1).

An immediate consequence is that if {Ej} is a finite or infinite

partition of Y into pairwise disjoint sets,

with equality if and only 1f Tol¥) - “b(EJ) [(A] in By (J=1,2,...).
TUE Ty (Ey)

In other words the grouping of observations generally causes a loss of

information and the information is not diminished by the grouping if and
only if the conditional density of x given Ej is fhe same under both

hypotheses,

12



It 1s to be noted that K-L information numbers are not irrelevant to

Fisher's intrinsic accuracy since we have

\ 2 3
(2.4) I(e:e+89) = [f(x,8)1l0g f(x,eg dy =1 1(a)Ae” + 0(p8~).
r'{x,e+A8 2

Now let us see in the following in what sense the K-L information numbers
meagure the information for discriminating between two statistical
hypotheses., Let us treat HO as the null hypothesis, and W as the

critical region. The type I and type II errors are

o = Pri{xeW|H } and B = Pr{xeW’|H;}, respectively.

We now have

Theorem 2,2

(1) I(0:1) > (qlog o+ (1-%)log l:i)//é
(2.5) 1-8 B
I(1: - -8l/n
(1:0) > (Blog T%E + (1-8)log lag)//

(11) Let a*n(B*n) be the minimum possible value of q(B) for a fixed

value of B(&). Then we have

lim(- £ loga* ) = I(1:0)
. © 1 n
(2.6)
. 1
lim(- = logg¥* ) = I(0:1)
n—co

This theorem expresses, in the second part, that the most powerful test
of HO against the alternative Hl with the critical level g has the
consistency property (i.e. the probabllity of the type II error tends to
0 as n-x) and that the order of consistency will be determined by the K-IL

information number I(0:1).

13



Proof. (i) Denoting the likelihood function of the sample by'Li(x) =

Li(xl,...,x (1=0,1) we have

)

JL;(x)1og Li(x)  qn nff, (x)log £,(x)

L, 4 (x i 1 X)
C
> n(?i(W)log uy (W) & ui(wc)log Wy (W7)
Hy_4 My _3 (W)

by the corollary to Theorem 2.1.
(i1) We shall prove the first half of (2.6) only. If I(1:0) < », we

have by the weak law of large numbers,

n
= log fl(Xi) ——>  1(1:0) in probability under Hy,

i=1 [ e (n~e)

that is, for any e€,6 > O and for sufficiently large n

pe{ T () en(I(l:O)-e)lHé} > 1o,

i
n

XY
Pr{Lﬂx) éeMIU_®+ﬂ|%}:>l_ ..
LX)
With W o= {(%q,...,%)] ;%é;; 5 (T(1:0)-8)y Lo naye
1 > Pr{w |H;} 2 en(I(l:o)-e)Pr,{WllHo}Z en(I(l:O)-e)a*ﬂ
(9 . Hm o Less’ ETHOS

With Wy = {(xq,...,%)] L (x) en(I(l:O)+e)} we have

= N e2)

|

' C C C C
PriW; N W,|H;} = 1-Pr{W | U W,|H} > 1-Pr{W 1183 - Pr{w - |H}

C
= Priwy [0} - PrW°,|H;} 21 - B, - 8
14



and
peiiy AWy} S IO )pry oy g g,
so that
n
Combining this with (*) we obtain the first half of (2.6).

We shall next state an important theorem based on the criterion (B)

mentioned earlier,

Theorem 2,3 Let ¢ be the a priori probability that Ho is true. For the

Bayes test with the rejection region

We = {x|CL(x) < (1-€)Lq(x)}

of Ho’ we have

(2.7) r(wW

I

¢ [ Lo(x)dxn + (1-¢) f Ll(x)dan < o
W c
C W ¢

uniformly in {, where

¢)

il

inf [ [£;(x)]" e (x)1H7% an
0<t<1

(2.8) P
(Joshi, 1957)

Proof. We have

" = (inf‘ [ e (%)% [, (x)71F d9n

O<t<l

]

inf (f [£)(x)1° [£, (x) 717" dx) ’

O<t<l
= anf [ L ()I° L (0P et = e n(v),
O<t<l © o<t<1

say, and

15



[ILy ()7L (%) 31 P

= f [Ll(x) E LO(X)d)\n + fc[%o(x
e

h(t)

) |1 L () an

We | ToTx] T (%)

1AV

)

T x)Yg _ -t x)Yg 1
1‘%) fgLO( ) d\ +(1—g§‘>l ‘{’z L, (x)d

2 (W) (‘v 0< (1-0)%1"t <1, 1r0 <t <1).

By the well-known Holder's inequality

1fe(x)g(x)an| < (f)f(x)lpdx)l/p (Hg(x)lqu) 1/a

(p‘l + q_l = 1; p,q4 > 1), we have ffltfol'tdx < (?fldx)t. (ffodk)l_t=1,

and hence, by (2.8), 0.< p <1 with the first equality if and only if
fo(x) = fl(x) [A]. Theorem 2.3 shows that the Bayes test with respect
to any prior distribution is consistent (i.e. the welighted average r(wg)
of the two error probabilities tends to 0 as n - «) and that the order
of consistency will be determined by the number o defined by (2.8) or

equivalently

(2.8") -log p = - log | Inf f[fl(X)]t[fo(X)]l_th>
o<t<l

The above number was first defined by H. Chernoff (1952), and so we
shall hereafter call this the Chernoff information number. The Chernoff
information number 1s symmetric, that is, if we denote (2.8') by I(0,1)

then I(0,1) = I(1,0). And we have

16



Theorem 2.4

(1) - log p > O, with equality if and only if fo(x) = %_(x)[x].

(11) Additive for independent and identically distributed random

is the Chernoff information number

variables: if - 1lo
et 2T 008 (X LX)

corresponding to Li(Xl’XQ) = f

1

(%) £, (x,) (i=0,1), then -10%p(x1,x2)

-21ogp.
(1i1) If y = T(x) is a sufficlent statistic, i.e., its p.d.f. g ()

(1i=0,1) under each hypothesis H, satisfies fl(x)/fo(x) = ng(X)/gOT(X)[X],

then —long = -logp, where -1ogpT is the Chernoff information number

,S.

corresponding to g‘i(y)
(Chernoff, 1952)

It should be remarked here that although the Chernoff information number

is additive for independent and identically distributed observations,

it is not additive for independent but non-identically distributed

observations. Let (X,Y) represent an observation consisting of

independent but differently distributed random variables X and Y. Hence

the densities of (X,Y) under Hi(i=0,1) has the form fi(x)gi(y) and it

is easy to see from (2.8) that

alogp(X,Y) < —1ogpX —long.
On the other hand K-L information numbers I(0:1) and I(1:0) yield
equality in the above relation, i.e.
I(1:1-11X,Y) = I(i:1-1]X) + I(1:1-1]Y) (i=0,1).
It is of interest to notice the connection between the two information

numbers of K-L and Chernoff. Let Z be a random variable with the

assumption

17



M(t) = E(etZ) < o, for t in some neighborhood of O.

Then we easily have
M(0) = 1, M'(0) = Ez

and M(t) is convex (Fig. 2.1). (2)

0
Figure 2.1 Graphs of M(t)

H(a) = -logm{a)

~
m

Ez
Figure 2.2

Theorem 2.5 Let

m(a) = inf e °@M(t) = inf E(eP(Z-2))

t t
-logm(a) = =log[ infE(et(Zia))]
£

1]

H(a)

n

Then we have (fig. 2.2)

(1)

(2.9) H(a) = at(a)-logM(t(a)) where t(a) is determined by the equation

18



(2.10)

(11)
(111)

H(a) is convex

H(Ez) =
Proof. Differentiating e
derivative equal to O gives (1).

(i1) By (2.9) and (2.10)

0, H'(Ez) = 0, H''(Ez) =

1/Varz

taM(t) with respect to t and setting the

t(a),

H'(a) = _d (t(a)a-logM(t(a))) =
da
H''(a) = t'(a) = w(e)? |
M (£)M(t) - (£)7] t=t(a)

by (2.10) and Schwarz' inequality,

Since t(a) is monotone increasing, we have by (2.10)

t(a) = O‘?’} a = Ez,
If we take
7 = Log( X)/f x)

then we have

Mo(t) =

My (+)

I
=

d
&
(£ B
o o

®

B

-
\_fﬂ,ED\hﬂ—x__)

[w]

are both convex (Fig. 2.3) and

MO(O) = Mo(l) 1
Loy o T (x)) _ Tlo:
M, (0) EOQ g fi I(0:1)
£2X) ) _ 1(1:0).

19
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(1:0)

Figure 2.3 Graph of Mo(t)

Following the previous theorem we introduce the functions (i=0,1)

mi(a) = inf e_taMi(t),
t
Hi(a) = -1ogmi(a).

Then we have

Theorem 2.6 The Chernoff information number defined by (2.8") is equal to

-log p = - log | inf M _(t)
o<t<1 ©
= HO(O) = max min(Ho(a),Hl(a)).

-I(0:1)<a<I(1:0)

Proof, Note that

0 igf Mo(t) = inf Mo(t),

O<t<l

HO(O) = —long(O) = -log p.

If we define ti(a) (1i=0,1) as in the proof of the previous theorem, then

we have (Fig, 2.4)

4 (a), Hl(a) = Ho(a) - a.

t (a) = ty(a) + 1, ml(a) = e'mg

o
Since to(a) is increasing, when a varies in E z = -I(O:1)§a§I(1:O)=Elz,

to(a) varies in

20



=S < = -
0 to(Eoz) < to(a) < tO(Elz) tl(Elz) +1 =1.

It follows thus
HO(O) = max min(Ho(a), Hl(a)).

A

RS P

Figure 2.4

The following two corollaries of theorem 2.7 exXpress some interesting
connections between the two kinds of information numbers and the function

H(a). First we shall state

Theorem 2,7 Let
Gy = {&(x)]g(x) 2 oa1, fe(x)a\ =1, [T(x)g(x)an = €},

where T(x) is any given statistic, and let f(x) be a given p.d,f. Then

we have
min  I(g:f) = -log m(8) = 6t(8) -1logM(t(g))
g(x)€Gy
Where
M(t) = fetT(X)f(X)dx, m(8) = igf {eftem(t)}
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and t(f) is determined by

8 = M'(t(egg)

The minimizing p.d.f. 1s given by

g(x) = go(x) = " (O piy m(t(a))
and moreover we have

J(gy,f) = I(g,:T) + I(f:g,) = (g - fT(x)f(x)d%)t(e).

N

(Kullback, 1954)

Proof. An application of the calculus of variations to
fg(x)(}og g(x) - p - tT(x}dX‘—? min
f(x g
. gi s . s tT tT
with Lagrange multipliers p and t yilelds the minimizing g =fe ~/ffe "d\,

where t is connected with 6 by 8 = fTetdek/fetdel. For a more rigorous

proof we use the convex property of the function ylogy:

[fg(x) <1c:g %Ei)— M- tT(x))dx = ff(x)h(x)logeu+};éxxg) di Q(X)E %H{{;)

> <2f(x)h(x)d§>log [f(x)h(x)dA = -~ - logM(t)
- ff(X)eu-‘_tT(X)

with equality if and only if h(x) = eM+tT(%)

The Cramer-Rao inequality which is fundamental in the theory of
statistical estimation will be derived from this theorem as follows,
Let fo(x) = f£(x,8) and fl(x) = f(x,0 + A8) be two densities in a parametric

1

family {f(x,8]|0€Q} of p.d.f.'s and let uiT_ (1=0,1) be induced measures

by the transform T(x) which is an unbiased estimator of 8, and let
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<<t au 1t = gt (120,1).  Then
£, (X)
log <Ellog "1 (by (iii) of theorem 2,1)
=1 F_(X)

= (48)° (Ee = 3 longe)}+o ) (A-0)
2 -

If H(8) is the function calculated from the p.d.f. go(y) we have from

the above theorem

E, {log :1(? > H(8 + A0) = H(8) + AeH'(8) + (Ag § H''(8;)

(6 <8, g A+n8)
and by letting A - O
i

Var'e(Y)-Ee {} 82 10gf(X:GE}
2
30

since H(g) = H'(8) = 0 and H''(g) = 1/VaryY by theorem 2.5 (1ii).

A
—

Another interesting example of an application of theorem 2.7 is

as follows: Let W be a given set and let T(x)=X, (x) = indicator of W.

Then we get, if we set u(W) = [ fdr,
W

e 3(e:0) - s108(5 /() + <1-e>1og(<1-.e>/<1-u<wn),

ana
By (%) = )0 (x) /(W) , XEW
(1-0)£(x)/(1-p(W)), xew®,

Corollary 1 to theorem 2.7 Let

= {g(x)] &(x) > old 7, fe(x)an =1, fxg(x)d = a}
23



and let f(x) be a given p.d.f. Then we have

min I(g:f) = H(a)
g(x)eG,

-log m(a) = at(a) - log M(t(a)),
where

fe¥r(x)an, m(a) = inf {e”*®M(t)1,
t

M(t)

i)

and t(a) 1s determined by
(2.10) a=M{(t(a))/M(t(a)).

The minimizing p.d.f. is given by

8(x) = g,(x) = ¥ %e(x) m(t(a)),
and moreover we have

J(gy,f) = I(g,:T) + I(f:g,) = (é - fxf(x)d%)t(a).

Proof. Let T(x) = x in theorem 2.7.

Corollary 2 to theorem 2.7. Let fi(x) (i=0,1) be given p.d.f.'s and let
¢ = {g(x)|e(x) 2 o[A], Je(x)d =1, I(g:f ) = I(g:fy)]}.

Then we have

v

min I(g:f ) = - log p,
g(x)ea ©

the Chernoff information number for deciding between two densities fo

and fl, i.e,,
= - *
log M _(t*)

where

M (t) = [0 (x) %00, (x) 3P

and t#* 18 determined by the equation

M'_(t%) = f[fl(x)]t*[fo(x)]l_t*log £1(%) @\ = 0.

foix5
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The minimizing p.d.f. is given by

8(x) = g,(x) = £ ()1 L () 1175 m_(£%).

and moreover we have

I(gy,T) = Tleg:f)) + I(£ :gy)

* L]
t I(fo.fl),

I(g,:f ) + I(flzg*) = (1—t*)I(f1:fo).

J(g*’fl) 1

Proof. Since I(g:fo) = I(g:fl) means [glog (fl/fo)dl = 0, we can take

T(x) = log (fl(x)/fo(x)) and 8 = 0 in theorem 2.7.

Some theorems connected with the two corollaries stated above will
be presented later in section 1.6.

The next theorem is based on the criterion (C) mentioned earlier.

Theoremi2.8 Let Tno be a test of a null hypothesis HO with the critical

region

n
(2.11) Z =+ X log £1(x) 5 9Ty - 91

i=1 { c_ -+ ¢

o' i 0 1
where
\2
. . 2 f 2 .
I, = I(i:1-1), 0%y = [ (Llog Tl> fodn - I, (i=0,1).
- 0

Let r(i,Tn) be the error probability of a test Tn when the hypothesis

Hi is true. Then the test Tn0 is asymptotically minimax in the sense

that
inf max r(i,Tn)
T 1=0,1
5 1
max r(i,TnO) (n-w)

i=0,1
25



and its asymptotically minimax risk is given by

$((I 41, )T/ (0 40;))

2
where &(x) = [ o(t)dt and o(t) = (2rr)"1/2 /2 (Sakaguchi, 1955)

M 8

Proof. Since Zn»is the sum of independent random variables, it

follows from the central limit theorem that asymptotically we have

2
N(-Io,oO /n), under H_

7, o~
n

. 2
N(Il,:o1 /n), under Hj,

Hence when n 1s large we have

r(O,Tno) = Pr(Zn > a|HO) = Q(?a+Io)Wﬁ/cé>(1+o(l))
Vd
r(1,7,°) = Pr(z < alH) = {1 - @((a_zl)ﬁ/ol)}(uo(l)),
where we have set a = (o I,-0,1 )/ (o +0;). Since we have atl, La'Il =0,
0 o ) 5, o
we get
0
. max r(i,T ")
(#) r11_13 1=0.1 n .
(1 _+1;)\0/(0_%0,))

It is well known that the probability ratio test of the type (2.11) is
a Bayes decision function in the case of simple loss functions (in fact,
the test with the critical region Z, > A is a Bayes decision function

with respect to the a priori probabilities enA/(1+enA) for Ho and

nA)_1 Since a Bayes solution with equal risks is a minimax

(1+e for H

1) -
solution and the minimax risk is equal to the Bayes risk, we have

1im igf i?gxl r(l,Tn)
00 n 2

8((I+I)Vn/(o+a;))
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which, with (#), completes the proof.

For a simple illustration, let
fi(x) = @ F uix/xi (1=0,1 : x =0,1,2,...).

Then we have

2 2
Ui = Hi(IOg(Ul/UO)> (i=0;l) 2
o R B log M1 ( (1f py > )
= YKoy log "1 - “1""0) if ug Ho) s
Uo+01 “o
LIotly  Hy-wg (1f wy > ).

Before concluding this section we shall state an important theorem
which shows the usefulness of some "information-statistics".
Consider a parametric family of p.d.f.'s {fe(x)}e. Let

Hj : g = ej (j=1,...,m)

be m simple hypotheses, and let the prior probabilities of these

hypotheses be denoted by ql"°°’qn respectively, where aj>0 (5=1,...,m)

m
and % ¢, = 1.
1 J

We now define the Kullback-Leilbler information-statistic for a

random sample of n independent observations as
N
(2.12) I(* :Hjlo,) = [nl(fe‘fei)le=§

A
where 8 1s a quasi-maximum likelihood estimator of 8. This is a

"directed divergence" from the sample to the simple hypothesis Hy.
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Theorem 2,9 If {fe(x)}e is an exponential family of distributions:

£y (x) = 870 () m(e)

where M(93 = feeT(X)h(x)dk, then we have
A N )
I(* :Hi|0n) - I(* :H.|On) = log P(On'Hj) . (Kupperman, 1958)
J P(0, TH, )

Proof. Since for the exponential family of distributions stated in the

theorem we have

I(e:ei) = (e-ei) %3 log M(8) - log ﬁég}) s

i

9 log M(9)

. ElT(Xk) ,

and
P(0,|Hy) _ (6;)

n
M
log (p.,-68.) = T(x.) 4nlog
P—(_Onl_J_Hi)_ 370 2 T M8,

we obtain

(3-8.) = T(x) -nlog M(b
= - -nlog
12 Tk M%ei
Hence we have
$(* ’9i|0n) - %(* :ejlon) = (ej—ei) g T(Xk) + nlog M(ei)
= log P<On|Hj) ,
PiOanii

Since we have by Bayes' theorem
log P(Hjlon) _ 1og'P(Hi|On) _ log P(Oanj)
T P(H)) TP(H;) P(O_[H,)
28



the above theorem can now be restated as follows:

Corollary. For the exponential family of distributions we have

/I\(* Hilon) < ’I\(* :Hj‘lon),

if and only if

n) > log P(Hjlon) o

R TR

We shall finally give some short tables of I(fo:fl), J(fo,fl), -log p

and H(a) in the following tables:

29



Table 2.1

fi(X) (i=0)1)

1(0:1)

7(0,1)=1{(0:1)+I(1:0)

Binomial:
N

X N-x
x) Py 94

Poisson:
"By ox .
e TuyT/(xD)

Normal:
(2ﬁ012)'lexp -(X-ui)2
2 -
O.
i
Exponential:
B;_le'X/Bi
i
Gamma.
qi—l _
X /T(ay)
Beta:

(x(1-x) 1517 /B(s; , 8)

Py +qolog qo >
Py 9

N(%olog

g
01 1
-log ‘o
91
-log EQ (1_59 )
81 B
1og [01)  (a -ap)r (e
T o TTEST—

(5,-3,)G(s,)
where G(s)=d_logB(s,s)
ds:

Po

N.{fpo-pl)log p
1
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Table 2.2
£,(x) (1-0,1) 2.(x) = (2 (01702, (01 T (g) | TTOE P
Binomial: |
p, a1 (p*) % () 1% p¥logp* +
where ‘ 1
p*=<1og E)/(log _qi_+ log p_o> a*log g—*
a, a, Py 1
Poisson:
in x R —u* % '
e Tuy/(xl) e ™ (ux)"/(x!) b*logu#* -
where "
w¥* = Ulfuo (H*—Hl)
1og(ul/uo)
Normal:
(2n)'1/2e'(X-H22/2 (2”)_1/26—(Xfu*)2/2 (“1"‘10)2/8
where
u* = (uy+u )/2
Exponential:
ei'le_X/Bi (s)e " ~logB*
where Bl
g% = 1 log Bl_l (} _-%f )
Bl—rl'so‘1 Bo_l '
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Table 2.3

£(x) g, (x) = &M e(x) M(t(a))  H(a)s-losn(a)=Tlg,:?)
Binomial:
(N) pFgi ¥ Lﬁ\l) (_@)X-’fl—g ) alog a +(N-a)logN-a
x x ) (i N / Np Nq
Poisson:
M/ (x!) e™%a"/(x!) alog 2 _ (a-u)
v
Normal:
(zn)-—l/2e—(x—u)2/2 <2ﬂ)-1/2e—(x-a)2/2 (a-0)2/2
Gamma: _
xa'le"X/B/I‘(a)BCt xg"le'“x/a alog e (a- a )
r(a) (a/a)" e ?
PROBLEMS

(1) Show, by using Theorem 2.1, that

n
% x;log o> (x+...+x )log Ko,
i:l yi - yl'l". a .+yn

for all Xi’yi > 0,

{2) Using the Schwarz inequality and the inequalities

X~y < log X
x T v
show that

< X-y if x > 0,
y V]
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% (}lfo(x)—fl(x)!d%)Qf g(a-f O(x)fl(x)dg) < 1(0:1) < f' ii(i) ) 1‘fo(x)d1

(3) Let £(x) be a probability density function with [f(x)logf(x)d\ < w,
Define H[f] = - [f(x)logf(x)dk. Prove the following statements:
(a) Let X = (-w,o), and A be the Lebesgue measure. If f(x) has mean W

and variance 02, then H{f] is maximized by the normal density

* = ‘(X‘U)2/202 _
£*(x) = 1 e and H[f*] = 1 log(\ 2% o).
V2r o 2

(b) Let X = (0,»), and A be the Lebesgue measure. If f(x) has mean
a(>0), then H[f] is maximized ' by the exponential density f*(x):a"le"x/a
and H[f+] = 1+log a.

(¢) Let X be a bounded subset with Lebesgue measure V in the finite
dimensional Euclidean space, and A be - Lebesgue measure. Then HLf]
is maximlzed by the uniform density f*(x) = 1/V and H[f*] = log V.

(d) Let x = {0,1,2,...} and A be counting measure. If f£(x) has mean

a(>0), then H[f] is maximized by the geometrical density f*(x)= 1 ( a‘)X
1+ +a

o

(x=0,1,2,...) and H[f#] = 1(£1og 1. (1-p)log 1 ), where p = 1 .

| p 1-p 1+a
(e) Let Y = {XI’XQ"'°Xn} and A be counting measure. If f(x) has
mean p with min X, <y £ max X;, then H[f] is maximized by the
1<izn - - 1<izn
L, 0 BX,

exponential density f#(x) = & /ng e Y (X=K1,...,Xn), where B 1is

n RX. sn Bx. n Bx.
defined by X x e i//z e Y9 =y, And H[f*] =1log ( = e 9Y)-Bu.

Jj=1 j=1 N
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(4) TLet

p,log Yo . (1-p )log t-p,

I(p,:p;)
p1 l‘pl

where O < Pys P £ 1. Show that

>
I(p,:p;) { 3I(p1 o)» if and only if p_(1-p ){% p;(1-pp).
(Private communication from Kullback who owes this to I. J. Good).
[(Hint: Compute (I(po:pl) - I(pl:po))/(po—pl) and use the convex

decreasing property of the function xlog x#1 for x > 1.]
x-1

(5) Let {EJ} be any measurable partition of Y into palrwise disjoint
sets. Prove that

I(0:1) = sup 2= uO(E.)log HO(EJ)
J ’ E

(6) Let {Ej} be any measurable partition of ¥ into pairwise disjoint

sets., Prove that for any 0 < t <1

[ley () 1%e (x) 1 P < : [y (E5) 1%y (B 215

(7) Let f(x) be a given p.d.f. and let g,(x) be an exponential
density generated by f(x):

gu(x) = T e (x) ()
where T(x) is any given statistic and

M(t) = [ etT(X)f(x)dk.

(a) Prove that for any E€g

¢t min T(x) [e, (x)dA (pt max T(x)
X€E < log E + log M(t) < x€E ;
t max T(x) % r(x)ax t min T(x)
X€E x€E



2
(b) Let £f(x) = 1 &% /2 and T(x) = x, Use the result of (a) to show
E
that
log 3(a-t) > at - t° for all a, t50,
¢(a) — 2
where
0 2
3(a) = [ 1 e ¥ /24,
N VER

(8) Consider the measurable transformations T(N)(X) of the probability

spaces (I,ﬁ,ui), 1=0,1 onto the probability spaces (U,C,vi(N)), where

v‘i(N)(G) o ui({XIT(N)(X)GG}) for 0€C; that is, {TM)(x)}  is a

sequence of statistics and N may be the sample size, Show that if

vi.(i=0,l) is a probability measure on the measurable space (4,C) such

that
lim vi(N)(G) = v,(6) for all GeC (i=0,1)
N—oo :
then
N T N N .
I(\)O:Vl) _S_%i-% I(VO(N)zvl( )) 5%}21(\’0( ):vl( )) _S_ I(uo'p‘l)'
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3, Kullback-Leibler information and testing composite hypotheses.

We have shown in the previous section that Kullback-Leibler and
Chernoff information numbers play a remarkable role in the asymptotic
theory of statistical tests of two simple hypotheses. We have shown
that the amount of information contained in the dichotomous experiment
measures in some sense how difficult it is to discriminate between
two probability densities with the best test. We shall show in this
section some applications of these information numbers to the statisti-
cal theory of composite hypotheses testing.

Let 8€0 be a 1-1 index on a class of distributions on a probability
space with elements x and let Ws Wy be disjoint subsets of Q. Let
an3 be a sequence of independent random variables with a common
distribution indexed by 6€Q. A test @={¢£X with ©) depending only on

X .,Xk will be described by the probabilities @k(Xl,...,Xk) assigned

l,ul
to the rejection of the hypothesis HO: Bew

o
Let the risk function when adopting the test o be given by

(3.1) r(8,0) = w_(8)Eg(1-0(X)) + Wl(G)Ee(co(X))

where wi(e) (1=0,1) represents the loss of accepting the hypothesis

Hi: GEwi, when 6 1is the true parameter value. It is assumed that both

Wi(e)'s are non-negative, bounded anb wi(e) = 0 for eri.

We have the followlng result.

Theorem 3.1 Let GOEwO and eléw be fixed and define

1
0y = Inf. K, Erel(x)/feo(x):@

inf, By \:fe (X)/f, (X)\\l ’
0<t<1 0 1 o
36
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I(e:ei) = [ fe(x)log(fe(x)/fei(x)) dx (1=0,1) -

If there exist eoewo and 916w1 such that

(a) I(G:ei) < I(e:Gl_i) for all Bew, (i=0,1)
(b) Sup Ps = Sup Pg = P,
GEwo QGwl
then the test n
mn*(Xl,...,Xn) = A i:llog(fel(xk)/feo(xk)) " P

0O, otherwise

is asymptotically efficient in the minimax sense, that is

min yn | inf sup r(e,wn) < a
(3.2) ®w_ B€Q -

n S 1

¥

min {ﬁ l sug r(e,wn*) < a:} (a-0)
IS -

and we have

(3.3) the denominator in the left-hand side of (3.2) ~(-1oga)/(-1logp).
(MacKay, 1959)

(Lemma) Let {?&}be a sequence of independent random variables with

common distribution, and assume that p= inf. E(e'®) exists. Ir EX, <0
t B—

then given any positive €<p, We have for sufficlently large n

n
(p-e)™ < Prgz X, 2 o) < p"

and 1
n n '
(p-e)" =06 (Pri{z X; 201) (Chernoff, 1952)
1 - :
n n [ n n
Proof. E| expits X,|| > Pr{s X, > Of E|exp tzx.lzx.>o
i —— = 1 = 1 1 =
1 i 1 1
N A
>Pr}2 X, >0, if t >0
2 1 =



since EXi < 0 we have

— i

. tX.in txi}] n
p = ‘inf. E e , = iinf. E e i
-t - . it>0
n -
, t§ Xl n
= inf. E e . > Pr. 2 X, >0
t>0 - - = {1 *+=

Thus the right-half of the inequalities in the lemma is proved. To

prove the second half, or equivalently, the order relation is not simple.

We shall not present the proof here, and readers are suggested to refer

to the original paper (Chernoff, 1952).

Proof of theorem 3.,1. If C* 1is a prior probability distribution on Q

concentrating on eo and el and assigning to each ei probability
Wi(el-i)/(wb(el) + Wy (8 )) (1i=0,1), then o¥ 1is Bayes with respect to ¢¥

For we have for every test mn
\

w(Eeo [cpn(xﬁ + Eel [1--:pn(x)‘j)

= W il + f (Le (x) - Lel(x))$n(x)dl?}

o

r(c*,o,)

where w = wo( ) wy (o )/( (e 1)+ Wi(eo))-

3

Since E9 {1og(fel(xk)/fe (xk))}< 0, Eel{log(fe1 Xk)/f Xk)}
(0]

o)

we have by the Lemma
O}

o '
Pg, {rzllog fe - > (inf. Eg {exp (tlog fel(xk)) - an=(p-e)n
?9 (E ) ﬂ t o fBO(Xk) |
P, Zlog Xk) OJ > (1nf. B, [exp (—tlog, fel(xk)y - o;}n=(p-e)“

1( 1 TS‘TX;) "Lt % ——)))

o o

38
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for sufficiently large n, more precisely for n > n(e), say. Hence

w {Feo(mi(x)) + Eel(l—mﬁ(x){}

w (Pe {glog fEsl(xk) > (34— PQ' {glogg fel(xk) : O}
o1 T, (%) 1{1  TT, (%7

85 86

1l

3#
r(Q*,¢n )

> 2w(p-e)"
and for a < 2W(p-e)n(€> we have

(#) N [g*] = ndjl{f1| inf, r(ﬁ*,mn) < %} Z logo - log(2w) .
P log(p-¢)

Similarly we have from (a), (b) and the Lemma <0 8 ew
b4

R, {1og(fel(xk)/feo(xk)f} = I(8:6 ) - I(8:0,) >0, 8ew

sup r(e,w:) = maxj sup wl(e)Ee(@z(X)), sup Wb(e)Ee(l—mz(X)i}

8 8
€N Ewo AeEwl
< W max{ sup pn, sup pn = an
= bew °  eew, O
o} 1
where W = max{ sup wl(e), sup wo(e)} .
bew, GEwl
If we take
n=Nu%-1= min n| supr(e,Cpﬁ) fon}—l
® B EQ T
then
(%) N & < logd - logW

Since we have

N [¢*|< minjn | inf. sup r(8,9.) < af < N s
S n’ = = o

¢, B8en
we obtain by (¥) and (*¥) the relations (3.2) and (3.3) stated in the

Theorem,
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The condition (a) of theorem 3.1 states that the two composite
hypotheses w_ and w; must be properly "separated", For example these
two hypotheses must be separated as in Fig. 3.1(a) and not as in

Fig. 3.1 (b) and (c).

()
Figure 3.1
And the condition (b) of theorem 3.1 requires 6, and 8, to be the
"representatives", in the sense stated, of w, and w; respectively.,

Consider for example the case of the exponential family of
distributions. Let

fe(x) = eeT(x) n(x)/M(e), M(8) = fee?(x)h(x)dk.
Teke a < b, and let W = {;|G < %} and wy = ie|9 > b} be the two subsets.

Then it can be shown that a and b are the "representatives" of w, and

Wy respectively, that is, we have

Theorem 3,2 eo = a and 91 = b, in this case, satisfy MacKay's conditions

(a) and (b) in Theorem 3.1.

Proof. Since we have by the strict convexity of w(8)

1(6:6') = w(e') - w(e) - (8'-8)w'(8), (w(€) = log M(8))
I(g:b) - I(8:a) = w(b) - w(a) - (b-a)w'(8)
>0, 1f @ <a
<0, 1f8 >b

the validity of the condition (a) is evident. In order to see that
condition (b) holds true we have to calculate pg. It thus follows that
4o



oy = inf. Ee{[%b(x)] %} = inf. Eelj[% a)] ’ et(b’a)T(x{}
t X t M(b

- inf. E, [; b-a) {T )-(w(Dp)- a))/(buaig}

5
- inr. 5 [T (03
t 9
where egb is the unique root of the equation

w' (87,) = (w(b)-w(a))/(b-a).
By theorem 2.5(i) we have

| [t(T(x)-w‘(ezb)fh
- log (;nf. Ee e _
t ]

X g ¥
(8%,-0)w'(87.) - log Mé ab’

- IOg pe

= w(8) - w(el,) - (8-8% Juw' (8%, )

since
Ee(etT(X)) =7 LE)T(X) yan m(e) = M(£48) /M(8)
It follows that
3 = 0 (8 if 8 < a
21 %% = w'(e¥) - w'(e) =
pg O < 0, ife >b
It is easily shown that the three values sup pe = Pys SUD pe
g<a 8>Db

and p are equal and the common value is
abjﬂ

=z ["[; a) - w(8Zy) 831

N <b—e§b)/<b—a) ](e p-2)/(b-2) )
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Our second example of MacKay's conditions is as follows: Let us

consider the test of the difference of two binomial parameters. We have

0 = {(g,n)l 0 § g, il : 1] y wo = {g -1 z {} and wl S {g - 1N i - 6} 3
A
where § is a given positive number. Let &€ and ﬁ be the maximum likeli-

hood estimators of § and m respectively. Then we can show that the test

n N
1, ifA(g - 1) < -1
¥ =1 Z2 - B

o, otherwise,
is asymptotically efficient in the minimax sense, where

lOg((l_gl)/gl) , (g
lOg«§1+5)/(l_§l_6)7 1

>

m <1<E§ +8)
n z
m and n are the sizes of the samples from the two populations, and §1

is the unique root of the equation

-1 e N -
m(&™h - (1-8)7H) + n((g48)7t - (1-2-8)"1) = o,
The two "representatives"” (€O,no) and (51’”1) are on the boundary line
8 -mn =906 and § - n = -6 respectively and symmetrically situated about

the centre of thé unit square (Fig. 3.2).

l O

——):l

.

g?-&/ —5
Figure 3.2
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The next theorem is a generalization of theorem 2.3 to the

composite hypotheses case,

Theorem 3.3 Agsume that there exist BOEwO and 91€w1 satisfying

MacKay's conditions (a) and (b) in theorem 3.1. Then for any prior

probability distribution on ) the average risk of the Bayes test

¢ with respect to ¢ satisfies th¢ inequality
v(¢) = [ r(8,0.)dl < Wo"
Q

for every n and independently of C, where W = max [ sup Wl(e), SUP‘NO(Q
BEwW, bewy

(Sakaguchi, 1961)

t
Proof. Let p(t)= E\|f, /f then we have by (a)
- e 8 91 80

<0, BEw
pé(O) = E, log( fy /fe Y{ = I(e:eo) - I(8:0q)
1 o > 0, eewl
Hence we get inf. p (t), 8 €W
£>0 ° e
pg = 1inf. pe(t) =
v inf. pe(t), GEwl
t<0
from which we obtain
t
inf. [ {L, (x)/L, (x)| . (x)aA™, 8€w
£ 91 <) 8 o
4) n _ >0 (o]
(3. 0g .
inf. [ Lg (x)/Le tx] Le(X)an, 6 €w;
t<0 1 0
n
where Le(x) represents the likelihood 1T fe(xi). Let ¢* be a prior
i=1

probability distribution on 2 concentrating on GO and 61 and assigning
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to eo probability p, the value of which is to be chosen later., The

Bayes test with respect to ¢* is the non-randomized test

1, if pw (8 )L, (x) < (1-p)w (8,)Ly (x),

) o 1
Cpg*(x) =
o, otherwlse,

Let R = {%lp@_(eo)Leo(x) < (1-p)w6(90)Lel(x{} then we have from (3.1)
)

P(G,wg*) = Wo(e)Ee(l'wg*(X)) + wi(e)Ee(wg* (X))

_ n n
= Wb(a)éc Le(x)dx + Wl(e)é Le(x)dx
We thus get
(3.5) sup P(9,¢g*) < Wmax [ sup [, Le(x)dln, sup [ Le(x)dln
GRS - eewl R eéwo R

where W = max [ sup wi(e), sup w_(8)]. If we set
o
eéwo 8€wy

t t
n(5,0) = f(Lg (x)/5, () Ly(0a" - (14 + £C)(L°1/Lﬂo) LyaA"

in (3.4) it follows that

1 ' t
1781 Lyan™ > pw, (8,) J [ Lyd"™, 1f £>0
h(t,8) > by (1-p)W,(8,) R
-t ~ B
L I -t
8 = . .
e == Mo > Sl (el)J £C'Ledln’ 1f <0
91 - ? pwlleo)
and hence that
r t
[ Lga™ < n(t,8) (l—p)WO(elil ; 1f £>0
R pwi(eo)
-t
e Ledxn < h(t,8) j pwy (8,,) , 1f t<0.
R ) (T-p) W (8;)
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Now we choose p = wo(el)/(wo(el)+ wi(eo)) and denote (¥ and R with this

choice of p by (° and R® respectively. Then we have by (3.4)

/ Ledkn < inf. h(t,8) = pg, if 0€w
RO = £>0 ©

(3.6) 0 < ) n e ’
éoc Lydh™ < %zg. h(t,8) = Py s 1f 8€w,

From (3.5), (3.6) and the condition (b) of theorem 3.1 we get

sup r(8,0 ) < wp",
g€eq ¢o’ =

Hence for any prior probability distribution € on Q the average risk

of the Bayes test mg with respect to € satisfies the inequality

[ r(6,9.)dC < [ r(8,9 )d¢ (by the Bayes property of @Q)
0 ¢ =g c°

A

sup r(0,p ) W "
pen ¢®

and the proof of our theorem 2.3 is completed,
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4. Kullback-Leibler information and sequential tests of hypotheses,

We shall begin this section by an asymptotic study of the problem
of sequentlally testing a simple hypothesis against a simple alternative,
Suppose as usual H,:8 = 6, and H :0 =6, are two simple hypotheses, and
the experiment yields a variable x whose density 1is fi<X) under Hi’

i = 0,1. The Bayes strategies are the Wald sequential probability-
ratio tests. These are characterized by two numbers A and B with
B<0O<A, (Fig. 4.1), and consist of reacting to the first m observa-
tions KeyseoesXy by

A
B

accepting H1 if Zm

A v

accepting H 1if Z
(4.1) PEE S0 7

continulng sampling as long as B < Zm < A, where

Z. = g 1og(fl(xi)/fo(xi)).

1=1
A // Kecept H, / /i /s

0 /
N

55777

Figure 4.1

The appropriate numbers A and B are determined by the a priori
probability (¢ of HO and the costs. These are the cost ¢ per observa-

tion and the loss wi(i=0,1) due to rejecting Hi when it 1s true. The
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risks corresponding to a sequential strategy are given by

(4.2) "o

Ry

woo + CEO(H)

w8 + cEl(n)

where o and g are the two probabilities of error, by that strategy, and
n is the random sample size, Of course A and B are determined so as

to minimize the average risk (R, + (1-g)R1.
The following fundamental theorem in sequential test theory is a

generalization of the non-sequential result stated in Theorem 2.2(1).

Theorem 4,1 For any closed sequential test S with strength (a,B), we

have
(4.3) .Eo(nIS) > {El—a)log lgg . o log T%%}//E(Ozl)
E, (n|8) > {F log T%E " (l-B)log_%;?}//i(lzo)

i

Py {S accepts H;B (6=0,1),

(4.3') By(n]S) 2 {L(6)10g L) , (1-L(s))log 1-L<e)}/x<e:e')

or equivalently by setting L(§)

- L(g") 1-L(8")

(6=0,1; 8 #8") (Wald, 1945)
Proof., Let Z = log(fe(x)/fe,(x)). By the Wald-Blackwell theorem we

have for any closed sequential test

(%) Ee(Zl+"'+Zn) = Ee(n)Ee(Z).
The left-hand side is
n
Bzt 47y = By {loa(R, /5 0)) (Bn =, Ta(x;)
) oy 8 (B=t) Qf ’ Qf Fon 198 Poy g aN(x)
= ON 1N Py



Wwhere QiN = Ekxl,...,xn)ls accepts H, with sample size Ni} (1=0,1).

Since

L(g) = Pe {g accepts H;} = )

o0
> oN

P, (n=N) P, (Q
Nel © 8

1 - L(g) = Peg;s accepts H¥} = Ngl Pg (n=N)P, (Q) 1)

f
and by using the convex property of K-L informations (cor. to theorem

2.1), we have

(%) N°z=°1 Py (n=N) {PG(QON),log Pe(%on) PG(QIN)logPe(%N)_
Py (Qoy) Py (9y)

v

> L(8)log L(8) , (1-L(p))log 1-L(s) .

L(e") 1-Lia 1)
Combining the last inequality and (#) and (X) we have the desired

result (4.3').

Wald approximations: If the means and-variances of the random variable

Z = log(fl(x)/fo(x)) are all small enough (in absolute value)

o Rze”
BAQ%eB
(4'4) (1 )1 1-q a
-a)log — + qlog 1-F
E (n) 7= 8 10~ E?O-l)
I1{(0:1) :
8 1-8
B8log —— + (1-8)log —=
El(n)% 1-g 2 ~ A
1(1:0) I(1:0)

for the Wald sequential probability-ratio test,.

Proof. Set Eg(zl+.,.+zn)ng -B, EF* (Zl+...+Zn)¢t:A in (*) and (%)
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of the proof of Theorem 4,1,

Ee(n) = Ee(zl+"‘+zn) = L(8)(-B) + (1-L(8))A .
EQ(Z) I(6:9")

Moreover we have

-B A= -logB ~= logl-a

A~z ~loga A~ logl-B

a
Consider the given family Ef(x,e)dse of p.d.f's and let
Ho:e = QO
Hi:0 = 91 =8, + A

The following theorem shows that when el is close to eo, the percentage
saving of the Wald sequential procedure compared with the best non-
sequential test, is independent of the particular function fe(x) and
the particular values 91 and 90, provided fe(x) satisfies some weak

conditions.

Theorem 4.2 Assume that the family {?(x,e):}e satisfies the regularity

assumption (R) mentioned in Section 1.1. Let Ei(n) (1=0,1) denote the

expected sample size under the hypothesis Hi required by the Wald

sequential test with strength (a,8). Let N be the size of the sample

to _achieve the same strength (a,8) by the most powerful non-sequential

test. Then we have

1im Eo(n) _ (l—q)logiég + Q;OgT%E
(4.5) 40 il % (Ty + Tg)

1lim El(n) _ Bloglf%a + (1-AB)1ogL&§

A-0 . T+ 0,)°

L9



where U and UB are deflned by the relations

0 (o0 2
o = [ (em)"1/2 e_tg/gdt, 8 = [ (em)" V2 /2 gt
U

U, | 8 (Paulson, 1947)
Proof. For the Wald sequential test with strength («,B) we have

E (n) = [(l-c;)log —%‘9 + alog T‘f—s} /A(O:l) + o(1)

{Blog =+ (1-8)1log —}/1 :0) +o0{1)

when A-O. On the other hand the most powerful non-sequential test has

)

I

E, (n)

the critical region
N
Zy= 1 = 1og T(X8578) 5

N i=1 f(x , 0 ) -

When A-0, N-ow, %ﬁ has the asymptotic distribution
W (=1(0:1), o /N) under H_

~
2y N (1(1:0), Ul/N), under H, ,

where ci (i=0,1) is the variance of 1og(f(X,el)/f(X,so)) under H, .
Hence we find the N required for a test with strength (a,8) by solving

for N from the relations

2
= Ze > = N-1/2.-t /th
a r [_N > KIH;B {k+I( ))/(qo/fﬁ) (2m)
. by {ZN< k|H13 i }1{-1(1:0))/ol/m)(Qﬂ)_l/ge_te/gdt
so that
u = N (k + 1(0:1)) /o,
Ui g =N (x - 1(1:0)) /o,
and we get
(m N = %%fkﬁ%)g
J70,1)
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Now when A-O we have

2 3 ) _ 2
1(0:1), I(1:0 A 8 o(aA (Z 8) = E d logf(X,B{}
), I( )f\/g_ i(e,) 4 0(a”) \ ( 51 - 5

[

Gg = E_ [log f(X,al) 2 (0 1)2
T(Xe,)
L - 3
= B, |(6 3_ logf(X,8) | A% a” 1logf(X,8) , 0(a°)
28, ;g?
(0]
- 2
2 . 3
(%_ 1(e,) , 0(s >)
_ 2
5 2
% = log £(X,8, I(1:0)% = 2%1(g ) + 0(ad)
—(m ©
from which we have by (%)
o
Ny (g * 0)° (2-0).
A 1(80)

Combining this and () we obtain the desired result.

Since the Wald sequential test 1s optimum, as is well-known, it is

suggested that

a 1-a
o 1081_—8 + (1-a) 108T <1, for all 0 < a, 8 <1,

)
% (Ua + U

g)
or equivalently

(4:6) #0108 8(x) , (1-8(x))1og L4(x) 51 (x + )%, (—osx, ye),

where

5(x) = [ w(t)db, olt) (en)‘l/ge'tg/g.
X
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We shall give here a direct analytic proof of this inequality

(Sakaguchi, 1955). By Jensen's inequallty for convex functions, we have

b \ b
[ tg(t)at \ [ £(t)g(t)dt
f a < a s
b =
fe(t)dt [e(t)dt
\ a / a

where f(t) is convex and g(t) is non-negative in (a,b). For a = X,

2
b = w, £(t) = e ¥¥(w<k<w) and g(t) = o(t) = (om)~1/2eY /2 tnis

3

reduces to

2
exp {;km(x)/é(xi} < K /2 8(x + k) /3(x)

so that

(1.6%)  1log #(x) < K, ko(x), (—o<k, x<)
¥(x+k) 2 B

gince

o o 2
[ to(t)dt = o(x), [ e ¥Pp(t)at = & /28(x4x), (-o<k, x<w),
X

X

From (4.6%) and the relation &(x) + &(-x) = 1, we obtain the desired

-x-y 1n (4.6%) and multiply

inequality (4.6) as follows: If we set k
both sides by ¥(x), then

?(x) log lf(x;) < (x+%r)2 8(x)  (x+y)ol(x).

If we change X to -x in (4.6%), set k = x+y and then multiply both
sides by 1-8(x)

(1-8(x))1og 1-8(x) < (xy)° (1-8(x)) , (x+¥)o(x).

oy 2
Adding these two inequalities we get (4.6).

It is to be noted that we have
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1im
B-1-4-0

1-8 B - L . l/co(Ua))

alog—2— + (l—a)logl;a co(Ua);z 4
)2 a(i-a) 7 |da “ao

1 (U, + U
5 a B
=1 .
L S )
Another fact to be noted is that by expanding log &(x+k) about k = O

which 1is symmetric about a = % , and equals 2 2 0.637 at o =

we have from (4.6%x)
®2 - Xepd = 8
from which we can obtain an inequality for the Mill's ratio % /w0

3/ > ) _1<x2'+4 —X).
= -7

X+ + x

Let us now consider the case of composite hypotheses.

Theorem 4.3 Let S be any closed sequential test for deciding between

Ho:eewo and Hl:GEwl such that
Py {S accepts H;}' <a if eew
Pe {? accepts Hé} <8, if OEwl

where o + B j 1. Then we have

_ 1l-a Q s 8.n"
Ee(nls) > {kl q)log—g— + alogT:Ei} /1:1nf. I(8:0"), 0 €w

1 £
S

(4.7)
BlogT%E + (1—B)loglé§- //inf. I(g:0"'), GEwl
8'€,  (Hoeffding, 1953)

Proof. For any closed sequential test with the operating characteristic

Eb(n,S)

v

function L(s) = Py {S accepts H;}' we have

Ee(n)I(e:B') > L(e)logéﬁil + (1_L(9))10g1-L(9) p §,6'€n
- L(e") 1-L(8")
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by (4.3') of Theorem 4,1. It follows that

Eq(n) (CI(9:0,) + (1-C)I(0:04))
> ¢ L(é)log—%%gl) + (1-L(e))log %“Eé@l) + (1-¢) L(o)log%%§%7<
O ;
+ (1-1(0)) Lon-tL(0)
1-L(8) J
- 1(8)1 L(0) 1-L.(0))1 L-Li8)
(8) og[L eo)]QE_,(el):' — + (1-L(6))1log [11'(90 QF L ]1 T
A
> - log | [L( [ ] Lo ) 27¢ + a1 L(eo)!gil .( 1)j1“€ |
‘ - - : /
Now the functlon
K(x,5) = (1-0¢ y17¢ + =& (1-5)1°C

is increasing in x and y if x + y < 1. Since 1-L(8,) £ « and L(e,) =8

we have K(1-L(8, ), L{#8;)) £ K(a,8) if « + B < 1. Thus we get

-1o,g;(,‘~;(1-;3)1‘g + (1-0)%81"%)
(4.8) Eg(n) > 81(9;90) + (1-@)%(0:61)

for every

9
0<¢ <1, eoe wo, le wy

The best inequality we can obtain from (4.8) is

¢ . 1-¢
-1 1-8 1-
(4.9) Eg(n) z sup —2BLS &( 305-++(§—g?)1nf treve )

0<(<l
GOE W 616 Wy
If 8 € VI the above ratio becomes
/
a r NG ¢)
1 Do N i —\\. A R
T logy(1-8) kﬁ%w; + pgiiza) i'//lnf I{6:8,)

\
which is continuous in (. Hence letting ¢ - 1 we obtain the first

inequality of (4.7), The second inequality will be obtained similarly.
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Theorem 4,3 is clearly a generalization of Theorem 4.1 which is the
simple-hypotheses case., The lower bound of (4.7) for the expected
sample size is attained by Wald sequential tests with specific choilce

of f,(x), 0 €w,, and 6,€w except for trivial cases, Exceptions for

of
trivial cases are due to the fact that there may exist, when a + B =1,
a trivial test satisfying (4.7) with both sides equal to O which
rejects HO with probability a without sampling any observations.

Thus far, we have not discussed sSequential analysis from a
large-sample point of view, At first glance, it may seem as though
the very nature of sequential analysis is such as to rule out
large-sample theory, That it is not so becomés clear when one considers
that reducing the cost of sampling should increase the expected sample
"size. In fact, let us suppose that the cost per observation is c.

Consider the Bayes procedure corresponding to a fixed a priori

probability ¢ that Ho is true. The expected risk

CR, + (1-C)Ry = C(w a + cE (n)) + (1-C) (w8 + cE (n))
is minimized by a Wald sequential probability-ratio test. As c¢-0,
Eo(n) and E
tion (4.4)

CR, + (1-g)R1Mg(woe‘A - ¢cB |+ (1-g)<w1eB + Eé)
\ L I

1 (n)=o, but CR_ + (1-C)R;-0. Minimizing the Wald approxima-

for the expected risk, where I, = I(i:1-1), 1 = 0,1, we find that
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A Az -log ¢ + log(CWoIl/(l-C)) Ry -log ¢
B o~ 1log ¢ - 1og((l-g)w1Io/C,) ~ log ¢

a ~~
SN

X
T

(4.10)

Eo(n)% -log ¢/ I,

El(n) Az -log ¢/ I,

R
o

Il

woa + ch(n) A<z -¢ log ¢/ I,
Ry = wB + cE; (n) Az -c lob ¢/ I,

The risk corresponding to the optimum strategy is mainly the cost of
experimentation. The optimum strategy and its risk depend mainly on
c, Io and Il and are relatively insensitive to the loss Wy and W, of

making the wrong decision and to the a priori probability .

(
)
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PROBLEMS

(1) Prove the inequality (4.6) by using the fact that

2
I(f:g) =l (X 13 y) ’
2 N
where f(t) = 1 expz;-(t—x)2-} and g(t) = 1 exp__(t+y)é}, and the
ﬂEn 2 w2ﬂ 2

convex property of I(f:g) (see the corollary to theorem 2.1)

(2) Sketch the function

F(a,8) _ alogT%§ + (1_q)1ogl§3

2
% (UOL + UB)
in the unit square O <a, B < 1.
2
(3) Let £(x,6) = _1 exp] (x—e;}; w, = (—w,g] , W = [S,w), where
UQW

8 is a given positive number. Consider the case o = B in theorem 4.3.
(a) Show that when 8=0 the lower bound of the expected sample number of

any closed sequential test (that is, the right-hand side of (4.9)) is

1 log {Fa(l—ai} (EM, say).
- 2
8
(b) Stow that the non-sequential uniformly most powerful test with

sample size m and size a, that is,

sup Pe {test accepts H;} = a,

GEwo
is the test with the critical region
o 2
x+686 >U,/Vm , where 1 | et /2 gt - .
er Ua
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(¢) If for the above non-sequential test

sup Py {test accepts H-} £ aQ
fcw <
’ /
then show that the least sample size N must be the smallest integer g(gé).
(d) If O <a =1 and § is taken such that Eé is an integer, then show
2 )
that : .
1 <M_ - 1log {Aa(l—a)'g 2
N U 2 m
a
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5,Statistical experiments and information provided by them

Experiment. An observation of a univariate random variable X is

said to be a performance of an experiment with the random variable X.

Hence the experiment will result in an observation X, belonging to a
space } . The space ¥ has a o-field B of subsets. We shall consider
a dominated parameteric set of probability measures, each defined on
the measurable space () ,B). We shall describe it by’{P(xle)lgg@} s
where p(xlg) denotes the generalized p.d.f, with respect to a common
dominating measure, and m is any parameter space. Then the couple

(5.1) E = [k)f ,B), {:p(xle)ieegi:l

characterizes an experiment E.

With this definition, the notion of the experiment corresponds
to the following communication system with noise (Fig. 5.1). It
consists of essentially two parts:

(1) The input space is the set ® of symbols 8. These symbols are
transmitted one by one by some discrete stochastic process, in which
each choilce of 8 is made with probability p(8), successive choices
being independent.

(ii) The noisy channel is such that the output space is a set M .

We assume that successive symbols are independently perturbed by the
noise. The channel, therefore, is described by the set of transition

probabilities p(x]|6), 8c@®, the probability of the transmitted symbol 8

being received as xet.
~~ -7 8¢€® xex
ip(8) —>— p(x|8) L—>—
! !

Figure 5.1
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The statistical decision problem of deciding which g is the "true"

transmitted symbol will be represented by Fig. 5.2.

o Observation Decision
Signal Space Space Space

|
A ““\\ \///f‘w\\ | —.
.8 N X | Decision S/ '
N «\\H#/// - Rule |
¥

I
I
|
I
I
|
I
|
|

Noise_Space _ _ > _|

Figure 5.2
The part in the frame of the broken line in Fig. 5.2 is the "communica-
tion channel with noise" and this part has no relation with statistical
decision theory. Filg. 5.1 is equivalent to this part. In order to
clarify the input and output spaces we sometimes write (5.1) as
(5.1") E - [;, {p(XIS)l ee®} ,%] .
The transmission rate of the noisy channel is defined by Shannon (1948)
as the difference of input entropy and the received conditional entropy.
Hence, when the a priori p.d.f. of input symbols 6 is p(s), the
transmission rate is given by

T(83x) = H(g) - Hy(s)

] p(e)p(x|e) log p(x|8) dgax
p(x)
[ p(g) I[P(XIG): p(X)Ip(G)] de,

where p(x) = [ p(8)p (x|g)d®. Hereafter, for simplicity in notation, we
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shall not distinguish between random variables and the values assumed by
them, nor shall we attempt to be specific in describing the density
functions. Thus p(8) and p(x) will denote the density functions of the
random variables ® and x, respectively, without any suggestion that they
have the same density. Moreover we shall denote integration with respect
to the dominating measures on ¢ and © by dx and d0 respectively, again
for simplicity of notation. We shall, following Lindley (1956), define
the amount of information provided by the experiment (5.1) with the
prior knowlege p(8) by

(5.2) I(E,p(8)) = T(85x) = [] p(8)p(x|8)log p(x]8) g4,

p(x)
We give an example, Let Ei be a dichotomous experiment:

(5.3 E- [¢.m), {fl(x),fg(x)}:\

Then if the prior probability is ¢ for 8=1 we have (fig. 5.3)

(5.4)

I €.,0) = ¢ty (01 1) ax(1-0)Falm) 208
¢ty (x)+(1-6) (%) £ (x

2( x) ds
+(1-6) 5 (x)

£
)

= QI(flsfg) + (1‘g)I(f23fg):

SE I(E,0) = T(ey38) - T(fy510),
‘gf (€O oo = I(fy315),

& (E€s0) oy = -I(fps1)),
% 1(€,0) = -f(£;-1,)%/2 ax,
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I(f, 5f2)
0 = ™
I(fz,fl)
Figure 5,3

where fg(x) = gfl(x) + (1-g)f2(x).

For example, if the fi(x)'s are binomial densities:

X
fi(X) . Gi

then we have

(5.5)
I((07,8,),C) = CI(0158¢) + (1-C)I(838.) = 8(8,) - €S(8;) - (1-¢)8(8,),

where eC = (8, + (1-€)8, and
I(6,,8,) =18, log o + (1-8,) log 1-8,4 (1 =1,2)
i’76 i —— i -1 s<) s
8¢ 1-8,
S(8) = -8 logd - (1-8) log(1-8), (0<B<1).

Example 5.1 Normal experiment.

Let E (0) . E-oo oo {p xle l —oo<e<oo} -oo oo] R where

p(x|e)= _ 1 exp {-(X-G)E/QG%} . If we take p{(8) = 1 ex@,ij(g_m){}
V2o om v ov°
then

p(x) = exp (X B)i} exp (B—m)‘} de = ex -
V—ﬁ (0+v ) 0 +v
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I(p(x|8): p(x)|p(8)) —(1/2)( o° -1+ (e—m)2 - log 02 )
2., 2

e 0242 o4y
=<1/2)(1og (1+v2) - e ¥ (g-m 2) ;
@) 2P P
and
I(C (o), p(8)) = fp(8)I(p(x|8): p(x)Ip(8))as
\ 2 2
=[ 1 exp)-(6-m)°({.(1/2)(10g Q + ﬁ - v + (8-m)“|as
\J_Q_T_T- v { 2V } ( )< 02) 02+V2 024_\;2)

-_—(1/2)log (1 5 v_g)

o
Example 5.2 Binomial experiment.
[[O,ﬂ i {p(x|9)|O§G§1} (O Bi\ , where p( X}G) =0%(1- 8),

(x =0,1; 028 1), TIf we take p(8) = 02" 1(1-0)P"1/B(a,p) (05 0% 15

=
0]
Cr-

™
1]

a,b >0 ) then

1

p(x) = J; p(9)p(x|e)ae = [ 981(1_g)P-1 e%(1.6)1-% g

B(a,b)
a y T x=1
= B(a+x, b+l-x) = ath
B(a,b) a-bl- » if x = O,
I(p(x|8): p(x)|p(8)) =0 log © + (1-8) log 1-8 g
: a/(a+b b/(a+b)
and
I(E,p(8)) = 1 p(8)I(p(x]0):p(x)|p(a)) ds
=t e®l(1_gyP-1 (4 1‘ 0 + (1-6) 1 1-9  do.
fﬁ B(é,b)) ( o8 a/(a+b) ( ) e b/(a+b)

Note that if y is a B(r,s)-distributed random variable, then
E(log y) = ¢(r) - ¥(r+s), E(log(l-y)) = ¥(s) - ¥(r+s),

where V(r) = d 1og r‘ . Using this we have
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1(€ ,p(e)) = S<’ a } + aib y(a+l) + aEb P(b+1l) - V(a+btl)
a

S ( a \+ a¥(a) + by(b) - ¥(a+b) + 1
a+b ) a+b a+b

where V(r+l1) = y(r) + 1/r

and S(8) = - 8log & - (1-8)log(1-8), (0 59 <1).

Sum, average and mixture of two experiments,

Given the two experiments
£y =l fotglorleee) L] a-12
with a common input space, we define the sum of the two experiments as

(5.6) (£1,€,) = {0, {plxy.x,l0) 109}, X, |

where p(xl,x2|e) is any p.d.f. with the marginal densities

[ p(xp,xple)dax; = p(xg_jle), (1 =1,2; v€0).
We have, by the additive law of information transmission
(5.7) T((€,, &) = Tlosx,x,) = T(85%)) + Ty, (83%5)
where the last term is the expected value w.r.t. p(xl) of the transmitted

information based on the conditional p.d.f. p(e,x2|xl).

Or more precisely

(&1, o)y p(8)) = [Ifp(8)p(x,%,]8)10g p(x),%,(8) d8dx ax,

p(xl,xg)
= fffD(B)D(Xl,Xgleiéog p(xl|6) + 1og ]8 1 dadxldx
o(x) p(xglx
=/fp(8)p(x,|8)1og p(x;[9) a8 ax,
p%]

8
+ fp(x;)dx, [[p(8]x;)p(x,l0,%)10g P 2|I; 1’ a8 dx,
*2

which is, say,
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(5.8) 1((€,&,),p(8)) = 1€, ple))+ E . {I(fg(xl), p(GiXI))}

1

The experiment é~2(X1) in the above expression may be represented by

Fig. 5.4

¢
€L p(x,)8,%,) s %ol o

P 4

T
N
el
™
=
p—
N

Figure 5.4

Let us call éil and (52 (mutually) independent (in the sum & I+<F2) if

p(xl,x2|e) = p( l|e 2]6), for all €@,
If é:I and 5\2 are independent 8?2(X1) is equivalent to (52.

Theorem 5.1 If the two experiments 651 and (?2 in the sum (5.6) are

independent we have

(1) 1€, - B §(E ) o)} = 1)

(11) (&, &) = T El) + I(&,), mith equality if and only if

X1 and X2 are statistically independent.

Proof. The left-hand side of (1) = I(&,) + I(E ) - T((E, &)

= T(e;xz) + T(e;x Y - T(8; xl,xg)
= (B(xy) - Hy(xy)) + (H0x) - By (x)) - (H(xp,xy) - Hy(x),%5))
- H(xy) + <x1) H(xp,%p) = T(x3%,)

since we have He( X,) = He(xl) + He(xg) from the independence bf

EIL and é;gs (ii) follows from (5.8) and (i).

It is worthwhile to note the followlng relations: If we denbte,
for simplicity, the mean information of the conditional experiment in

the last term of (5.8) by I(éfgléil), we have
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(5.8 1((£,,&,)) = (&) + (€18,
and if 6?1 and é~2 are independent

(5.9)  I((&1,E5)) = T(E ) + T(E,) - T(xy5%,),
(5.10)  I(E,) = T(E,|E).

n times
AT

Corollary 5.1 For repetitive performances Eﬂn) = (&,...,£) of the

independent and common experiments, the information I(E(rﬂ) is a

concave, increasing function of n.

Proof. It suffices to show that
O Jnt1 ~ In = Jdp - dna
where j = (& hﬁ)). We have by (5.8') and (5.10)

; - =I(€n+1|£(n))=>o’
R I(fnlg(n'l)) = I<5n+l‘£4(n-l) z I(5n+1|<€(n))'

For other important complex experiments we introduce in the
following the weighted average and the mixture. As before, let
Ei = [@, {p(xi|s)|ee®3 961] (1 = 1,2)
be two experiments with the common input space ®. If 0< o < 1 and

aflnaeg = ¢ we call the experiment

(5.11) ¢&; + (1-0)&, - [®, {p(X]S)IGG(@} , 95_&‘%21

where
Cp(xq18), if x = xle‘lcl
p(x|8) =
(1-¢)p(x,]0), if x = x,€X,,

a weighted average of é;l and é?g(with weight ¢ on é?l).

Now»let
Si = [@, {pi(}{lﬂ)lee(@} ;X} | (1 =1,2)
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be two experiments with the common input space ® and the same output
space 96. We call an experiment

(5.12) g{{l*(l_g)gg = [@, {gpl(xle) + (1-g)p2(x|e)|ee®},%]

a mixture of 51 and 82 (with weight ¢ on 51).

The weighted average and the mixture of two experiments will be

represented by diagrams as in Fig. 5.5 (a) and (b) respectively.

(¢) X (¢)
Lt p, (x]8)
T i ﬁ_“:@e@
i p(s) :—ef)®—ﬂ 1| (a) 1|—-§——1 .%}_ie__
L | [
p(xjo)| %K by (x[8)
(1-¢) (1-¢)
Figure 5.5 (a) Figure 5.5 (b)

The weighted average gEl + (1—5)52, defined by (5.11) and
represented by Fig. 5.5 (a), can be thought of as being performed
as follows: With probability ¢, a value X 1s obtained according

to the density p(Xl) = fp(e)p(xl]e)de; with probability 1-¢, X,

1s obtained according to p(x,) = fp(e)p(xgle)de. The experimenter

is informed not only of a value Xy Or Xg, but also which event of
probability ¢ or 1-{ took place. On the other hand, the mixture

¢ E,#(1-¢) £ ,, defined by (5.12) and represented by Fig. 5.5 (D),

can be thought of as follows: A value x is obtalned according

to py(x1a) and p,y(x|8) with probabilities { and 1-( respectively. The

experimenter, in this case, 1s informed only of x, and not of
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which event of probability ¢ or 1-{, took place,

As may be intuitively expected we have

Theorem 5.2 (i) For the Weighted average (5.11)
I(¢€q + (1-0) &) = ¢T(E)) + (1-0)T(E)
(ii) For the mixture (5.12)
1(¢&*(1-0) &) < CI(E)) + (1-0)T(E,).

Proof. (i) is evident. Let £* denote an experiment which informs

which events of probability ¢ or 1-¢ took place. Then
(¢€x(1-0),, &%) = <& + (1-0),.
Hence we have
1€ »(1-0)€,) < T((c&y#(1-0E,, &%)
I(¢E, + (1-0)€,) = ¢1(&)) + (1-0)1()).

by (5.8') and the first part of this theorem.

More precisely in the second part of the above theorem, we have
cI(€)) + (1-0Q)TE,) - T(¢€#(1-0)E)

= ¢JJple)p, (x]0)1og péixie) dedx + (1-¢)ffp(8)p,(x|8)1log ii(zle)dedx

- JIp(0) (cpy (x18) + (1-C)py(x18))10g SP1(XI0) + (1-C)po(x[6) ggay
o, (%) + (105, ()

= [p(e)de [iEICpl(Xle);pg(XIe)) + (l-C)I(pg(XlG);pg(Xle)i}
- {fl(pl(X); pc(x)) + (l-c)I(pg(X);pg(X)ii:l,

where  p.(x|8) = Cp;(x|a) -+ (1-¢)py(x]8),

pe(x) = Cpy(x) + (1-0)pp(x).

The amount of information I( & ,p(8)) provided by an experiment is
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convex in the mixture of experiments as the above theorem shows, and

it is concave in the prior knowledge: that 1s,

Theorem 5.3 I({ ,p(s)) 1is concave in the prior knowledge. That is,

ir pl(e) and pg(e) are two prior knowledges, then
I(E,tpy(8) + (1-t)py(8)) 2= +1(E,py(8)) + (1-6)T(E,p,(8)),

for all O < t < 1.

Proof. It is readily shown that
(5.14) 1I(&,tp (8) + (1-t)py(8)) = I(E*,t)+t1(E ,p (0))+(1-8) T(E,p,y(0)),

where
[(‘XB {pl » Polx )}],
8)p(x|e)d (1 =1,2),
and
I(*,t) = t/py (x)1og py (%) ax

Tp, (X)F(1T-E)p, (%)

pp(x) ax.

+ (1-t)[py(x)log
tp, (x)+(1-%)p,(x)

The above theorem will have several applications in later sections.

Uncertainty and information functions.

When the input space® is finite, we say that the experiment is finite,
For finite experiments non-negativity which is the most fundamental
property of the information provided by the experiment is not parti-
cular to Shannon's uncertainty measure. In fact the next theorem 5.4
shows that for any concave uncertainty function we can well define the
amount of information provided by the experiment by the amount of

decrease of the uncertainty after the performance of the experiment,
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Let
5.39) €= [0, {5,09,008,00)
be a finite experiment. Let = denote the space of all probability-k

s
vectors & = (§y,...,8,), 1.e., & > 0(1 = 1,...,k) and > By =

An uncertainty function U 1s a non-negative measurable function defined

on ®. Intuitively, the value U(§) is meant to represent the
uncertainty of an experimenter about the true value of 8 when

his prior knowledge over ® is €. The information I [é,g;ﬁ] in a

finite experiment (5.15) when the prior knowledge is &, relative to
the uncertainty function U, is defined as

(s.16) 1[€.850) = (o) - B[us0ie]

where E(x) = (&,(x),...,8 (x)), with

ACESANCVE RSO (1= 1,0,

and the expectation E ['[%} means Z g, E [ ]

Theorem 5.4 Let U be a given uncertainty function defined on ®. Then

Ii[ﬁ §;ﬁ] > 0, for all experiments (5.15) and all E€&, if and only if
, 2 and all

U is concave,

Proof. If U(g) is concave, then by the familiar Jensen's inequality
e [ulsx |g] < v(E[g(x)[8]) = U(5), for a11 € ana gex.

Tt follows that I [_E ,85U] > o.
Conversely suppose that I [é ,§;U] > 0 for all E and &, Let & and
v be any two vectors in E and let 0 < £t < 1. Consider the experiment
(5.15) in which fj(x)'s are binomial densities with the parameters
tgj/(t€j+(1-t)vj), (J =1,...,k).
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Let m = tg + (1-t)v. If the prior knowledge is T, then the posterior

probabilities after observing X are

m(1) = [ M P8/ (88 +(1-%)vy) , ... =g,
K
;il njtgj/(t§j+(1—t)vj) ,/
n(0) = [ M (1-E)vy/(45,4(1-8)v,) £ omoe = V.
k
s

N nj(l-t)vj/(t§j+(l-t)vj)

J
Hence, since, by assumption, T E,g;U' > 0 it follows that

U(t8+(1-t)v) = u(m) > E [ﬁ(n(x))‘ﬁ] = tU(m(1))+(1-t)U(m(0))

= tU(8)+(1-t)U(v).

The above theorem indicates that it might be reasonable to consider
*Some concave uncertainty functions, other than the famous Shannon

k
entropy function U(g) = - = §jlog§j. An example of suchafunction 1is
J=1

(5.17) U(g) =min(§1,...,§k)-
Using this uncertainty measure the information in an experiment becomes

(5.18) 1 (EL,%;U:] = min &, - [ min (§1fi(x))dx.

1<i<k * "1<1i<x

An 1mportant class of concave uncertainty functions can be derived
from standard statistical decision problems., In a statistical decision
problem there is glven a decision space A and a loss function L(8,a),
assumed to be non-negative and bounded on @ x A. Let
(5.19) U(E) = 1inf. g £.1L(6,,a).

| agh j=1 J J

This is the risk from the optimal decision. Since it is known that the
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above U(E) is continuous and concave on =, E [P(E(X))lé] is the risk
resulting from the Bayes decision procedure using the observation X,
and the information I [é,g;{a is the reduction in risk that can be

attained by performing the experiment 8.
0, if j = a

If we take, for example, A = {},...,é} and L(e,a) =
1, it j # a

then (5.19) yields (5.17) and (5.18). In particular if k = 2,
(5.18) is the reduction of the risk of Bayes decision rule deciding

1 and f2 with usual zero-one loss:

Z[[E,E;éa = min(El,ﬁg) - & i fl(X)dX + &, [ fg(x)dx ‘
2 <€1

— —— —

1 5o 1 &

between two densities f

()

Sequential sampling rules

Let Efbe an experiment with observation X that can be replicated
independently and indefinitely. Then a random sequential sample of
observations Xl’ X2,..°, each Xi having the same distribution as X,
can be obtained.

Consider the sequential sampling rule whereby observations are
taken as long as U(§(Xl,...,Xn)) > § for some given 8 > 0, and sampling
stops as soon as U(E(X »e++5X )) <6 for some value of n. This sampling
rule yields, in some cases, reasonable statistical procedures.

Example 5.3 Suppose that ® contains only two points, and éi is a

dichotomous experiment (5.3). Suppose that U is a continuous, concave
function of &, with U(0) = U(1) = 0. Then, for any a priori probability
g, for 8 = 1, sampling as long as U(gl(Xl,...,Xn)) > & is equivalent

to sampling as long as §; < gl(Xl,...,Xn) < &, for some 8, and &,,
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which in turn is equivalent to sampling as long as A < T fg(Xi) < B.
i=1
11

Thus the sampling rule is a Wald sequential probability ratio test.

Example 5.4 Suppose that ® = (-»,o) and £(g) is the normal

experiment defined in Example 5.1. Suppose that the uncertainty

function U(p(8)) for the prior distribution p(§) over ® is taken as

= - e ide = _(6-m)°
U(p(8)) fp(6)logp(8)ds. 1If we consider p(8) 1 eXp{.( )‘}

Norm v ov
=19 e—m>, say
A\ v 4

p(6 1% s...,%) = p(6) 7%; p(x,18)/ [p(e) TT p(xile)de

o

i=1
1/2 (o [m + X Lo+ 1
= 1 + 1 ) T2 ‘?“_ T2 .
v o /n -1/2

1 + 1

. EN - T

v o~ /n

then U(p(8]Xy5...,%x)) = 1 + log WE" 1 + 1
Lo} n el m VT ;g/—n

Thus, for a given prior distribution p(s), sampling as long as

U(p(ele,...,Xn)) > § 1s equivalent to taking a sample of fixed size,

Example 5.5 Suppose that @ = [p,i] and dE is the binomilal

experiment defined in Example 5.2, Suppose that as in the above
example, U(p(8)) = -fp(8)log p(p)de. If we take p(0)
ea_l(l-e)b'l/B(a,b), then p(elxl,...,x )y =

n

n n n n
823 *171 (1-.9)P 3571/ prass x,, btn-5x,). It is easily shown

1 1

that if y is a B(r,s)-distributed random variable, we have as its
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H(y) = -[p(y) log p(y) dy

= log B(r,s) + (r+s-2)y(r+s) - (r-1)4(r) - (s-1)4(s),
where y(r) is defined in Example 5.2, and

H(y)e~ 1 + log V2 + 1 log rs , for sufficiently large r,s.
2 2

(r+s)?
Hence, using this result
n n
U(p(8]xy5...,x)) =logBla+ 2 x,, b+n -3 x,) + (at+tb-n-2)¢{a+b-n)
1 q] 1 1 1 1
n n n n
- (a+z x, -1)¢(a+3 x,) - {(b+n-3 x, -1 (b+n-2 x,)
11 7 1 11 7 1

1 n
~ 1+ log N2on + 1 log (a+3 x,)(b+n-3 x, )
7] 7 1t 1t
(a+b+n)3

The sampling rule whereby observations are taken as long as
U(p(elxl,...,xn)) > 8 can be described graphically as follows. Suppose
the prior distribution over @ is B(ao,bo). Then, in the ab-plane,
start at the point (ao,bo) and after each observation move one unit up
or to the right according as the observed value is 1 or O. Stop
sampling as soon as the curve ab = (a+b)36', for some appropriate §'>0,

is crossed (Fig. 5.6).

Figure 5.6
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PROBLEMS

(1) TFor binomial dichotomous experiments, we call the quantity

0(81,92) - max  I( & (91,92),§), the capacity of the binomial
0< ¢< 1

dichotomy, and the maximizing ((*,1-(*) the matching input probabilities.

Show that ¢¥ satisfies the equation

tog 1-8ex _ s(8,) - 5(8,)
e"é Yo = ¥y
that is,
C¥F = [82 - (1 + exp 8(92) - S(Ell) _} (92 - 91).

(2) TLet EX = [(%,B), (fl(x), fg(x)ﬂ and 5Y = [(Y,C), {gl(y) :8(¥)

be two dichotomous experiments. If
IX(fi:fs—i) z IY (gi:g?)—i)’ i=1,2,

then is it true that

I(EX,Q) =>I(£Y,€), for all 0 = ¢ <1 ?

If not construct an example.

(3) In the above problem, let f,(x) and gi(x) be binomial densities

i

with parameters a;, by (1 = 1,2) with a, < a,. Determine in the unit

square the following sets of points:

(a) I(al ag_i) > I(bi: b3_it), i=1,2,
(p) I(ay: ag) > I(by: bc), i=1,2
where a. = Ca; + (1-¢)a, and b = Cby + (1-C)Dby

(e) T(Ey,0) 2 1(&y,0), for all 0 < ¢ < 1
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(4) Let the p.d.f. of the input symbol be
p(G):ae‘ae, 0<8<uw
where a is a given positive constant.

(a) If the channel is given by -
1/¢e, if |x-8| < e/2

p(x|e8) =
0, otherwise,

show that the information provided by this experiment is

o0
1 - % e I8
ae 6 j=1 J'é_
(b) If the channel is given by
p(X’IG) = __l__ EXp —(X-8)2 P -0 < X < o ,

\Zr o 26°

show that the information provided by this experiment is

2]

-1 (1 + v2 + 103(2w2)) + exp —Y2 >4 p(j
Pl —2) j=2 ”

. J (3-1)
where Y = a0 and
1 X .3 = -t2/2
pj = [ e .d@J(_g_c) 3(x) = [ e dt.
0 o’”’ X “—2—
i

(Rapoport and Horvath, 1960)

(5) Let é(n) be n independent replications of a common experiment 8 .

(a) For E: e(o) in Example 5.1 and p(8) = 1 exp —§9~m22}, show
vVorm v v

that I(E(n),p(e)) = 1 log (1 + v Y.
2 =
/n
(b) For E = binomial experiment with ® = [O,ﬂ in Example 5.2 and

p(8) = Ga'l(l-e)b'l/B(a,b), calculate the value of I(e_(n),p(e)).
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(e¢) 1In (v), let U(p(8)) = inf. Ip(8)(2-8)2dp, 1.e., the risk of

Bayes point-estimator of 8. Derive the seduential sampling rule which
is equlvalent to continue sampling as long as U(p(G[Xl,...Xn))> 6.
(6) Let £= [(%,B), fl(x),fQ(x)}] be a dichotomous experiment. Two

densities fl(x) and fP(x) generate a parametric family of densities

F = fg(x) = Cfl(x) + (1-C)f2(x)] 0<¢c< 1}

(a) Show that the Fisher information ((i.e., intrinsic accuracy) for F is

I(C) = J _ 32 log fg(x{} fg(x) dx

ac®
2
= (fl - £,) /fng = ll-g (i - fflfg/fgdx> .
(b) Let S(¢) = [ f,fs/fedx. For
f(x) = 1 exp | -(x-uy)° (1= 1,2 5 py < W)
JEW ¢ 20
show that

o0}

S(0) =3 (-1)™ exp {M}é G_gc)m ? (@%ﬂ)d o ﬁ)
+ %(—5“ ey -3 o))
y) =

o0
[ &% /gl dt and d =

where §( 5 = M Show that for given d,
J Jﬁ“ —a
S(€) is symmetric about, and has a unigue minimum at & = % .
(Hi11, 1963)
(c) Show that if we take U(() = ¢(1-¢) in (5.16), then

Ei Q'ﬁ] €(1-¢) (i - fflfg/fg dx) - g2(1_€)21(g),
where I(¢) is the Fisher information defined in (a).
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(7) For any concave uncertainty function U(8), prove the following
statements,
(a) E[U(8(X))|&] is concave in 5,
(b) Let e(n) be n independent replications of a common finite experiment
€. Then

1e(™ 8507 = u(g) - ELU(8(X),...,X ))[8]

is an increasing function of n = 1,2,... .
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6, Comparison of experiments.

Let EX = (_—(%,B), {p(xle)|ee@}] and EY = E('Yj,c),{p(yle)lee(@}] be

two given experiments with a common input space ®, If

1(Ey p(8)) 2 I(Ey, (o)) for all p(),

then we say, following Lindley (1956), that(EX is not less informative

thaan and write this symbolically as 6X Z_EY' The relation EX Zgy
defines a partial order; that is, two experiments will not generally be
comparable, but the relation is transitive. The more-informative-than

relation can be defined in the familiar way and will be denoted by
EX >Ey-
Example 6.1 Let 0 < { <« 1 and k, m and Ck + (1-C)m be three positive

integers. Then by the corollary to theorem 5.1

cc(gk+('1—c,)m) S cﬁ(k) N (1-c)€(m).

Thus the weighted average of the two experiments each consisting of a
fixed number of independent repetitions 1s not more informative than
one experiment which consists of an average number of independent
repetitions of the two experiments.

Example 6.2 Blackwell's 2 x 2 Table (Blackwell and Girshik, 1954).
Consider a large population in which each individual has or has not
each of two characteristics H, S and in which the proportions h,s of
individuals with characteristics H,S are known. What is not known is
the proportion w of individuals having both characteristics; we take

8 = W/h as an unknown parameter. We assume without loss of generality,

that 0 < h < 8 < 1-s <1-h < 1. The statistician might consider four
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experiments £(H), E(ﬁ) ;& (S), and E(S). The performance of the experi-
nmwn;EX}H, for example, is to observe 1000 individuals with characteristic
H and count the number of individuals possessing characteristic S. All
the four experiments are binomial experiments with @ = [Q,i]and p(xle)

is a binomial density with parameters Ca + (1-¢)8, where O <( <1 and

a 1s a constant proportion independent of 8 but varies for each

experiment.
S S Total
H W h
H 1-h
Total| s 1-8
Let
X 1l-x
py(x]8) = a*(1-a)
e 1-x
py(xlg) = 87(1-8)
and let

£y = B%,B), [pi(x[e)l 0<8 1}] (1 = 1,2),
r = [(3,(",}3), {p(x]e)l 0<8 < 1}] is a binomlal experiment with
parameters Ca + (1-¢)8 then &= (& #(1-¢)€, and by theorem 5.2
I(E) = (c€#(1-0)€ L) 2 ¢ ) + (1-0)I(E )
= (1-01(&,) s (&)
because I(SJ) = 0,

A

since ¢ = 0 for& (H), I(E(H)) is greatest among those of the other
three experiments. Thus we find that the experiment associated with

the rarest characteristic is most informative.
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As stated in the previous section the amount of information provided
by an experiment has been defined by the Shannon information transmission
through the channel:

T(03x) = H(8) - H (8) = [p(8)I(p(xle):p(x)|p(8))ds.
Thus we might be able to introduce the concept of strongly more

informativeness as follows: Let é;i = [E{Xﬁ,Bi),{bi(xi|e),€€éi}(i=1,2)
be two given experiments with a common input space @. 1 is said to

be strongly not-less informative than £2 when

[ p,(x|8 )log pl(X'eo) dx = I(p,(xl8 ) :p,(x)]|p(8
110 To(87p, (X187 40 1(x180) 2, ()]

> I(py(x]8,) :ps(x) |p(0)) = [o,(x|6,)1og Ipp2 ;;lexlq) o

for all 8 _€® and p(e)

This relation will be written symbolically as f: >éi

Sufficiency of experiments.

Following Blackwell (1953), é?l 1s said to be sufficient for 652

with respect to ® and denoted symbolically by é\ & &,(0) (or simply
by é? — & ) when there exists a stochastic transformation of X
(given by a set of distribution functions {é (z]x))l-o < x <{3‘ to a
random variable Z such that, for each 6€0, Z(Xl) and X2 have identical
distributions. Roughly speaking, that 61 1s sufficient f‘or’CS2 says
that a random variable with the same distributions as X2 can be
generated from X and an auxlliary randomization.

Let é?. [' {p i]e)|ee®:},-9€;1 (i=1,2) be two given experi-

ments. By our simple notation used in the previous section we can state:
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é§l is sufficient for 5?2 when there exists

(x2lxl) = Indep. of 8; p2(x2|9)5_f p(X2|X1)p1(Xlle)dX1’ for all 8

1
and X2.

R (s
Theorem 6.1 If 51%—_ 52 then C(‘l 2)52.

Proof. For any 6 €@ and p(8) we have

. = |e
Tlpp(x15) i2p() 1p(8)) = f p(rp]agr08 ] p2(§2|e>de 2

fdx (}p(x lx pl(xlle )dx‘)log {E(Xg:§1;§1§z1;ZX dxlix
Xol X )1P1 (X

ax, [?p(x2|xl)dzj {pl(xlleo)log E%é;%%;Qlj}

i pl(xlleo)log pl(xlleo) dx
P1t¥

1
= I(pl(xlleo):pl(x)lp(e))

When the two experiments are both finite experiments with a common
input space, we have a similar theorem to .the above for any concave

uncertainty functions. Let

Ex = [96 B), {£,(x),. "fk(x)}]
gY _ [(y,c), {Sl(Y)""’gk(yi}]

be two finite experiments with a common input space 0 = {i,...,%}.

Theorem 6,2 If éixf—f\, then for any concave uncertainty function
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U(E) defined on =

I[€X’§3U] 21 [(FY,E;U] , for all Eex,

(DeGroot,

1962)

In order to prove this theorem we shall prove the following lemma.

Let B be as before the set of all probability-k vectors.

Lemma For a fixed E€= we define, on the set

A= {kal""’ak)lal""’ak 2 0!, a non-negative real-valued function

W(a) = (a'g)U(a@ g):

where a*& 1is the scalar product of the two vectors, and a & € is

defined by
(algl,..., ak§k> , if a-g 4
a@g-) 2F 2%
(130:---10)1 i_fa-g:

Then if U(€) is concave on H, then W(a) is concave on

Proof. Take any a,b€A and any constants o and 8 with

Then since

E @ (aatpp) = [ #8157 + Bby5y e ) (if
a(a-8) + B(b-8)

a(a-g) a®Eg + B(b-8)

0]

0.

A,

O<a=1-8<1.

denominator # 0)

b @ &

a(ag8) + 8(b-8) a(a-€) + a(b-§)

it follows that from the concavity of U

(a(asg) + B(b-5))U(E @ (aa + 8D))
«(a-8)U(a @ &) + 8(b-E)U(b @ 5)
aW(a) + sW(b).

W (aa + BD)

v
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Proof of Theorem 6.2 It suffices to show that E[?(g(X))jé];#?(%(Y))]%]

for all €€X. Since EX&-EY’ there exists a p.d.f. p(y\jx) independent
of i, such that

gi(‘y) = fp(S’|X)fi(X)dN(X), a-eo(\)): (j-:l:---:k)'

Thus we have for any &€=
B[u(s(v)[¢] - [(5-2(y) U/;lgl(y) beees BB ) ag(y)

'\r;.é'(y) £-Z(y)

Ju(g(y))dy(y)
W fp(y]x)P(x)du(x))dav(y)
‘W(fp<y'x f(X)du(X%p\le)dM )(Ip(ylx Ydu(x )dv(y)

(because W(aa)= aW(a))

> [ av(y)[W(E(x))p(y!x)du(x) (by the Lemma)

[ W(E(x))an(x)

B(u(s(10) 5] .

Example 6.3 Let €(o0) = [(—oo,oo), {p(XIG)I-OK 8 < oo} ,(—oo,ooﬂ be a

normal experiment, where p(xle) is a normal density with mean 6 and

variance o-. The value of o° is assumed to be known. If o < o, then

6(0‘1‘)@ (C(og). The proof is as follows: Let :;J(3=1,2) be the output
variable in the experiment (Q, (cj) . If u ils a randoml variable independent
of Xy and has a normal density with mean O and variance Op = 075 then

Z = x, + u has 1dentlca1 distribution with x,. Thus 6(0 )2—8(0

We have 5(01) > E(cr2 by theorem 6.1, and moreover 6(01) > E (02

from example 5.1.
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Example 6.4 If in an experiment the input space and output space are

both finite, the experiment will be characterized by a ﬁtochastic matrix
1

P = (pijl i=l" ° "k.; J.=1’- . ‘,Nl) ; all pij z O’ jil pij = 1.
Let N,
Q = (qijl i=1)-oc’k; J=1’|a',N2); all qij _Z. O, Jil qij ; 1,

be another stochastic matrix with the same k, then the experiment with
P is sufficient for the experiment with Q (simply written by PZ Q),
if and only if there exists

(6.1) stoch. M ; PM = Q.

Nl X N2

Now let the experiments be binomial dichotomies:

1 57 1 1
P = Q =
8y 1-a2 4 b2 1-b2
with 8y < a5. Then P~ % exists and
_1 1-a, -(1—a1) b, 1-by
P Q= _1
al-a2 -a, al b2 1—b2
bg(l—al)—bl(l-az) (1-a1)(1-b2)—(1—a2)(1—b1)
~ 8p-8q =
ayby-a,b, ag(lubl)-al(l-bg)
ae—al a2—a1

has row-sums 1, Non-negativity of the four elements of this matrix

yields
1-a 1-b I T
(6.2) 1—a2 < 1 2 | < EE )
b, ~ 1-b



Wwhich is a necessary and sufficient condition that PZQ in this case.
For fixed parameters 87 < ap, the shaded region and the dotted region
in Fig. 6.1 show the sets {kbl,bg)lPﬁf-é} and {(bl,be)lP‘% Q:},

respectively. The experiment corresponding to (01,02), in the figure,

for example, is not comparable with the experiment with P.

— 5 by

Figure 6.1

Comparison of experiments characterized by stochastic matrices

We shall discuss a simpler case where the input space @ and the
output space';E are both finite, so that the experiment é? is
characterized by a stochastic matrix

P = (pijl i=1,...,k; j=1,...,N),

Let A be a bounded, closed and convex subset of Euclidean k space,

A fixed sample-size decision problem with finite states of nature and

finite sample space is specified by a pair (P,A): a decision function

(d.£) is represented by a N x k matrix
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where each row-vector ( ..,&k(j)) is a point of A, and represents

\Ll(N),--- » 4y (W) |
1,03),.

the loss vector when the sample point j is observed and the d.f. D used.
N
Since (PD),, = = p.jb.(j) is the expected loss of D when the true state
11 j=1 1371

of nature is 1, the risk vector of D is

(6.3) diag. (PD) = ((PD) (PD)

11°°**7 kk)'

Let
B(BA) = {Fisk vector of D| all possible ﬁ} :
It may be shown that in any decision problem (P,A), the set B(P,A) is a
bounded closed and convex set containing A,
Let P,Q be any stochastic matrices with the same k. We say that P
is more informative than Q, written P © Q, if

B(P,A) o B(Q,A), for all bounded, closed and convex A.

Theorem 6.3 Let

P = (pijl 1=1,...,k; J=1,...,N;),

Q (qij, 1=1,...,k; J=1,...,N,)

be two stochastic matrices with the same k, Each of the following five

conditions is equivalent to P D Q.

(1) (¥ C );3 stoch, M ; diag. (PMC) = diag. (QC).

N2 X k Nl X N2
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(2) J stoch. M 3 PM = Q
N1 X N2
(3) (¥¢c ) Eﬂ stoch, M ; Trace (PMC) < Trace (QC).
N, X k N. x N B
2 1 2
N,y N, _
) 2 Gy _Pig,., _Pri) x> oz @ )e| My oL, quj ,
=1 1 3 p. 3 . = 3=1 d S 4. .
J > Pyg 2 Py 3 J 1 : 9 5 : 9 4
for all continuous, convex (&) on =,
(5) E} stoch. T 3
N2 XN
1 ™
.
[ pys , ] pklﬁw 911 1
S S S q..’ "t ¥ q ;
3 T T P11 T il T 11
T —
N, x N = »
2 1 p p a e!
Ny , KN, 1N, KN,
> D= 2D Z d 2 2 q
p il 1 N 1 Ny $ N
— — L vy
and
(3 QyqsenesSAiyg ) = (SPsvs... 2D,
R N, 7 117 rgTaN )

We note the following three facts.

(a) Condition (2) says that P& Q. Hence the theorem asserts that PoQ
if an only if P& Q.

(b) Condition (3) also has a simple interpretation; for trace (QC) is

n times the expected loss of C when the states of nature are equiprobable
in decision problem (Q,A). Thus P D Q if and only if for any A the

Bayes risk when the states of nature are equiprobable in (P,A) is less

than or equal to the corresponding Bayes risk in (Q,A).
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s

(¢) If we write EC (1,...,1), U= -9, and define T [P,EO;U] =
U(g%) - E [h |§:] kas ink (5.16), then condition (4) says that P 2 @
if and only if

I [§,505Ui} > I {é,éo;U] » for all continuous, concave

uncertainty functions U.

Proof of theorem 6.3.

We proceed as in the diagram.PDQ=f~m*=~ (1)

A
2N (3)

(2) &e—=

(5) :::::}( )
(2)=7(1)=>(3) is evident. PoQ=(1):
Let A be the convex hull determined by the rows of C. Then C is a
possible d.f. in (Q,A). Since dny 4.f. D in (P,A) is an N, X k matrix,

each row of which is a convex linear combination of the rows of C,

E] stoch. M 3 D = M C

N1 X k N2

X k
Choosing D with diag (PD) = diag (QC) yields on M satisfying (1).
(1)—P P > q :

Let A be any bounded convex and closed set in k space, and let C

be any d.f. in (Q,A). MC is a d.f. in (P,A) and from (1)

= stoch. M 3 (risk vector of C in (Q,A)) = (risk vector of MC
N, xN
1 2
in (P,A)) € B(P,A),

Hence we have B(Q,A) < B(P,A).
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(2) == (5):

From (2) we have

Nl
3 S = i — . - N .
jil Pisfp = Yy, (1=1,...,k; 2=1,...,N,)
2 Ps M, N 5 p. ...
n', fqi{l _ j lJ j{a N 21 pi,j . 1 ij ‘j{’
. - . = 3 3 D zp
i=1

i=
Let 2- i} = t&& B tLJ’ then (tLJ) is stochastic, and satisfies (5).

FOI’, —\
D q
rpll Pip 1N;\ Fqll 40 1N,
Zp 2 D. 2Pp. L2 24, 2 a,
i il T “i2 1 1Nl 1 u B i i2 1 1N2
. . T' =| .
Ni X N2?
' D 4 . a
Pyq Pro il % Ueo kN,
sp Sp, 3p ' Zq. zq 2q
g ¥ P12 . iNl) et T2 i mgj
N2 N2 Zpijmj{j \"
b3 (Za.,)t, .= = (3a.,) i 3 D (3=1, ,NL)
=1 1 Ty =y, 1 1 !
i
5) == (4)
N3y N N
P P 2 1
o (f_pij)“’ it ¥ s=-) =3 (3ay,) = ty;of Py
; 1d y )] 4=1 1 J=1 3 py
1
Ny
> = (2q5 )0z (__P1g)
¢=1 1 J \ 2p 13’
1 1d
Yo a q
= b (Zqi{,)cp i{, 3 I{'L
t=1 1 2y ?qm



(4) =2 (3):

K
Let C be any N, x k matrix, and let ©(§) = ~ min = ¢, §

1<paN, 1=1 171
Then we can show that N
2
min trace (QVC) = - 2 (3q,)e 9 % 5
o s . Z 2 v e 0y Z
stoch, V N, xN, o 9= T : Yy
In fact, for any stochastic V,
N2 X Nl
: x - Vo N No : ) No  x 7
trace (QVC) = = = = q,,v,.c., = 3 (3q. vy, ey 1]
1=1 =1 =1 9 3 &1 4y RSN, 9k &% =q,
i
\
N2 N2 o
>~ 3 (Bay) 2 vy, e %y I
J=1 1 2=1 Zay 0t Tagy
i i
N2 // \
== 2 (2 q )] 9 ;
J=1 i {2 aq. AN
R
and it is clear the equality holds for some appropriate V.
Similarly we can show N
1
min trace (PMC) =- I (= pij)m Pij Prj
_V 3 ,Il.’
stoch. M N, x N, J=1 1 > Py = Py

so that by (4)

q&n trace (PMC) < q&n trace (QVC) <  trace (QC).
(3) == (2):
Consider the O-sum 2-person game in which
I chooses any matrix C with all O < Cij§ 1,

N2 X k
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IT chooses any stoch. M

with payoff trace {KPM—Q)%} :
Since the pure-strategy spaces in this game are both bounded, convex and

closed, there exists a value Vo and the optimal strategies CO, MO ; 1.e.

-

trace {(PMO—Q)qj < v, £ trace i(PM-Q)CO} s for all C,M,

Hence from (3), v, £ 0, so that trace (PMO—Q)a} < 0 for all C with

A

0 <e,s <1, With U = PMO—Q,

ij =
kMo
z Z U,:C.. <O S, all u < 0.
1=1 j=1 1731 = 1y =
N
But § u, , = 0, hence u, ., = 0 follows,
3=1 1J 1J

Comparison of dichotomous experiments,

€x = |Xm), {nr (xﬁ],
Ey [(’g,c), [gl(y), gg(y)ﬂ

be two dichotomous experiments with a common input space @ = {i,é}. It

Let

(6.4)

1l

is required to decide which of the two input symbols is transmitted, or
equivalently which of the two hypotheses is true, on the basis of one
observation, either of X or of Y, with the usual zero-or-one 1loss.

As an example of a situation in which this type of question may
arise, consider the problem of deciding between utilizing a use test
as against a specifications test for acceptance of a lot of manufactured

items. A large lot of items has been produced and a decision is to be
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made between, say, Py and P, as being the proportion of defectives in
the lot, Let X =1 or O according as an i1tem selected at random is
defective or not when we subject it to a use test., Let Y =1 or O
according as an item selected at random is defective (i.e., it fails
to meet certain specifications) or not, when we subject it to a
specifications test., If the conditional probabilities

o= Pr*{Y’: 1] non-defectivé} and B = Pr [.Y = ol defectivé} are

known, then our decision problem is described by the diagram Fig. 6.2,
where fi(x) (i=1,2) and g,(y) (i=1,2) are all binomial densities
with known parameters p, (i=1,2) and pi(l-e) + (l—pi)q (1=1,2),

respectively,

Figure 6.2
Now let RX(Q) and RY(Q) be the Bayes risks with respect to the a
priori distribution (¢, 1-{) when performing experiment E:X and E‘Y’

respectively. Hence for éiX

(6.5) Ry(C) = ¢ fe{x) g £ (x)an + (1-¢) fe(’f‘) N fo(x)dr.
F (%) ~ T-C J (%) = I-C

It is of some interest to investigate conditions that hold true for

Ry £ Ry (1.e., RX(Q) < RY(Q) for all 0 £ ¢ < 1). Interest in the case

of one observation may seem curious; but it is not so. If for one

93



observation RX < Ry, then for any number of observations, any set of
actions and any loss function, consistent use of X will never yield a

greater Bayes risk than Y.

Let Fl(u) and Fe(u) be the c.d.f.'s of fe(x) under H, and Hy,

Tl[x]
respectively, i.e., F,(u) = f f.(x)an (1=1,2)
1 fg(x) 1
Then since
u
(ﬂ Fg(u) = |f vdFl(v)
(6.6) ©
u
Fl(u) = f ng(V)
0
v
we can write, with n = C , that
1-¢
(6.7) Ry(€) - ¢ . ?(u-n) dF, (u) = ? min(u-n,0)dF, (u)
' 1-¢ o} 0
T] 00
= [ (1 - g) aF,(u) = f min(u-n,0) dF2(u).
o) o u

With the analogous definitions of c.d.f.'s of gg(Y) , we get the
g, (Y)

parallel expressions for the risk associated with Y.

Theorem 6.4 Let E\X and éTY be two dichotomous experiments defined by

(6.4). Then

(i) each of the following two conditions is equivalent to RX = RY(i.e.,

RX(C) = RY(g) for all 0 < ¢ < 1).
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(1) fg/f1 and gz/gl have the same distributions under H,

(2) fe/f1 and gg/g1 have the same distributions under H,.

(11) Let Fl(u) be the c¢.d.f. of fz(x) under H; and let Gl(u) be the

(%)
c.d.r. of 22Y) nger Hy, i.e.,
L
Fq(u) = fg(i) ] £, (x)an (x), Gy (u) = gz(y{ g (v)au(y)

Then RX =< RY if andonly if

(6.8) Z Fl(u)du > ? Gl(u)du, for all 0< n < o,
O
(Bradt and Karlin, 1956)

Proof. (1) The sufficiency is immediate. To show the necessity,

suppose Ry = Ry ; then by (6.7) for all 0 < m < o,
o0

(%) Z min(u-9, 0) dFl(u) = [ min(u-n,0) dGl(u).
o

This equation holds with the common integrand replaced by

min (u-a,0) - min (u-a-1,0), (a >0; n=1,2,...).
n

Thus we have in the left-hand side of (%)

AN

= i (u-a-1)dr, (u) + 1 [ dF (1) =
n

a<u<ga+l n u<a
T n
1 / (l-n(u—a))dFl(u) + Fl(ail
n a<u§a+i

n

for all n. Hence,
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Fl(a) + [ (l-n(u-a))dFl(u) = Gl(a) + [ (1-n(u-a))dG1(u).
a<u§afl a<u§&hl
n n
Letting n - », we get Fl(a) = Gl(a), i.e., (1).

(i1) Integrating by parts we get

Ry(€) - ¢ _ T “
= é( n) dF (u)
- [Eu-n)Fl(u) " Y R (wdu = - R (wau
Ju=o o o

Note that 1—F1(u) = fl(x)dk is the error probability under

fe(X{> u/(1+u)
fl(x) 1/(1+u)

H

1 of the Bayes test with respect ma( u o, li ).
u

1+u
The following theorem shows that the experiment with uniformly

smaller Bayes risk 1s more informative in the Shannon-Lindley sense.

Theorem 6.5 Let 'SX

and é\Y be two dichotomous experiments defined by

. (3
(6.4), If Ry <Ry then &y > &y, 1.e., for all 02 ¢ g1
(6.9) o Ix(fy:fe) 2 Tyley iee)
< Ix<f2:fg) 2 IY(gQ:ggi)
where
£o= ¢ty + (1-¢) 1y, g = gy + (1-C)e,.

Proof. Let Gl(u) and Gg(u) be the c.d.f.'s of ge(Y) under H, and H,,

g, (Y)
respectively. Then from the analogous relation to (6.7) and the

assumption of the theorem, we have
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8

7min(u—n,0)dF1(U) s
0

O —

min(u—n,O)dGl(u), for all 0 < M < o,

Since any continuous concave function o(u) on [?,&) is unifofmly

approximated by
h
l(U) + 2 a.min(u-'ﬂi,O),
1=1 *

where 1(u) is a linear function and aj,my >0 (i=1l,...,h), and since

SudF. (u) = [ udG, (u) = 1, we have

1

(
? w(u )dFl( u) < w(u)dGl(u), for all cont..concave o(u).
o

00— 8

¢+ (1-¢)u)

&(
Iy (fy:f y _ xy{ _ % _O)u)aF
X*717¢) = E {log fz £ log(¢ + (1-¢)u)dFy(u)

In particular for o(u) = lo

2 - }o log(¢ + (1-¢)u)dGy(u) = Elilog gl(Y)} = Ty(ey:g)s

o) glei
while for o(u) = -ulog u
C++ (1-0)u
I(f,:5.) = Ediog 20 1o T u dF, (u)
x\io g) Q{Og —(-X-)-fc } gu o8 SRt

oo

1 aG -5, Y10z 220 A 1 (g.:p.).
T ot 95 e )

These two inequalities yield the conclusion of the theorem.

Theorem 6.6 Let E and é? be two dichotomous -experiments defined by

(6.4). Ry < Ry, if an only 1if

[Ex,g 3U > I[EY,g Ut:] for all continuous concave

uncertainty functions U, where E° 2 2) is the uniform prior
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probability-vector (Sakaguchi,1957).

Proof., As is seen in the proof of theorem 6.5, Ry 2 RY is equivalent
to the universal inequality (6.10). Replacing the uncertainty function

U by the function () of the prior probability ¢ for Hl’ we have

E {h(go(x))lgéj = % / m(; (i%ii)(x)) (fl(x)+f2(x»dx
1 2

N

1+ fa(x)°

/o 1 ) ) a
W, (x)/T(%)) \  T(%) )

N =

Z (1+u)m<’ 1 > aFy (u).

1 + u

N =

Thus, in order to prove the theorem, it suffices to show that (6.10)

is equivalent to
[ve]

(#) (l+u)m(il_) dFl(u) < Z (1+u)®( 1 dGl(u), for all cont. concave

0 +u 1+u

w. Now, if ¢(u) is concave on (0,») then the same is true for

1+u

(1+u)o lA). Hence, (6.10) implies (*). Suppose, conversely, that (%)
1s true.

min(a-u,0) (0O<a<l) we have

hen, in particular, for o(u)

(1+uw)opf 1 > = (1+u) min(a - 1 ,0) = a min(u - 1l-a, 0),
14+u 1+u a
so that

[0.e] (o0}
{ min(u - 1-a,0) dFl(u) < [ min(u - 1-a,0) dGl(u), for all O<a<l,
O a (@] a

This inequality implies (6.10), as is shown in the proof of theorem 6.5,

Example 6,5, Letqfxzbe a binomial experiment é?(al,ag), with 0ga;<a,<l.

Since, under Hl’ f2<X) assumes the values ig and 1—a2 with probabilities
£ (X) a 1-a
1 1 1

8, and l-al, respectively, we have
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0, if 0 < u< 2,
. 1-al
Fy(u) =4 1-a,, 1r 1% < u <P
1-a1 al
1) if _a_2 é u < ©,
4
so that
0, 1f 0 <n <%,
- l-a1
?Fl(u)du =\ (1-a))q -(1-a,), 1r 7% < n 222,
o l-a. — a
1 1
n-1, if Eg =N <o
- a

[

Thus if é;(bl,be) with observation Y is another binomial dichotomous

experiment with 0 < bl, b2 <1, then RX < RY if ardonly if

1-a i:Eg < Eg a
2 < 1-by T b < 2
I-a, i T a.
1 - 1
P2 < P
bl l—b1
i.e., (6.2) again. (Fig. 6.3).
€Xﬁ
° 2 I 2 %
1—al l-b1 1 aq
Figure 6.3
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For fixed parameters O < 8, < ay g 1, the shaded region and the dotted

region in Fig. 6.4, which is the same as the previous Fig. 6.1, show the

/\. ! " .
sets {(bl’bz)lRX < RYZSand iﬁbl,bg)lRX ZRY,E’ respectively, The

experiment corresponding to (01,02) in the figure, for example, is not

comparable with the experiment El(al,az).
1 ,

risk

1
Figure 6.4
-IX(1:2)
The curve connecting the points (1,1) and (0,1-e ), and the
: s =TIy (2:1)
other curve connecting (0,0) andie ,1), in Fig., 6.5, determine

|
the two sets i(bl,b2)|IX(1:3~i)g IY(i:B—i),izl,Q_j and

{kbl,bg)!IX(i:3-i)§ IY(i:3—i),i=1,2:}. These are described by the
shaded region and the dotted region in Fig. 6.5, respectively.
Comparing Fig. 6.5 with Fig. 6.4, by theorem 6.5 we find the following

fact: Let é?X and é?Y be two dichotomous experiments. If RX < RY then

IX(i:3—i) > IY(i:3—i) (i=1,2). But the converse does not hold true.
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L. (213
(o Txl2 1y .
—7——=(1,1)
/,:/ = :" /4
..b2 ‘,,«,/’ ;/
ST (1:2) 5. 0 '
(0,1—8 X )"
(0,6) N
__—ﬁ 1
Figure 6.5

Example 6.6 (Bradt and Karlin, 1956)

We now consider the case in which both X and Y have normal distributions

under each hypothesis, Let the situation be given by

Exp,
Hyp. é_‘X 6‘1’
(¢) Hy N(0,1)  N(0,1)
(1-¢)H, N(u,0%) N(m,v)

where y,m > 0 and 02 > 1.

The Kullback-Leibler informations are

1 /. 2 2. .-
IX(l:E) =5 (}ogo -1+y +1)
o

IX(2:1) % (-1ogo2 -1+ 6° ue)

and those for Y with the obvlious substitutions. Thus we get
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Iy(1:2) > Tyl

!\IX(E:l) > IY(

We now consider the risk functions.

g, (¥)

1:2), if and only if m?gh (V)EV<;Og02+H2+i\-VlOgV‘ly
- 27/

c

2
2:1), if and only if m2§h2(v)eu2 + 02—(V+1og o).

v

Since gz(y) > n is equivalent to

| v+ m |> jEL_J;P+(V—1)log@n2) , if > 1_ exp{:mg/(Q(v—l);} and v>1,
' v-1

v-1

Vv

the Bayes risk based on Y is

Ry (C) = ¢ g, (y)aw + (1-C) (y)au
¥ gg{y)>n 1 e gg(f)<n g2
g, (v) g, (v)

V- v-1
\

where 1 = J?r'dn? + (v-l)log(vnz) , and

(n="_C_)

(Pr {]Y+_m_| > 1| Hl} + (l-g)Pr) ¥+ m |< 1] H2}
1

v-1
I . . Y
Ry(C)-C _ _ipr ) |v+ m [51|Hi3 - Pré |v+ m | < 1|H, |
1-¢ v-1 — . ©ov-1 _/
2
1 my\ | -t°/2
=f{-n @(t-m)+_l_§i/t_ wl)}dt. (8(t)=e ).
- oW v aw ) B
Comparing this expression with the obvious analogue for X it can be
shown that
(1) For v > 1, . A
RX < RY, if and only if v< 02 and m2§h3(v}5(v—1) W +1ogg_)
(*) 0_2_1 v
2 . 2
Ry> Ry, 1if and only if v> ¢~ and m Zh3(v) _/J

(i1) For v < 1, neither Ry < Ry nor Ry > Ry can hold.
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The results obtained may be summarized in Fig. 6.6. One of the somewhat
curious aspects of the results is that no matter how great m-u may be,

the X having the smaller variance under H2 cannot yleld RX < RY

2
m
/N
v Ry 2 By
/
h2 : /
2 (0 AT <
Vg S < S
? Z hy
j h ~ / hy
/ /
/£ hy 2
) / 2 \ -
- 7
) :/l/ oy L’VJE T \ \ //)/;.’V
0 1RySRy, o \ Ix(1:2)21,0:2)
I, (2:1)>I,(2:1)

Figure 6.6

Summarizing the results of this section We present here the following
diagram (Fig. 6.7) which shows the implication relations between various

criteria for comparing two finite experiments.

103



The two criteria‘

£ &

X Y

Theorem 6.31£
Ty(ie3-2) 2T (e23-¢)

é\ = Theorem 6.1 c=/2
é;x%j— ¥ h—i:::::::::::?\\\~\\ i
\

N=n
Theorem 6.3 Y

s - -
df é? evident I
I[éx,go’l > I[EX,%;O 'L;j

for all cont.

ny

concave uncertainty ft.
U, where g0

1 e 0O l
(_lz; :_).

o

Theorem 6.6 Q}

is the equi-distribution

Figure 6.7

surrounded by dotted circles can be considered only

when both of the experiments are dichotomous. wwﬁ’tﬁL eﬁudwwéua

il oppin, 1t i ol dingram) giaranind by Pham .3
Robd Jor erparimanitlo honadiriged b alselactic. malnd

U?.a.
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PROBLEMS

(1) In (#) in Example 6.6, first show that for each fixed C, RY(G)‘Q
1._3_

is

(a) a non-increasing function of m for fixed v > 1,

(b) a non-decreasing function of v > 1 for - h3(v)e Then
using these results prove the statement (*).

(2) For dichotomous Gamma experiments:

_ Q _ -0,X
fi(x) - 91 x% le + (1=1,2; 61,92 > 03 x> 0)
T(a)
a -0,y
g (y) = B y¥Tte ? (1=1,230; ,8, > 03 y > 0).
I'(a)
Cx Sy
Hy | 8 )
Hy | 85 w5
Show that By < Ry if and only if
o )= { wp 5.} 1.
91 > wy >

(3) By a theorem in statistical decision theory the Bayes risks RX(C)
in dichotomous experiments are known to be continuocus and concave,
(a) For the binomial experiment é?(al,az), find and draw the

function RX(Q) and show that the ( which maximizes
min(g: 1'C) - X(g)
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is 1, independently of ay as.

2

(b) Do the same things for the dichotomous normal experiment:
L N(0,1), Hyi N(4,0°) .
(4) Let 81 = [G;éi,Bi), {pi(x|e)|8€®]] (1=1,2) be two finite

experiments with the same input space @‘52§§%;5%;é§2 Let us suppose

that both pi(xlg) are twice-differentiable with respect to 8€®@ and

H

well-behaved enough to define the Fisher information

I,(8) = E [: 3% log pi(X!Gi] (1=1,2)
28

and to justify double differentiatim with respect to 8 under the

integral sign with respect to X. Prove that if El ZCCQ, Il(e)zle(e)

for all §€@.,
(Stone, 1961)

[e2]

Hint: Take any 8,€® and {f(n)}rpa_c ® with e(nl-a 8

T1—0co

Let p(n)(e) be the prior distribution assigning probabilities %_to
each of e(n) and @ _. Then BI(éﬁ ,p(n))/(e(n) -8 )2—-f> I.(8,).
0 i o} (nam)i 0
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.7 Sequential design of experiments,

We now turn our attention to sequential experiments such that at
each stage of experimentation the experimenter can freely choose any

experiment from a given class of experiments.

Specifically, let ® = {1,2,...,k} be the common input space. Let
¥ be a given class of experiments: i.e., each experiment in ¥ 1is

represented by

[(x,8), {£(x),...,5(x)1],

[(4,¢), {g(¥),...,e (3)1],
and so on. At each stage of sequential experiments, the experimenter
is free to select any one of the experiments in ¥ and observe i1ts value.
The selection of any one experiment to be performed can depend upon the
outcomes of all experiments that have been performed at earlier stages.
All observations are assumed to be independent in the sense that any
experiment that 1s to.be-performed at one stage, is independent of all
experiments that have been performed at earlier stages.

Truncated sequential designs.

Now let U. be a given non-negative uncertainty function defined on
k
B = {(él,.,.,ak)lgi > O(i=1,.,.,k),;§ €, # 1}. Conslder the following
problem of truncated sequential design:

A fixed number N of experiments is to be performed, and it is
desired to select the experiments Xl,Xg,aco,XN sequentially so as to

maximize

I8 s..e,8y) 55500 = U(E) - E[U(E(Xy,...,%y))[E]
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where E€% is the prior distribution over ® ={1,...,k}.

By the familiar dynamic programming technique (Bellman, 1957) of working

backward, an explicit rule for the derivation of the optimal design can

be given. Let

Uj(é) = the expected uncertainty obtained by using the optimal design
when the knowledge about 6 at present is § and we have j stages
remaining.

Then we have

(7.1) Uj+l(§) = Xgén E[Uj(g(X))IEJ

(j=0,1,...,N-1; Uo(é) = U(g)). In the following derivation it is assumed
that all minima taken over the class % are actually attained at some

Xe€x, Let xz_j(g) be the experiment by which the minimum in the right-
hand side of (7.1) is attained. Suppose that after having observed the
first J experiments, the posterior distribution over ® is €j. Then,
clearly, the optimal choice for the (j+l1)th experiment is given by
X§+l(§j).fThe collection of optimal chbiceé‘X%(éo)(Where €05§)}Xz(§1),---:

1
#, _N-1
Xy (g 1)

determines the optimal design.

The main trouble with this constructive method of the optimal design
is that it is often very difficult to compute for moderate values of N.
The following theorem gives a sufficient condition to make the situation

extremely simple.

Theorem 7.1, If there exists an experiment X*em such that

ELU(§(X"))|&] = min E[U(3(X))|8), for all ges,
€:
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* .
then for all &€= and fixed N, performing N replications of X is the

optimal design (for the truncated-N problem). (DeGroot, 1962).

Proof. From the hypothesis of the theorem, if it can be shown that

Up(8) = min E[U;(5(X))]8] = E[U;(5(X7)) |81, for all gex,
Xed

3* " ) . . .
then Xy 1 (8%%) = x* for a11 £%2, and by induction, repeated use of X
would be optimal.

#*
Let Xe€F be any experiment other than X . From the well-known

Bayes property:
- 3%
B(x,X7) = g(x",%) = £(x")(x),

it follows that
ELU(5(X",X)) |81 = ELE[U(E(X") (X)) |6(X")1|¢)
() ELU((X,X*)) |81 = ELE(U(5(x) (X)) |8(x)}]€] = E[U,((X))|E].
But
U, (&) S E[U(E(X))]|g]  for all £ and X
therefore
U, (8(x™)) < ELU(E(X™) (%)) 1&(x™) 1.
Taking E[ |£€] on both sides and considering (*) we get
E[ (U, (8(x7)) 18] < E[u; (&(X)){8]  for all € and X.

This proves the theorem.

Corollary to theorem 7.1. Let &y = [(I,ﬁ),{fl(X),-.o,fk(X)}] and

ey = [(u,c),{gl(y),.c.,gk(y)}] be two finite experiments. Each of the

following two conditions 1s sufficient for performing N replications of

X to be the optimal design (for the truncated-N problem).
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Lk
(1) For U(g) = --% E,log8,5 Ex 2 &y

(2) For kx = 2 and U(§) = min(&,,8,)3 By < Ry
Proof. (1)implies by definition (5.16) and (6.1), that for all §
E[U(§(X)) |81 = U(E) - I[ey,85U]
< u(g) - 1ley,5501 =E[U(E(Y)) |&]

with U(g) = -- §ilog§i.

HM K

While (2) implies (1) by theorem 6.5. But another proof 1s as follows:
If we take U(g) = min(€1,§2), i.e., the Bayes risk with respect to

(§1,§2) when using the usual zero-one loss, we have

' g, £, (x) E,fo(x)
E X = [U 171 272 )) (&, £, (x)+E T, (x)) AN
[u(g(x))]el= fu(( LT ¢ LGOI 1t olo

= § fo(x)an + § £ (x)dh = Ry(&,)
1£2(x) g, 1 2%2(x) g, ° XL
ACIS AR
by (6.5). Hence condition (2) implies for all 0 £ &, <1

E[U(E(X))|&] = Ry(5;) < Ry(g)) = ELU(E(Y))]|E].

Now let us consider a truncated design problem in which the
available experiments are dichotomous and we are interested in reducing

the Bayes risk. Let the situation be given by
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ey &y
(7.2) (0)H, £1(x) gy (y)
(1-¢)H, fo(x) ey (¥)

The uncertainty function is U(g,1-¢)) = min(¢,1-¢). The condition (2)
in the corollary to theorem 7.1 1s too restrictive, for it requires the
uniform inequality in O < € £1. Hence let us now consider the case
inn which neither RX § RY nor RX > RY }s guaranteed:

Defining
Rj(c) = Bayes risk obtained by using the optimal design when the prior

probability for H1 is € and we have j stages remaining,

we can write the equations (7.1) as

X: [ Ry 6ty () (X))<gfl<x)+<1-c)f2<x))dx

(7.3) Ryp1(€) = min ¢f; (x)+(1-0) 1,

Y: [ R, Ceq (v) (Ceq (9)+(1-0)gs(y))dn
IR (ggl(y0+rl-g)g2(y>) L §

(J=0,.,...,N-15 R (¢) = min(¢,1-C).

We transform this expression into another useful expression.

Let
z /2
(T.4) Z=10og ¢ , i.e., €= e
1-¢ oZ/2, -2/°2
and let
(7.5) u(x) = log (%) , v(y) = log g (y)
(%) g,(7)

Then after taking one observation ( is transformed to
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Cfl(x) = e if X is observed
Qfl(X)+(1~C)f2(X) I(z-u(x)) -1 (z-u(x)) "’
e 2 +e?
L it
ggl(.V) = e 77 vyl , 1if Y is observed
Ce (7)1+(1-C)eoly) 1 (z-v(y)) - 1 (z-v(¥))
2 2
e + e
and we have
lizu(x)) -1 (z-u(x))
gfl(x) + (1-C)f2(x) = fl(x)fg(x) e 2 +e 2
z/2 -z/2 ’
e +e
1 (z-v(y)) =~ 2 (z-v(¥))
el (y) + (1-0)ex(y) = ng(y)gg(y) e = 4e <
z/2 -zZ/2
e +e
Hence if we set y
/2, ~2/2 e? z .
hj(z) = (ez/ +e / )Rj( ez/2+e—z/2) (j=0,1,...,N)

we obtain X ( ( ))f( ) d
2 h.(Z-u d

(7.6) hj+1(z) = min | 3 X %
Y: kfhj(Z-V(Y))g(Y)d“

(-e<z<w; j = 0,1,...,N-1;3 h (z) = min(ez/z,e'z/g)), where

0 =5, (05 fp . p = [ E (K5 @

e(y) =\;g1(y)g2(y) /% s k= [\e(Nex(y) v .
i

If the situation is given by A =M, g = 5, 8y = 13

(7.7)

' €x &y
. ©n, | 5,0 £
(1-0)H, | fo(x) £, (¥)
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that is, a two-armed bandit-problem type, then (7.3) and (7.6) become

ce, (x) _
X: [ (Cfl(x)“"(l%C)fe(X))(gfl(X)+(l ) 5(x)

(7.9) Rj+l(§) = min

. i (C£p(x)+(1-C) £, (%)) r
B Ry (cfg(x)ﬂl—ml(x)) ° '

(j= 0,1,...,N-1; Ro(g) = min(¢,1-€)),
X pfhj(z-u(x»f(x aa

(7.10) n = min

s1(2)

Y: pfhj(2+u(y))f(Y)dx

L

(~oo<zw ;3 3=0,1,..,,N=1; ho(z) = min(ez/g,e_z/g)), respectively, where
u(x), f(x) and p are defined by (7.5) and (7.7).

In spite of this rather simple form of the functional equation it
is quite difficult to solve even for a specific case. For this reason
it 1is interesting and useful to investigate some degign criteria which
have 8ome Justification though not optimal. We ghall first show in the
following the optimal designs for small N, in the case of binomial
distributions; to illustrate the highly complicated structure of the
optimal designs.

Suppose that, in (.7.8) fl(X) and f,(x) are binomial densities with

parameters p and q, respectively. Then we have from (7.10)

X: {pq h (z- log— (1-p)(1-9) h (z- 1og )
(7.11) h,,.(z) = min
J+1 . -q
Y: \pq hJ z+1og—)+ a (1-p)(1-q) h z+1ogl — )

(-ewo<z<o; J=0,1,..0,N-15 h (2) = min(e?/2, e %/2y)
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We shall now present here the optimal choices at the first step in the
optimal design for the case N = 3, (The description of the optimal
designs for the remaining steps will be omitted.) The solution 1s

expressed in 0 £ n <1 corresponding to 0 < { < 1, which by symmetry
-7 - T2

may be extended to 0 < { < 1. (I denotes indifferences.)
( ’ i
F < - < [(1- < 1:
a) or% i_g‘) (1_2) 1
I X I X
e (@ @k i efea) "~
D D p’ '1I-p’ p(1l-p) P\l-P
B\ < (1-p\° :
(1) For(_l_:% <% (%_% < 1:
I X
@ @7 (GRED I I
(c) For(_l:_g-_)Q < % <(k_-%)3/2 <1
e @7 @2 ¢ sy
(@) Ford=p)2 <(1-1)3/%< L <1
I\/X \/T’\/Y\/X\/I\_L
n=0 (%)3 (%)2 (__-%)2 A SE%:S% n=1

whepe A = L1- p) ©(1-p-a)- =
(1-q)°(1-p-a)-p~ (1-p)
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Let us now turn our attention to the problem of finding a sequential
design which will maximize the sum of N independent observations, in the
same statistical situation as before. Let WJ(C) be the expected sum of J
observations when ¢ is the a priori probability for Hl and the optimal
design is used. Swppose that M, = [xf, (x)dh (1=1,2) exists and ;> H,,
Then we have

2 | ¢ry (%)
K 65, 4 (=08 JX + W (rrymrrr )

W, -(¢) = max
s ¢, ()

hYg [(‘;Ef2 + (l—g)Efl-}{Yff WJ(Cfg‘(Y)‘*(l‘-Q)fﬂY))}

X by o+ (y-p,)C + fwj(cx)(cfl(x)+(1_c)f2(x))dx

= max
T2 g+ (byoip) (1-0) + [W(Cy) (Sop(3)+(1-0) £y (7))
| | ) ¢ty (x)
(J=0,1,...,N-13 W_(¢)=0), where Cx = Cr (X)H(1-0) T, (%) and
Cr,o(y)

= - R i M=
CY Cfgty)+(l7g)f1(Y) Without loss of generality we can take 1 1,
Mo=0. And if we let RJ(Q) =3 - Wj(g) we obtain

X: 1-¢C
(¢)=min
Y ¢

+

IRJ(gx) (gfl(x)+(l—€)f2(x))dk

(7.12) RJ+1

+

JR;(Sy) (C£5(3)+(1-0) £y (7)) ar

(j=o,.,aoojN—ljiRO(C)EO).

By a stationary design we shall mean a design in which the choice at the

(mtl)-th step is a function only of the a posteriori probability after

the m-th step, gm°
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Theorem T.2 For the sequential design problem (7.12),

%
(1) the stationary design D, which chooses at (m+l)-th step

{X} according as gm i }
Y

is the optimal design.
(ii) 1lim RN(Q) = R(C) exists for every C, and satisfies

N—w0

3

AW

1
D

1-¢ + [R(Cy) (6 (x)+(1-C) Fp(x)) A

(7.13) R(¢) = min
Tk (G (Erp(3)+(1-€)E (7))

(Feldman, 1962)
The first part of this theorem states that the optimal design for the

problem is a stationary and "one-step optimal" depign, 1.e., which

chooses experiments each time as though there were oneé stage remaining.

*
While the second part of the theorem says that the optimal design D is

* -
consistent, i.e., under D , N lRN(C) ‘Tﬁ:;? 0, or in the original

. -1
presentation of the problem, N Wn(g)fzﬁjg? max (ul,pe).

Before proving the theorem we present the following lemma.,

Lemma Let the posterior probability of H, given ¢, be

¢ry (x) : :
Cx = L OHI-0 (%) if X 1s observed,

¢rp(y) R
¢y = Cfg(y)+[1—g)fl(y) i if Y is observed.

Then QX and gY are both stochastically increasing functions of C, i.e.,

for every fixed w

Pri¢y > w|C}

1

gPr{gX > WlHl} + (1-Q)Pr{€X > W\H2}
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are increasing functions. (Similar definition holds for QY)-

Proof., We prove only for gX’ the proof for CY being analogous. We have

£, (X) (X) .
) Pr{C z wley = ¢Fy { ‘47 = lgg ) 1?W}+(1-Q)P fl(X) = 1Cg ' 1?w}

\Y%

and generally we have £ (X)
P {fl(X) > } 3 I‘PQ[_:L(_)_ 2 1”},
1T X T = £1(X)

= 3. P [ (X) < r} % 1-rP {—_T_T

Using the upper inequality if r > 1, and the lower inequality if r < 1,

we get
£, (X) £,(X)

P{_CX_Y>P}>P2—(_-)_ZI’}’ for all r » O,

Now from (%), P{Cy > w|(¢} is a convex linear combination of two non-

decreasing functions, one of which is uniformly greater than the other.

Proof of Theorem 7.2.

Writing (7.12) as X
RS j+l(g)
RJ+1(C) = min (3=0,1,...,N-1)
Y
Y Rj+1(C)

it sufficies to show that Aj(c) = g(g) - R?(g) is, for each j=1,...,N,
(a) continuous and increasing in 0 < { < 13 and
b AI = L]
() (3 = o

We can show by induction, that for every j, Rj(g) is continuous and

symmetric about ¢ = 1 and that A.ﬁl)
7 J iz
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So we shall next show the increasing property of AJ(C). This is clearly
true for Al(C) = 2¢ - 1. Let the inductive hypothesis be
Hyt Aj(g) ig increasing in 0 < ¢ < 1, for j=1,...,m.

Let RXY

J+l(g) be the "risk" corresponding to the design which chooses X

then Y for the first two steps and then follows the optimal design for

the remaining (j-1) steps. Let Rgfl(g) be similarly defined. Then

writing CE, + (1-¢)E. and CE. + (1-()E. simply as E, we have
fl s f2 fl 4

XY Y
Rm+1 (C.) = l—g + E[Rm(gx)]:
X
R, (€) =1-C+ E[R_(Cy) ]
- 1-C + E[n"(C)RN(Gy) +(1-T(C)IRN(E,) T, (by H)

YX X
Rm+1(€) = C + E[Rm(QY)])

RY, (¢) = ¢ + E[R (Cy)]
= ¢+ BT (CIRM¢y) + (1-n(SIRI(Cy) T, (by Hy)
1, if ¢ 2 , and

where 1 (C)

N~ ol

0, 1if ¢ <

XY YX
R (€)= Rpyp (0D,

we have

- (R (¢) - BX(0)) - (R (0) - Rp ()
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= Bl (Cy) (Ry(C)-RE(Cy)) T - BL(1-m*(cy)) (RX(6y) -RE(¢y))

ELn (C) 8, (C) 1 + BL(1-m(¢y)) 8 (¢y)) 1.

By H and the lemma, Am(gX) and Am(gY) are both stochastically increasing
The last expression, therefore, is the sum of two (strictly) increasing
terms except when Pr{gX§ %IQ} = Pr{gY < %lC} = 0. But by the lemma such
¢ does not exist.

(ii) To prove the second part of the theorem, it suffices to show
convergence of the series

(oo}
z

1 3
Pr{¢’ < 1| Hi,C, D'},
Je=is 2

YR

pricd > 1] 5y, D'}.

Jj=1

Because of symmetry we need only show the convergence of the first series

zy + u(x), if x is observed

Zy - u(x), if y 1s observed.

Then for: J = 1,2y.44

Pp{gj< %[ Hl,g,D*1 = Pr{z'j < 0 Hl,C,D*}

- 1z, - 2z
< E[e | Hl,g,D*] (because P{Z<0} < E[e =)
_ Pr{gj_lg %lHl,Q,D*}E[é“%(zj+l+u(x))|g3'1;-%,Hl,c,D*]
eprpcd-le %lHl,Q,D*]E[e_%(Zj-l_u(y)),gj"l< l,Hl,g,D*]
1
- QE[é_% ZJ_1|H1,Q,D*] (pecause El[é'%u(x)] - Eg[eEU(Y)] = p)
= eeenscoe = pjé-% 7o .
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Non-truncated sequential designs.

Now let us consider non-truncated types of sequential design -
problems. That is, the problem of optimally choosing the experiments
to be performed sequentially from a class of available experiments 1is
considered when the goal is to minimize over Xl, X2,...

E[the first n such that U(&(X X ))<s|E]

1,.-
for a given 6§ > O and each fixed §,
The following simple example illustrates interesting points involved

and some peculiarities that can arise in this type of problem.

Example 7.1 (De Groot, 1962)

Let the statistical situation be given by

Exp-
Hyp. €x Cy
) €, ¥ = 0

(gl) Hl fl(X) =1, 1in (0:1) gl(y) = _
€, ¥y = 1
E: y = 0

(€2) H2 fg(X)El: in (l'-C(.:e'@) gQ(Y) = 1
€, ¥ =

where O < a <1 and 0 < ¢ = 1-g < % .

Let the uncertainty function be U(§) = min(€1,§2).

Since for any prior knowledge € the posterior probabilities for H1 are

1L, 0 < x< 1l-a
0, 1 <x<2-0

120



le/(egl+;€2): y=20

§1<y) = _
€§1/(e§l + €§2), y=1
. TR 2 .
_<{ T8, /(78 +¢°E,), ify, =y, =1
(v ,v,) = 1 17 € 52 y B
S if otherwise

we have for § € 2 = {§le < &, <%}

E[U(5(X)) €] = aU(8) + (1-a)'0 = & min(§,,E,)

E(U(E(Y)) |81 = (e81+e8,)min(5(0),1-5,(0))+(e8 +a85)min(81(1),1-8,(1))

gl, 0] é gl é €
E[U(g(Y)) |8
N . .
| )
ol -/ : E[U(g(X)) 18]
2 } ,
J |
] )
1 . I SE
0 qr i e 1 77
2
Figure 7.1

Thus we get from theorem 7.1 and figure 7.1

Proposition 1 If

(+) se
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then for all £ € 2 and fixed n, performing n replications of X 1s the
optimal design.

Let SX denote the sequential design whereby the experiment Ex is
replicated repeatedly. SX continues as long as l-a < X <1, But

Pr{l-a < X < 1|8} = a for all €., Hence
[00] (o 0]
j - 1 -
(*)E[n(SX) 'g] = m§-1 Pr{n(sx) Z mlg.‘ = m§1 o™ oy T-g ’ £ € Bt

Now let S, denote the sequential design whereby the experiment SY is

Y
replicated repeatedly.

(1) When & =%, £(0) =¢ = 1-8(1), so that E[n(Sy)|8] = 1.

(11) suppose that e < & < %. Since £(0) <e, §(1,1) 2 & and

¢ < §,(1,0) <%, 8, continues in the pattern 1,0,1,0,1,0,... and

Y
ceases as soon as this pattern is violated, Hence
E[n(SY)lg] = = Pr{n(SY) > m| &1}
m=0
- = Pri{n(S,) > 2mlg} + = Pr{n(S,) > 2ml|E&}
. Y : Y
m=0 m=0
w0 o 1+e€, + €§
— —_m— 2
= 3 ()™ + 3 (e7)™(E8, + e8p) = el
0 0 ' 1 -¢e

(1ii) By the similar argument we find that when % < § <=, Sy continues
in the pattern 0,1,0,1,0,1,... and ceases as soon as the pattern 1is
violated, and

E[n(Sy) [§] = (1 + e85y + 58)/(1-¢%)
Summarizing (i), (ii) and (iii) we obtain

(¥)  sup E[n(Sy)[8] = ——
gex 2(1-€%)

Thus (*) and (¥) give
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S
Proposition 2 If

() . .

2(1-¢3) 1-a

then for all § € =, SY 1s the optimal design

HA

Proof, Since E[n(Sy)|g] < E[n(8y) |8) for all § € B , S, is better than

S ‘And if the optimal design observes X at some stage, then from that

X*

stage on it must repeat observations of X until it stops. Hence the

optimal design never observes X.
Combining Propositions 1 and 2 we obtain

Proposition 3 If ¢ and € simultaneously satisfy both (+) and (1),

(e,g,, a = %, e = %), then for such values it is true that for any
fixed number of experiments repeated observations of X is optimal,
whereas for any unfixed number of experiments repeated observations

of Y is optimal.

Let us again consider the two-armed-bandit problem described by
(7.8). Suppose that our problem of sequential design 1s that of
minimizing the expected humber of observations required to move the a
posteriori probability for H1 outside of an interval (r, 1-r):

E[the first n such that g(Zl,.”,:Zn);Z (r, 1-v) 1]~ min
%. .7
l, 2,.0-

Wwhere C(Zl,.o.,Zn) 1s the a posteriori probability for H;, after having

observed Zl,aeg,Zn, and each Zi is the i-th observation either from

8X or from €Y.

Let us define

N(C) = the expected sample size obtained by using the optimal sequential
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design when the prior probability for H1 is C.

e e e 1 4 Pilerrayrrabereay) (€8 (<+(1-0) Sy (x) )
: X - X
N(¢) = min Cfl(EQZE}Egife(x) L 2
X
v: o1+ fN(ng(x)+(§_C)fl(x))(Qf2(x)+(1-g)f1(x))dx

if r < { < 1-r, and N(C) = O if otherwise. After making the
transformations (7.4), (7.5), and (7.7) we obtain
X:  pfh(z-u(x))f(x)ar
Y:  pfh(zsuly)) f(y)dx
1=

if -A <z < A =log ==F , and h(z) = 0 if otherwise.

h(Zz) = e?/24672/2, min

It seems very difficult to discuss the solvability and derivation of
solution of this functional equation. We, therefore, consider some
reasonable sequential designs though not optimal.

There are two random walks, both on the z-axis with boundaries at
A and -A, one of which is determined by the results of observations of
X and the other is determined by the results of observations of Y. Let

J
j = log -—Qj be the point at which the walk has arrived after having
1-¢

made j observations. Then if at the (J+1)-th step X is observed the

z

expected movement in the walk is

o | ed
EX[ZJ+1—ZJ|C ]

I
e
=
©]
03
[
e
[
+
[

]
uy
[N
=
~
Hh

i£,) - (1-¢0)I(£y:E))

QJJ(fl;fe) - I(fy:fy).
Similarly if Y is observed, the expected movement is

EYE%+1st|£j] = ¢Ja(r 5tp,) - I(£):5,).
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" . |
I(fg.fl)' !

-I(flzfe)‘

Thus, if I(fl:fg) > I(fg:fl), the X-walk yields an expected step greater

(smaller) in magnitude than the Y-walk flor Qj >(<) %. This consideration

leads to the conjecture that one reasonable design may be, at the (3+1) -1t

step,
X 1> 1
(i) to take —walk, if ¢Y =
Y < 2

(If I(flzfg) < I(fy:fy), the same results will hold with X and Y
interchanged.) It is easily seen that this design also coincides with
(11) choosing the random variable corresponding to the larger of

1.(¢d) = ng(fl:f2)+(1—gj)I(f2:fl) and I,(¢d) = ng(fg:fl)+(1-gj)I(fl:fg)
It is hardly to be expected that this stationary design would be optimal
but we know that when Ry < Ry 1t willl never l1ead to use of Y (by theorem
6.4) and it coincides with the optimal design for the truncated problems
(by the corollary to theorem 7.1). This subsection concludes with a
general result which shows that this design is better than either SX

(sequential design requiring X at every step) or Sy
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Let us consider the more general case described by (7.2). Let, for
any sequential design S, E[n|S,x] = E[the first n such that Q(Zl,...,Zn)

#(r,1-r)|S,¢], where z = log T%E .

Theorem 7.3 Let X and Y have densities fi and 84> respectively, under

hypothesis H; such that both 1og(f2(x)/fl(x)) and 1og(g2(Y)/gl(Y))

assume positive and negative values with positive probability. Let

S(l) and S(g) be two stationary designs and let S be that design which

requires, at the (J+1)-th step,

the random variable corresponding to min E[nlS(l),zj].
I=1,2

Then S 1s better than both of 5(1) and 5(2), that is,

E[n]S,z] < min E[n'S(i),z], for all -o < 2 < o,
T i=1,2
(Bradt and Karlin, 1956)
Proof. Each sequential design S(i), is specified by the set

I‘(i)‘=‘ {Zl IZI < A, S(i) requires X at z}.

e BRY 1+ B (E(n|s1), 2ou(x) 13, ir zer(d)
Eln|s(1), 27 241 4 EY{E[n|s(i),z_v(Y)]}, ir ze(-a,a)-r(1)
0, 1f |z|>A=logiZl .

Define the set A by
A = {zl lz| < A, E[nlS(l),z] < E[n!S(E),z]}.
Then we have, for |z| < A

(1)
. E S A €A
1=1,2 E[n|S(2),z], z€ A
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1+ B (Bnls(1) zmu(x) )y, zeanr(1)

1+ EY{E[nls(l),z—v(Y)]}, zenrtd)
) 1+ EX{E[n]S(Q),Z-u(X)]}, ZEP(2)-A
1+ EY{E[n|S(2),z-v(Y)]}, ze(r(g)UA)C
1 + Eg(E[n|S,z-u(X) 11, ze(anr(1)yu(r(®) _a)
E[n|S,z] =
1+ EY{E[n|S,z—v(Y)]}, ZG(A—P(I))U(T(2)UA)C,
so that
6(Z)= min E[n|S(i),z] - E[n|s,z]
1=1,2
EX{E[n|S(l),z-u(X)]-E[n'S,Z-u(X)]}, ZEAﬂr(l)
EY{E[n|S(l),z-v(Y)]—E[n]S,z—v(Y)]}, ZEA—T(l)
EX{E[n|S(2),z—u(X)]—E[nIS,Z—u(X)]}, ZGT(Q)—A
EY{E[nls(g),z—v(Y)]—E[n|S,z—V(Y)]}, ZE(T(Q)UA)C
{jEX{G(Z—u(X))}, zG(AﬂP(l))U(T(g)—A)
> (1) (2) c
Eg{G(z-v(¥))1, ze(A-T 7 )U(T S/ Ub)
Take a sequence of points {z }°° in (-A,A) such that G(z ) — 1infG(z).
™ =1 " (m-0) 2
Then by the above inequality there exists
{zm,} c {zm}; infG(z) = lim G(zm,—u(X)), with ‘probability 1
Z m' -

or there exists

{zn} © {z }; inf G(z) = lim G(zmu—V(Y)), withprobability 1
z m "o

and since u(X) and v(Y) > O with positive probability there exists
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x> 0; lim @(z_,-1) = inf G(z)
m' - m Z
or
lim G(zm.,f)\) = inf G(z).
m"—oco 7

Let us denote this last sequence ({zm,-x] or {zmu-x}) by {z,(l)}, so that
m

l%m) G{z (1))'= inf G(z). Repeating the argument a finite number of
1 m Z
m —00

times, we arrive at a sequence 2z (s) < -A and inf g(z) e %i? G(z (S))=0.
s m

m Z m -0

Tests of composite hypotheses

We shall present here a procedure devised by H. Chernoff (1959) for
the sequential design of experiments where the problem is one of testing
composite hypotheses, We assume that there are two terminal declsions
and a class of available experiments. After each observation, the
statistician decides whether to continue to experiment or not. If he
decides to continue, he must select one of the available experiments.

If he decides to stop he must select one of the two terminal decisions.

Suppose that we have to test a composite hypothesis Hl: 8€ wy
against the alternative H2: eewg. There is available a set of experiments
{e}, each of which may be replicated, Designate the n-th experiment by
e, Although the choice of the (n+l)-st experiment may depend on the

ntl is assumed independent of el,...,en. The

past, once it is selected &
risk of a procedure is the expected cost of sampling plus the expected
loss due to the probability of making the wrong terminal decision. Let ¢

be the cost .of sampling per observation. The main reason that our studies
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treat an asymptotic théory is this: while optimal designs are difficult
to characterize, asymptotically optimal results (in some appropriate
sense) may be available with less difficulty.

Now let us recall some fundamental results in the simplest case.
The best test for sequentially deciding between two simple hypotheses

H,: f(x) = fl(x) and Hy: £(x) = £(x)

1°
is the Wald sequential probability-ratio test, This test determines

two numbers A and B with B < 0 < A and we accept, by this test,H2 if

n £o(X.)
_ 2 Y71 . .
Zn E iil log TITYIT > A, Hl if Zn g B, and continue sampling as long

as B < Zn < A, For any fixed a priori probabilities {, 1-{ for the two

hypotheses, we have, asymptotocally as ¢ - O

A= - log ¢
B = log c

Pr{Test accepts H2|Hl} ~ c/I(fg:fl)

Q=
B = Pr{Test accepts H1|H2} ~ c/I(fl:fg)
E{(N) =~ - log ¢ /I(fq:f,)
E,(N) = - log ¢ /I(f5:55)
so that
r; = wa + cEl(N) ~ -¢ log ¢ /I(flzfg)
ry = WyB + CE,(N) =~ - ¢ log ¢ /I(fezfl)

where Wy (i=1,2) 1s the loss due to the wrong decision when Hi is the
true hypothesis. The risk corresponding to the best test i1s mainly the
cost of experimentation. The following statistical procedure is a natura

and reasonable extension of the above test to the case of composite
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hypotheses and multi-experiments.
(a) After n observations we compute the maximum likelihood estimator
3n of 6,
(v) Define a set-valued function a(8) by

a(8) = wy_y » if and only if B€w, (1i=1,2),
Let 3;_be the maximum likelihood estimator of ©® under the hypothesis

A
alternative to en

(¢) Compute A4
n f(xisensa )
L = = log T (> 0),
i=1 f(xl,an,e ) =

where ei is the experiment selected at the i-th step and f(x,e,ei) is
the density of the outcome x by the experiment ei.

(d) Stop sampling at the n-th observation and select the hypothesis of
A
:en if Ln > - log ¢

(e) Sampling is to be continued as long as Ln < - log ¢. If sampling is
continued we select at the (nt+l)st step the mixed experiment m which

A
maximizes min I(ente'lﬂ),
] 'Ea(en)

where n is a probability measure over {€}, and if {e} is finite and

M= (Nys.005my) 1s a probability—m vector

(8:0"1m) = = n.1(s:0'e,) P Lk Ly
I(6:0'|w) = = n.I(e:8']e = Z ns/f(x,8,8,)1log Y
j=1 9 S A S J Tx,8 ,ej)

Theorem 7.4 Suppose that Q = w1Uw2 is finite and the available exXxperiments

are finite in number. Then for the above procedure

(1) the risk function r(8) satisfies asymptotically as ¢ = O
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r(g) = -c log c/I*(e), for all @,

sup inf 1(6:8'|n).

where I (8)
n 8'€ca(s)

(i1) The procedure is asymptotically optimal in the following sense:

If an alternative procedure with risk r(8) satisfies

iig r'(el) <1 for some el
rlelj
then
Tm S80) oo for some 8, (Chernoff, 1959)
¢-0 riezi

The proof will not be given here and the interested reader is referred

to the original paper (Chernoff, 1959).

Example 7.2 (Chernoff, 1959)

It is desired to compare the efficacy of two drugs. The experiments
61 and 82 consist of using the first and second drugs respectively, where

the outcome of these experiments has binomial densities with parameters
1] and Pos respectively. The two hypotheses are

1:
where 8 = (plgpg), wl = {,(pl)pa)‘pl > p2} and UJ2 = {(pl’pg)'pl g pg}.

After n observations consisting of n; (i=1,2) trials of drug i, which

led to m; successes, the maximum likelihood estimator of 8 1s

B = (By.Ppy) = (my/ny, my/ny).

If m/n; > my/n,, the maximum likelihood estimator of & under H, is given
by —~ _ (ml+m2\ ml+m2

0= (Binfgén) n.+n. ’ n.4n
1 2 1 "2

).
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m, + n n
o Dy 4 o A o . s &
hyn, Ay Py, + ATy Do, 8, 1s a weighted average of (p,,pq)

Since

and (3é,32) with the wieghts proportional to the frequencies of 61 and 62.

We have A 5
e g Log f(xi’en’e_) ) g lbg[(Tl)Xi(l- Ti)l—xi///(m:ﬁmg)xi(l_m1+m2)l—xiJ
Toasl o £(x 8 ,eY) 1=l ny ) ny ny4n, nytn,
2 m m,./n m 1- El
= 3= nj[ﬁilog7?§§§-+ (1- —i)log———igiﬁ-]
J=1 3 17 Mo 3 1- MM
n1+n2 1’1]_-!-1’12
1(( ln! ' Pj 1-pJ' _
py5Pp) 1 (p'y,p"5)[€4) = pylog s + (1-py)log 7, (3=1,2)

and
2

I((pl,pg):(p’l,p'2)|n) = 2 nd((plpr):(pil:ptg)'65)

pl l_pl .p2 1-p2
if we set ny = .
Next we have to compute
max min I((pl,p2)=(p'1:P'2)|®'

0z ¢<1 (p'y,p',)€a((py,0,))
In general the set {(p'),p',) |T((py,Pp): (0" ,0'5]e) <I((py,p,) (' ,p"5) es)])
for a fixed (pl,pz) is easy to characterize, and is given in Figure 7.2,
This flgure also indicates the maximin strategy n* = (g*,l-g*) of the

statistician for the game with a payoff matrix I((py,p,):(p';,p'5)In),

where nature is considered as the minimizing player controlling the point

(p'lJp'g)‘
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L g TT T T 72
/ —
p' :7 The set of points
% [} [}
2 (1-¢ - (p‘1,p'2) satisfying
r {1 7L P, ~ 1-p
¢ pllog——¥"+(1—p1)logl 1<
( ) P P 4=
PssP A
ez 1020 1-
7 75, Pylog—r=+(1-p,)log
_77 / 277"p 7, I-p
7 o 2 2
57 ! SN
0 ""7'/// LSt pg A S / /_-I’r‘.r‘\ql
e 1
P
Figure 7.2

In Table 7.1, we tabulate as functions of & = (pl,pe).
¥* +* )
a) 6 (§) = (p*l(e),p 2(e)), the minimax strategy of nature.
¥*
b) n (8) = (c*(s), 1-¢*(8)), the maximin strategy of the statistician,

c) I*(e) max inf I(8:8'|n)

0<e<l 8'ca(p)

I(e:6"(8)|n (8)) = I(8:0" (8)le;)
= I(e:e*(e)|82), the value of the game,

- I (s)

the relative efficiency of the standard procedure which uses each drug

half the time.

By symmetry we need only consider p, > p, and p; + p, < 1.
1 2 1 2 =
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Pp
P, 0.05 0.10 0.20 0.40
P (8)| /o.0700
{
0.10 [)¢™(8) ) 0.526
1%(s) I 0.0020
\e(8) LMQ.995
/0.118 148
0.20 | E 0.547 .520
0.120 . 0044
(\0.992 .995
(0.205 . 239 .279
0.40 0.557 .537 .515
Lo.0429 L0277 .0105
0.988 .992 .999
0.297 .333 .394 . 500
0.60 ) 0.551 . 534 .515 . 500
( 0.0855 .0648 .0375 .0087
0.991 .995 .999 1.000
{0.400 438 . 500
0.80 j 0.533 517 . 500
0.145 .120 .0837
~0.996 .997 1.000
[ 0.463 .500
0.90 } 0.514 . 500
10.187 .160
Lo.999 1.000
Table 7.1
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The results in theorem 7.4 were extended in several directions.
Albert (1960) treated the case where there are infinitely many possible
states of nature and Bessler (1960) attacked the problem where there are
k terminal decisions. As an example we shall now reformulate a problem

of the greatest mean and indicate Bessler's procedure.

Example 7.3 (Bessler, 1960)

Let HJ:NKuj,l) (J=1,2,3) be three normal populations with unknown
means My and common known variance 1, Let ej (j=1,2,3) be the experiment

which consists of sampling from NI,. It is desired to determine which

J

population has the greatest mean.
Here the states of nature are represented by 8 = (ul,%?..,u3). Let

the first n = n1,+ n, + n3 observations consist of n (j=1,2,3) observation

on Iy with sample mean Xj' Then if Kl = max (X 1, ) ( ) =

{o]u) S up or 1y < U3} and
X,+n X, n,X +n2i2

~~ ~ N~ M43 hois Ty dy - ,
On = (Mn¥on Msn) =(nam =g, %) or
nlxi+n3x3 - nlﬁi+n3Y3
3 s .
n1+n3 2 n1+n3
Thus
n
L = = log{f(Xi,e )/f(X.,8.,87)}
i=1
" nn n-n
1% o = o2 13 o o £\ 2 - v
1 min { (%, -X,) (X,-X,)°)}, if X = max (%,,X,,X;)
5 ny¥n, ‘717720 2 ngdmg 1773 1 125203
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MNo o - 2 M3 o -2
max  min I(8_:8'|n)=) 5 max min{——=o(%, -X,) < ,—=(X,-X,) "},
n O'Ea(gn) n 2 anO n¥n, 1 2 1+N3 173
711""’12"'713:1

%A - = - =
The maximin strategy m (en) is a function of Y = (Xl'x3)2/(xl'x2)2 and we

have if Xl > X2 5 X3

-
ﬂgk\\\\ 1.0 1.5 2 10 100 o

n'y 0.414 0.43 0.48 0.49 0.50 0.50
n*, | 0.203  0.38  o0.47 0.9 0.50  0.50
"y 0.293 0.19 0.05 0.02 0.00 0.00

Here we see that if 73 is very far below'ﬁ1 and Yg (i.e., Y>>1) all the
sampling is divided between Hl and n2 which seems natural. On the

otherhand if X, and X, are close to each other (i.e., y = 1) they share

3
somewhat less than 60% of the sampling.

The risk of our procedure is given by

r(8) = - ¢ log c/I*(e).
where a1 1
* 1 12 2 13 2 .
I(g) =\ = max min{——"—(u ~Mn) ——=(H;-uy) 7Y, if
2 njgo 111+1']2 1 +2/ 2 nl+n3 193 ’
+MNAytn-=
ny Pighng=l My =max(k; sus,H3)

the value of which for Various values of Y's (ul-p3)2/(u1—u2)2 (u1>u2>u3)

is tabulated as follows:
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v 1.0 1.5 2 10 100 %

1#(8)/(H,-H,)° | 0.085 0.101 0.119 0.123 0.125 0.125

Finally this procedure can be compared with the more standard one
where each population is sampled equally often. The standard

procedure (with the same stopping rule as for the above one) has risk
T(8) = - ¢ log ¢ /I(8),

where
2 1

5 %(Hl-u3)2}= 12 (I-ll-lig)g

I(ek (%min{-%(ul-ug) ; 1 Uy >Ho>lg

Hence the relative efficiency of the standard procedure is measured

by e(8) = r(e) _ I(8 and is computed as a function of
w(e) T8
2
Y' = (“1'“3) (> pp > H3)
2
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y' 1.0 1.5 2 10 100 ©

e(g) | 0.97 0.83 0.70 0.68 0.67 0.67

Finally we shall make a concluding remark, An important problem is
that of modifying the procedure so that it should be good for reasonable
sample sizes. From the experimentation point of view, when n is not

large, 3 may be a relatively poor estimator of ®, although the approach

n
N
described above treats 8 as a very good estimator of 8.

PROBLEMS 7
(1) Prove the result stated on page 114.
(2) Consider the sequential design problem of maximizing N independent
observations, under the situation given by (7.2)
(a) Prove that if fg(X)/fl(X) and gg(Y)/gl(Y) have the same distributions
under Hy, and also ;nder H,, then the stationary and,;%ne—step optimal"

di E. +(1-0)E. )X} ((¢E. +(1-C)E_ )Y
according as (¢ fl+(l ¢) fe) <5(€ g1+( ¢) go)

3
design D : Choose

is optimal..
(b) Using the above result find an optimal design for the situation

Y 2

Ex SY
(¢) 85, | N(0,1) N(u,1)
(1-¢) Hy | N(u,1) N(0,1)

where 4 > 0 is a given constant.
(3) Let the experiments 8X and 8Y consist in tossing a coin A and B with

probabilities p and q, respectively, of obtaining heads. Assume that p and
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d are both unknown to the experimenter, Let us consider the following
two designs:

Rule Dlz For the first toss choose eX or 6Y at random., On the seconc
stage and after, use the principle "staying on a winner", i.,e., for
J=1,2,..., if the j-th toss results in heads, stick to the same coin for
the (J+1)th toss, while if the jJth toss results in tails, switch to the
other coin for the (j+1)th toss,

Rule DO: Choose 8X or SY, for the first toss, at random. Then
stick to it for all later tosses.

For any design D let
L(D|p,1) = 1im (max(p,q) - E[ %-.g X, |Dsp,al)

N-wo Ti=1

be the loss by the experimenter who uses D due to ignorance of the true

state of "nature". Show that D, is uniformly better than D,, or more

1
precisely, for all O Sp, a0

L<Dllp,Q) = L(Dolp:q) =9,
(p-a)/2. (Robbins, 1952).

0 < 8(1-8/(1-v))

1l

where v = |p+q|/2 and
(4) Consider the truncated-N problem for the same experiments as in the
preceding problem (3) with the goal of maximizing the expected yield

N
E( = Xilp,q). Assume that p and q are both unknown, but a known prior
i=1

distribution &(p,q) can be specified. Let WN(dE,D) denote the expected
value of the sum of N observations if &(p,q) is the prior distribution
and the design D is used. Let D(J) be the j-th step optimal design, i.e.,
the design which maximizes the expected winnings over the next j plays.
(a) Show that if N = 2 and &(p,q) = F(p)G(q), then the optimal design

chooses €y on the first experiment, if and only if
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maX(Lll-Ll'l, Hg—uilul) z max(u'l"ul: uig_u‘lul))
where Mq and M, are the first two moments of F and u'l and p’2 are those
of G. Next, by using this result, show that if dF(p) = &(p)dp, da(q) =
¢ (a)dq with continuous and positive & and § in (0,1), then there exists

an N such that D(l) is non-optimal for the truncated-N problem.

(b) Show that there exist prior distributions &(p,q) such that for

N = 3, W3(d€(p,q),D(1)) > w3(d§(p,q),D(2)). This shows that D(j) is not
always an improvement over D(j—l).

(c) “Staying on a winner" (see the problem (3)) is not always a
characteristic of an optimal design: Suppose £{(p,q) concentrates
probability 0.8 on (0.1,0) and 0.2 on (0.9,1). Then show that, for N =2,

the optimal design "stays on a loser”, (Bradt, Johnson and Karlin, 1956)

(5) Let €, and €, be the same experiments as in problem (3). Assume that

X Y
q is known, and p is unknown. Let d§ be an a prioril distribution over

0<pcsl, and after s + £ trials with 8X resulting s successes, let it

be modified to become

a&(s,r) = p°(1-p)Fas
fi p3(1-p)Tag

It is required to determine designs of sequential choice which will
maximize expected number of successes during an infinite period. The
discount ratio O < a < 1 is introduced in order to mske the sum finite

and to place more emphasis on the early trials during the learning process,

Now let

W(s,f) = the expected discounted number of future successes, using an

optimal design after s successes out of s + f trials with 8X.
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(a) Show that we have the recurrence relation

X: b(s,f)(l'+_aw(s+1,f_))+(1-b(s,f))aw(s,f+1)

W(s,f) = max
Y a/(1-a) .

(s,f =0,1,2.,,,), vhere b(s,f) = [ pd&(s,f).

o
(b) Prove by using successive approximation and induction that this
functional equation has a unique solution, and that there exists a

A
function p(f,s) uniquely such that an optimal design is given by:

X >
choose , as %(f,s) “( aq. (Bellman, 1956).
Y <
(6) Do the results in Example 7.1 still hold true if we use the
5 .
uncertainty function U(g) = - = £,log &y ?
1
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8, Capacity of statistical experiments.

Let & = [(%,8),{fy(x),...,f,(x)}] be a finite experiment with input
space B = {1,...,k}. In Section 1.5 we defined the amount of information

provided by the experiment & by

k o (x) Xk
(8.1) I(e,g) = iEléiffi(x)log 17 A = z g, I(fy: ?@ifi),

where §€Ek is the a priori probability k-vector representing the prior
xnowledge over the input space ®. I(e,§) is continuous and, by Theorem
5.3, concave in the prior knowledge, Let us define the capaclty of an
experiment & by the maximum information for all possible prior
distributions:

(8.2) () = C(fy,...,5,) = max I(e,q).
K
Eex

Then we have

Theorem 8.1 If there exists a §*e§k with §i* >0 (i=1,...,k) such that

(8.3) I(f,:

1

K
S E,*f.) = indep. of 1
=1 + *

then £% maximizes the information I(€,E) and’

k
e, ) = I(e,E%) = I(fi: = Ei*fy).

C(f
S i=1

1’

Proof. By the information identity for mixtures of prior knowledges
(see {5.14)), for any &, veeX and 0 < t <1 we have
I(e,t§ + (1't)V) = I(é‘,*,t) + tI(e:g) + (1"t)I(8:V):

where
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k k
e¥ = [(I,ﬁ) ,{j_i:lgifi(X) :iil\)ifi(x) '}])

'k k k k
I(e*,t) = t1(§gifi: ?(t§i+(1-t)vi)fi) + (1—t)1(§uifi: %(t§i+(1-t)vi)fi .

Hence I(e,g) is strictly concave in §, so that if the Lagrange equations

in the usual calculus of variations yield a solution which is not on the

boundary of ﬁk, it provides the maximum. Differentiating
k k k
iilgiffi(X)log(fi(X)/ f g, (x))ar - 2 % L

where {4 is the Lagranglan multiplier, with respect to §i(i=1,...,k)

and equating to zero, we obtain (8.3).

Theorem 8.2 Let Py, = (pil,pig,...,pik) (i=1,...,k) be k probability

k-vectors which are linearly independent. Suppose that they define an

experiment ¢. Then the maximum value of I(e,E) for variations of Ee¢wm

occurs for (21*,...,§k*) such that

n "
Dy Hy
. == _1
(8'“’) . = (pi,j) . ]
| P | | e
-b -b
(8.5) (&1*,...,8.%) (py) =|_e Y oo, _e ¥ |,
1 Kk 13
—bi --bk
e >e
i i
k
where H, = —jﬁl pijlogpij (1=1 jsusii) .
e —bi
The capacity C(e) 1s given by logl = e
i=1
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p

Proof. 1I(e,§) =3 Ey 2 pijlog ij
T3 ZE,py
1
= - (280, 5)1og(28,py ) - 28,H;.
ji i i

Since H, = ?pijbj from (8.4), we get by setting ny = ?gipij
I(e = 3 -1 . - b.).
(e,€) jnj( og N 3)

The following lemma, combined with (8.5) yields the statement of

the theorem

Lemma If bl""’bk are given real numbers, then the maximum of
- ( )
2 n,(-log n., - b,
J=1 J J J

for variations of nGEk is attained by
-b, k -D

ﬂj* = ¢€ J/ DI J (j=1)"',k)’
j=1
-b,

and the maximum value is log (= e Y).
J

Proof. We have by Theorem 2.1

k -b.
0< = nq, log n3j = 2 n,(log 1, + b,) + log(= e Y).
= g=1"Y o b, -1 j Y J J J
e j(z e Y)

J

Example 8.1 (Sakaguchi, 1959)

For binomial dichotomous experiments represented by a stochastic

matrix
pl 1"'p
1, with p, # D,
1 1 2
Po ~Ps
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we solve the simultaneous equations

p2b1 + (1‘p2)b2 = H2(5 "pglogpg - (1'p2)10g(1‘p2))

-b, / -b.  -D
2
P18 ¥* + poEL* = e i/(e e 9

B % + % =

and

]

From these equations we obtain

b = (l’pg)Hl - (l'pl)H2:

1
b1 = Pp
by = ~PoH; + pyHy
b1 - Po
and
#* _bl
—_ * _
8% =1 - &% = . % _ _be i = Py |
1 2\ 1, . ™
-b -b

respectively., We then have C(€) = log (e ~ + e -The values of

§1* and C(€) in bits to five decimal places for p,,P, in increments of
0.01 are tabulated by Phillips (1962).

The capacity of finite experiments measures, in some sense, how
divergent k probabibllity densities fl,...,fk are, In fact, 1f
fl(x) = .. = fk(x) [»], then we have C(fl,geo,f ) = 0. And the capacity

of an experiment is invariant under any permutations (il,...,ik) of

(1,...,k).
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Theorem 8.3 Let Q = (q,.]1=1,...,m; j=1,...,k) be any stochastic matrix,

1j
k
that is, ., > 0 and X 4., = 1. Then we have
—_— g = — 32 iJ
k k \
C jilqijfj,...,jil qmjfj < C(fl,...,fk). (Sakaguchi, 1957)

Proof. Every row vector aj . of Q can be considered as a prior knowledge

for the experiment g = [(x,ﬁ),{fl(x),...,fk(x)}]. Consider the mixture

m
b q.q.;(aGEm) of m prior knowledges q seeesQy v By the information
j=1 -1 71e 7 1. .

identity for mixtures of prior knowledges (see(5.14)) we have

m m
(8.6) I(e, = a; ) = I(e*,o) + = a.I{€,q, )
. : Le . 1 T
i=1 i=1
where
le e
e = [(08),{ 2 ayyf5(0),000s 2 ayyfy (013,
= J_
’( * o) m k m be
I(e*,80) = 2 e@.If{f 2 q..f.: 2 . 2= 4q..f.].
1=1 T \j=1 I iz t =1 I

Dropping the second term of the right-hand side of the expression (8.6)

and taking the supremum in aGEm we get

k k m
Cl 2 quufirene, = <f.] = supI{e*,a) < suplI(e, = a,q,. )
=1 1J7J ,j=1 qu j) a g o iz il

IA

sgpI(e,g) = C(fl,...,fk).

Corollary to theorem 8.3. (i) If m < k, then C(fl,...,fm) §C(fl,...,fk).
. k-1 k-1
(i1) If pe=~ ~, then C(fl,...,fk_l, >N pifi) = C(fl,...,fk_l).

Proof. (i) is easily seen by taking
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To prove (ii) we consider the equation (8.6) with m = k and

1 e

“\\ ]

~ |

Q = ™ I
~ )

"1l 0

PyPpe-ve-s Py O

Thus we have
I(e;al+plan, ¢ o a ,G.k_1+pk_lctn,0) b I(e*.’a)-‘-an(F/;pl} o e e ’pk_l’o)
where
k-1
8* = [(I)B):{fl(x):o--)fk_l(x): % pifi(x)}]-
Dropping the second term in the right-hand side and taking the supremum
in a€®’ we obtain

k-1

c(f f f pify) < C(f

1’..., k_l’ 1,ooo,fk_1)o

Since the reverse inequality is also true by (i) we have the
desired result.

For experiments with k = 2 (dichotomous experiments) we have
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Theorem 8.4 Let fl(x) and fg(x) be given generalized probability
densities, Let
(e(x)] g(x) > olx], fe(x)an =1, I(fy:g) = I(f,:8)}.

Then we have

G

min I(f,:g) = C(f,;35,),
g€l 2 1°°2

and the minimizing g(x) is given by
(8.7) &(x) =%(x) =% (x) + (1F)f,(x),

where O <¥ <1 is the unique root of the equation

(8.8) I(flz%fl + (11%)f2) = I(f2§¥fl,+ (11¥)f2).

Moreover we have

J(£,,8) = I(r,8) + I(g:£,) =T1(£):£,)
J(£),8) = I(£)E) + 1(g:£)) = (1-8)I(fp:1p). (Sakaguchi, 1961)

Proof. It 1s easy to see that we have to consider the problem of
maximizing the integral [f, (x)log g(x)d\» under the constraints that
fg(x)dx = 1 and

-f(fz(x) - fl(x))log g(x)dax = H, - H;

where
Hy = -ffi(x)log fi(x)dk (1=1,2).
The usual technique of Lagrangian multipliers leads to the equations
(8.7) and (8.8). Consider the function
o(t) = f(f1 - fe)log(tfl + (1-t)f2)dx.
This function is strictly increasing in t and satisfies ¢(0)<H2—Hl<m(l$

and Hy, - H = (0) + I(f:f,) = o(1) - I(f:f)).
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v
Hence the equation w(t) = H, - H; has a unique root ¥ with 0 < t < 1,
This completes the proof.
Another proof is as follows (A private communication to the author

from Kullback): If 0 <t; =1-t, <1, then for any g(x)eqd we have

I
2 2 2 2
S t.I(f,:3t.f.) = 3t,I(f,:g) - I(St.f.:g)
i=ll 1111 ll 1 111
2
= I(fg:g) - I(?tifivg).
o ~J
Since there exists a unique O < t, =t <1, such that o(t) = Hy, -~ Hy,
2 2
or equivalently, I(f.:St.f.) = I(f,:3t.f,), we have from Theorem 8.1
1 1171 2 1 171
2N
C(fl,fg) = I(fgzg) - I(?tifi:g)

[}

' C(fl,fg) <  min I(fgzg)
geG
I .~ o
But the equality is attained by g = tf; + (1—t)f2€G. Hence

C(f,,f,) = min I(f,:g).
1772 2cG 2

Reversing the direction of the pseudo-distance I(fzg), we obtain
the following theorem which has already been proved in Section 2. For

reference we shall state it here again.

Corollary 2 to theorem 2.7 Let f,(x) (i=1,2) be given p.d.f.'s and let

1
{e(x)|g(x) 2 ola], fe(x)an =1, I(g:f;) = I(g:£,)}

Then we have

G

(8.9) min I(g:f - log F(t¥*)
geG

(i.e., the Chernoff information number for deciding between two

5)
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densities f; and fg), where

F(t) = [0 (x)1°0e,(x) 11 Far

and t#* is determined by the equation

(8.10) F'(t*) = f[fl(x)]t*[fg(x)]l_t*log £,0 & - o.

fglxi

The minimizing p.d.f. is given by

¥

(8.11) g(x) = g,(x) = [ (x) 1%, (x) 115 /P( 1)

and moreover we have

I(ey ) = I(gyif,) + I(fs:g,)

2

* .
t I(f2.fl)

I(ey,fq) = I(gy:f)) + I(fy:g,) = (L-t*)I(fq:£,).

It is clear that the preceding two theorems can be generalized to the
case of k > 3. We shall state, in the following, corresponding theorems

without proof.

Theorem 8.4' Let fl(x),...,fk(x) be given generalized probability

densities. Let

G = {g(x)]e(x) > old], fe(x)ak =1, I(fy:g) = ... , I(f, :&)}.

. n n KXo, I . .
Assume that there exists a (tl,...,tk)ea with t; > 0 (i=1,...,k)
such that
: X, X,
I(fl:§tifi) =,..= I(szftifi).

Then we have

min I(f :g) = C(f,,...,T)
2cG k 1 e

and the minimizing g(x) is given by

~

g(x) = B(x) = %‘,"Ejifi(x).
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Moreover we have

(£, ,8)

~J
I(f,:®) + T(g:f,) = = £,I(f,:f,), (i=1,...,k).
1 i 54 jooi

Corollary 2' to theorem 2,7 Let fi(x) (i=1,...,k) be given p.d.f.'s and

let
¢ = {g(x)]g(x) 2 o[A], fe(x)ax =1, I(g:f)) =...= I(s:f})}.
Then we have
min I(g:f ) = - log F(t *,...,t.%),
g€G k 1 K
where
tl C tk
F(tl,...,tk) = f[fl(x)] o..-fk(x)] an
and tl*,...,tk* are determined by
*® ¥*
t t
1 k f.(X) ’
dF (%, ..t ®)=f[£,(x)] ... Lf (x)] * log g "/dA=0
EEE 1 K 1 k ?;TET
(J=13 -:k‘l)
¥ *
%% =1
1 J

The minimizing p.d.f. 1s given by

T * £, "
e ()11 L0 ()15 /B(e %,

g(X) . g*(x)

and moreover wWe have

= . . —_ * ; ° .
I(gysTy) = Tgy:fy) + I(£;:8y) = jiitj Lers ety (1=1,...,%).
We might call the two kinds of densities g£(x) in Theorem 8.4 and g,(x) in
Corollary 2 to Theorem 2.7, as the 'average' or the 'centre of gravity'

and f,., If f, and f

h
i > 1 5 belong to the same type of the

of two dengities T
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exponential” family of distributions:

9.x
(8.12) f;(x) = £(x[g;) = e~ n(x)/M(8,) (1=1,2),

where h(x) > o[\] and M(8) = feexh(x)dx, then we can easily compute the
‘average' density g,(x) by (8.10) and (8.11). This is found to be a
density with the same type of the exponential famlly with a weighted-
average parameter-value 6%;

(8.13) g, (x) = £(x]8,) = ¢ n(x)/M(e%)

where 8% is the unique root of the equation

w' (g%) = w(eg) - w(el)

3

8, - 6,

in which w(8) = log M(8), and can be represented by

#*

* .
(8.14) =% -89 %3 -85 ¥ 4+ (1-t4)8,.
- JR— 5. -8, - %
1 2 | 2

This weight t¥ is the number just introduced in equations (8.10) and
(8.11) and we easily see that O < t* < 1, The minimum distance, or

equivalently, the Chernoff information number is, by (8.9), equal to

¥ _ 8%
I(ge:f,) = 0~ 92 w(ey) + 21

U.)(eg) - UJ(Ae*)'
8; - 87 8, - 8

I(gy:fy)

On the other hand another kind of 'average' density,qg(x), which
appeared in Theorem 8.4 cannot be found explicitly even in the case of
densities in the exponential family. The difficulty 1lies mainly in
the fact that even if fl and f2 belong to the same type of exponential
family of distributions the average density tfy + (1-t)f, does not

generally belong to the exponential family.

152



If, for the two exponential densities (8.12), a unique number
O <t <1 can be found such that

(8.15) [£(x|a;)1og TX181) @y = re(xfe,)10g £(X192)

where § = E@l + (1-5)92, then the common amount of information is defined

as the pseudo-capacity of the dichotomous experiment composed of f(x!el)

and f(x|@,) and is denoted by C'(8,,0,).

Theorem 8.5 The pseudo-capaclty of the dichotomous experiments for the

exponential family is given by
(8.16) C'(81,05) = w(®) - w(ey) - (F - 8)uw'(8y),
where w(8) = log M(8) and

(81w'(87) - 8,0'(8,)) - (w(8y) - w(e,))
w'(8;) - w(6,)

B =

(8.17)
_ I(f(x|eq) :£(x|ay) )8, + I(f(x]e,):r(x18;))6,
T(T(x[8,),1(x[6,))

Moreover we have the limiting value

lig . c'(el,ee)
81,0098 ————%—

(6,-0,)°

- 3% 1og f£(x]8) | .

=1w''(g) =1E
& 38

e

(Sakaguchi, 1959)
Proof. Since we have
I(f(X|61)3f(X|92)) = U.)(e) - U)(el) - (e = Gl)w'(el)
by straightforward calculation, we have
from which-we get the left half of (8.17). To see that § can be written
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B = Eel + (1-€)e2 with 0 < T < 1, we use the fact that for the exponential

family

w''(e) = By [(X - EeX)2] > 0, for all .

Tt follows that
(5-8,)(5-8,) = (w(8y)-uw(8,)-(81-65)w' (8,)}{w(8y)-w(e;)-(8;-85)w (61) )0,
(0'(8,) - w'(8,))°

Since
J(r(x|e;),f(x]8,)) = I(r{x|e ) :T(x]|8,)) + I(£(xlay):f(xl8y))
= (el'egj(wi(el)'w‘(ee)) ’

we obtain the right half of (8.17).

To yield the limiting value in the theorem we may note that

5‘92 w(eg)‘w(el)‘(SQ’el)w,(91) N 1.

9178 (-8,) (w'(8)-0'(8,))  (8,,8,-0) °

Thus we have

C'(87.0,) w(8)-w(ey)-(-6)w'(6)
(8,-85)° (8,-8,)°
=1 f?-el 2[0.)”(9)] B (——*—’—’)8 o4} 1 w''(0).
2\ Y1782 6, $6 58 Lt &

It should be remarked here that the parameter values 8% in (8.13) and

(8.14), and ® in (8.16) and (8.17) are both weighted averages of 8, and

92 but they do not always coincide. The situation may be seen from

Fig. 8.1.
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IPRTYE A Mg B
I(f :fg)

Figure 8.1

The two values t* and T do not always coincide,

where ¥ = t¥8, + (1-t7)6,

in (8.14) and (8.17) ﬁespectively and

T = I(fl:fe)/(I(flzfg) + I(f2:f,)).

We shall list several computed examples of the foregoilng discussions

in Table 8.1
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Table 8.1

fi(X)(i=l,2)

g (x)=r2, (071 L2, (x) 128 /R (%)

Binomial: (p*)X(Q*)l—X
pixqil_X where p¥log P_t +
*— q P
p*=log 1 q p 1
Ao <log o= oe —1> q*log a*
dp Po ay
; . ¥ e X 1
Poisson: e ™ (u*) 7/ (x!)
_ui X ' * #*
e Ty /(x!) where pu*log u* -
vl
pt= M17Ho 1
*_
Togu, -1ogH, (u “1)
Normal: 2 (2n)_1/2ex {—(X-u*)2/2} 2
L )2 P (1 -1u)2/8
(2") © : where
“*E (“1 + ug)/g
*
Exponential: (B*")'le"x/B -log B* _
B
= —le_x/si where 4
i G—ﬁ)
* - -
B*= 1 108(8 l/B l) Bl
8 -1 8 -1 1 2
1 T2
(Table 8.1 continued on next page)
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Table 8,1 (Continued)

ei ) Pseudo-capacity
H, -H X, X
log py I log(e "lye™72)
a; Py1-Pp
Where where
-1
H, = p,log 11)_)r a;log é_ (Xl) =(plC1-% (Hl)
1 i Xo) \P2%) \Hp
log My Hilog pqy-uylog uy i W log Mo (ul-ee
T T
1 &2 ee
" (1) /2 (uy-1,)°/8
Fi 1Ho 1772
—Bl—l -1 log El log/ -1} (8p;+1)

The notion of the capacity of statistical experiments can be
extended in two directions., One 1s the case where the experiment is not
finite and the other is the case in which the information is measured
by the generally-defined information I[e,8;U7 = U(§)-E[U(E(X))]|ET,
using a concave uncertainty function U(§) other than U(E) = —%iilogﬁi.

We shall show two examples in these directions in the following:

Example 8.2 Consider the normal experiment

e(o) = [(x,8),{p(x)]8)]|-» < 8 < »}], where p(x]|8) = 1 exp) (x-e)?
\2m o 202
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2

If we take p(8) = 1 expi_ (8-m) , then we have by Example 5.1,
\2n v 2V
I(e(o),p(8)) = [fr(e)p(x[8) log p _l dedx = 1 log <}+ 33_5.
p(x) 2 2
o
< Vi.

Let P = { p.d.f. p(8)lp(e) = _1 epo} (9-m)2 ;-0 < m < o; O<V
2
WEE v

2V
If we limit our attention to the prior distributions p(e) in P only,

then we have

max  I(e(a),p(6)) = L log( 1 + V- ).
p(a)eP 2 2

This fact is widely known and used in communication engineering in
which 02 and V2 are understood as noise power and signal power,
respectively. The capacity of the Gaussian channel is strictly

decreasing in noise power and increasing in signal power.

Example 8.3 Let & = [I,ﬁ),{fl(x),fg(x)}] be a dichotomous experiment.

If we adopt the concave uncertainty function U(§) = min(gl,l—gl), then

we have

Ile,5;U1 = U(8) - E[(Ug(X))|5]

min(8,,8,) - [ & J £ (x)ah + &, [ . 501 5
£

2 1

2 f1 =%

um
=

LA

= >

U

which expresses the reduction of the risk of Bayes decision rule
deciding between two densities fl and f2 with usual zero-one loss. We

can show that the above information attains the maximum at §;=8,= 1 and
2
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the capacity is equal to 1 [ (fl—fe)dx.
2 fgéfl

The proof is as follows: By a well-known theorem in statistical
decision theory the Bayes risk relative to the prior distribution
gl,l-gl isacontinuous and concave function of §l. We have

Ife,8;U] = min (&, - E[U(5(X))[81,1-5, - E[U(5(X))|8])

min (hl<gl)’ hg(gl)); say.

Since the minimum of two convex functions has the maximum at some
endpoint or at the point at which the two convex functions have equal

values, and since h;(0) = h,(1) = 0, we have the desired result.
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Appendix A

The role of sufficient statistics in statistical decision theory.

The following theorem expresses the fundamental role of sufficient
statistics in modern statistical decision theory. Let pl,,..,pm be m
probability distributions defined on the same measurable space. Let us
assume that we have to make some statistical decision on the basis of
observations of random‘variables x and y and a given weight function -
w(i,d).. For simplicity we shall assume that the random variables are
discrete and finite, We shall denote by 5xy the randomized decilsion
functions based on x and y, and similarly we shall denote by de the non-
randomized decision functions based on x and y. We shall say that a

class of d.f.'s {s,} is uniformly completé in the class of a.f.'s {éxy},

if and only if {GX} is complete in {éxy} with respect to any weight

function w(i,d).

}, if and only if x is

Theorem. {GX} is uniformly complete in {GX

y
sufficient for y, that is, the conditional probabilities pi(y|x)

(i=1,...,m) are independent of 1i.

(Elfving, 1952)

In order to prove this theorem we shall need the following three lemmas.

Lemma 1. If x is sufficient for y, then for every a priori distribution

€, the Bayes decision function with respect to it has the form dx'

Proof. The average risk of a randomized 4.f. éxy when the a priori
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distribution is § is written as

r(g,6, ) ==& = p.(x,y) = 84(x,y)w(1,d)

Xy 3 1 X,V + d

=2 pylx) 2 64(x,y) {3 gp, (x)w(1,d)].
X,y ol i
In order to minimize the above expression we have to assign, for each

X and y, the probability 1 to that d which minimizes the expression
{ e 9 @ }l

Lemma 2 Let (a, ) be a matrix game, We consider a mixed strategy n

1J
of the minimizing player and fix it. Let B be the set of all available

pure strategies of the minimizing player. If a subset B¥ of B exist

such that

min & €. (a,,-%; ) = min = &, (a, ,~a.) for all §,
jepti 1 1J 4 jep 1 1 131/

where a, = B(i,n) = = aj4M4, then for every minimax strategy n * of
JEB JJd
o;), when the minimizing player is allowed to use

the matrix game (aij—

only the mixed strategies which are convex combinations of pure

Strategies in B¥, we have

E(8,n %) £ E(§,n)  for all &,

Proof., For every &€ we have

E(g:no*) - E(g,ﬂ) 2 gi ( N aijnég-— > aijnj)

1 JEB* FEB
=3 & = *
1 1 gepr (ag4-95)n;
3*
TES I SCTENLRE



=min max ¥ = (a..-6.)E.C.* = ma in [ ... ]
* m§ i jeB‘*( 1d )gng mEX még

'_l

i

ax min = (a..-a.)8.C. By Lemma 1
3 (3 )88 (37 Eenma 1)

A
o

Lemma 3. If {8,} is complete in {éxy}, that is, if for every

5Xy€{bxy}, there exists a 5Xe{5x} such that

r(i,éx) < r(8,5_ ) for all &,

Xy
then for every a priori distribution &, the Bayes decision function with

respect to it has the form dx'

Proof. Let éxy be the Bayes d.f. with respect to &. Since there exists
from the assumption of the lemma, a d.f. &, with r(§,6,) < P(€,5xy),
and the reverse inequality holds true by the definition of 6xy, we have

(*) P(g:éx) = r(gxaxy)-

re

Hence we have to show that this éx is equivalent to some dx' We use
here the well-known fact that every randomized d.f. is equivalent to

some mixed d4d.f. Ny Let {dj(x)}v be the exhaustive set of the non-
J=1

}.

randomized d.f.'s depending upon X only and lying in the set {dXy

Then we have

\%
-8 3 q.r(i,d,
r(8,6,) =2 8y 2 mgyr(i,day(x))

J
= i: €l ? ﬂijr(i,dJ(X}y))

where nxyj J=1,...,V

='f‘]xj,
0, J > vHl.
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Since we have

r(g,6,.) <= § r(i,dj(x,y)) for all j,

Xy ? i

(*)

r(€,6x) =3 gir(i,dj(x,y)) for at least one J (1 £ J < v).
i

we must have by

If otherwise we have r(§,6 ) < ? éi?nxyj r(1,d4(x,y)) = P(E,éx),

a contradiction.

Proof of the Theorem,

o
(1) Assumethat x 1s sufficient for y. Take any d.f. ny and the
equivalent mixed d.f, and fix these. Since we have

r(§,6xy) = ? N ? nxyjr(i,d.(x,y)) = 5 ginxyjaij’ say

J 1,3
we get
o)
l”(g,éxy) - r(g;éxy) = j_ZJ' ginxyj(aij'ai)’
2
where a., = 3 1 © a
i~ 3 Xyj ij°®

Since x is sufficient for y, there exists, by Lemma 1, a subset B¥
{
of B such that

min 3(a;.-@.)8, = min 3(a, .-a,)E, for all §.
JEB* 1 i 1771 jEB 1 1j "1i7°1

If ﬂo* is a minimax mixed-d.f. when limited in the mixtures of non-
randomized d.f. d, in B¥, then we have by Lemma 2

¥y _ ¥ < o: bo,
P(g,ﬂo ) = 3 3 aijgino < izj aijginxyj r(§, Xy)
E
Here the mixed d.f. no* depends upon x only, and some randomized d.f.

6 equivalent to n,* can be taken., We thus have shown that {5X} is

uniformly complete in {6xy}‘
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(i1) Let us assume that {8 } is uniformly complete in {éxy}. The Bayes
d,f. with respect to & has the form dX and i1s independent of y. Hence,
for any y' # y",

if d, and d, are two non-randomized d.f. which minimize

1 2
(%) 3 gipi(x,y‘)w(i,d) and 3 gipi(x,y")wKi,d), respectively, then
i 1

we must have dl = d2.

If otherwise, the Bayes solution will have the form dxy' Now let us
assume that x is not sufficient for y. Then there exist x,y', and y"
(y' # y") such that

p. (x), py(x) > 0 and

p(y']x)  pa(y'[x)

py(v"]x)  py(¥"[x) # 0.

= pl(X)p2(X)

We can, thus, choose & >0, 8, =1-§ >0 and w(i,d) (i=1,2;d=d1,d2)

such that the simultaneous equations
0,

pl(X,y')§1W(l,d)'+ pQ(X,Y')EQW(Q:d)

il
M
—
(o
Il
o7 O
=

1 a
Ll 1 ? 1
py(x,¥y")8;w(1,d) + py(x,y")E,w(2,d4) = a=
0, d,
are satisfied. If we set
83 = ... =8 =05w(i,dy) =1, (§ 23),

then this contradicts with the proposition (*).
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Appendix B

Wald sequential-probability-ratio test.

The purpose of this appendix is to give a brief sketch of the
theory of sequential probability ratio tests, in order to aid the
comprehension of the discussions in Section 4,

Suppose the random variables Xl’X2,°-- are distributed
independently and identically, and theilr common density function
£(x) 1s known to be either fo(xj or fl(x). Let the possible

terminal decisions be

d, «... accept the hypothesis Hy: £(x) fo(x)

d . accept the hypothesis H,: f(x) = fl(x).

l LR I J
Let the loss of the terminal decision dj (j=0,1), after observing

Xys5++.,X and stopping with X when the hypothesis Hy (i=0,1), is
true, be given by

cm + W, J# 1
L(i,djlxl,...,Xm) =
cm, J=1
(c);{’o:'{’l > 0,31, j=O‘,,1;m=J;o,"2“, > ") and
3

OJ j= j—:

W,

L(i,dj) =\ "i’

for m = 0, In the above expression c is a given posltive constant which
represents the cost of sampling per observation. Thus the risk function

of the decision rule § is

1 o 1
r(1,6)=j§oL(1,dj)Pr(dj|5)+m§lE[j§OL(1,dJ|Xl,..o,Xm)Pr(dlel,e..,Xm;6”6,Hi
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Let 6[l] (1=0,1) be the particular decision rule which chooses d,,

without any observation.

Theorem 1. There exist two values 0 < & < T <1, such that
1s 8013, if 05¢s¢

Bayes decision rule r.t. {, 1-C4{ observe Xl’ if £ < ¢ < T
is 5[0], irg<¢zsl

—

Proof. We shall carry the proof in several steps.
(a) 6[O] is Bayes r.t. 1,0. If 6[o] is Bayes r.t. ¢, 1-6, then it is
Bayes r.t. ', 1-¢' for all ¢' > (. For, suppose that there exists
¢ < C' < 1; G[O] is Bayes r.t. {, 1-(, but non-Bayes r.t. (¢',1-C").
Then there exists
65 ¢'2(0,8)+(1-¢")r(1,8)<¢"#(0,800N)+(1-¢)2(1,800h)=(2-¢")x (1,0
[o])

[6]),

Jor(1,8)< r(1,8

For this § we have

(1-0)2(1,8107) = ¢r(0,8000)+(1-¢)2(1,607) < cr(0,8)+(1-0)r(1,8)
and hence

1-C r(0,8) < 1-¢!
C

r(1,8607)-r(1,8) ¢

A

which contradicts ¢ < {'.
(b) Thus

T = inf,{g|5[O] is Bayes r.t. ({',1-¢'), for all ¢' > ¢}
exists. We want to show that T is the minimum number. Let T <1

without loss of generality. Suppose, on the contrary, that 6[O] is

non-Bayes r.t. §,1-C.
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Then there exists

85 Tr(0,8)+(1-T)r(1,8) < Tr(0,5 0+ (1-7) (1,607,

and hence for slightly larger numbers (' = T + ¢ we still have the same

strict inequality, which shows a contradiction.

(c) By the same argument we can prove that 5[1] is Bayes r.t. 0,1, and

that
¢

max[gla[lj is Bayes r.t.(¢',1-¢'), for all {'< ¢}

exists
(d) Next we want to show that ¢ < C. Suppose vhat { >T. Then both
G[O] and 6[1] would be Bayes r.t.,(,1-C, for C 5\/C < £. Hence

¢r(0,6190)+(1-0)r(1,50197) = cr(0,801 N 4(2-0) (2,611
;.C(P(0,6[13)+P(1,5[O])) = r(l,&to]), for € < for all ¢ < ¢.
which is a contradiction.
(e) Finally we must show that, if { < ¢ < T then a Bayes rule (&%,say)
r.t.¢,1-C certainly observes Xl' With
p; = Pr{s* chooses d, without any observation} (1=0,1),

we find that p, t p; < l. For, if P, ¥ py = 1 then

QP(O,G[O])"'(I'Q)r(1;5[l])! > CP(O,5*)+(1—C,)I’(1,5*) (*)
cr(0,6M e (1-¢)r(1, 8117 L o, . .
= ¢ = p,r(0,6 7 7)+(1-¢) = pyr(1,6°"7)
i=0 i=0

1 . .
= = p,{er(0,6M D)+ (1-0)x(1,6'1 7))
i=0

which is a contradiction. Actually, we have Py + py = 0. For, denoting
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by 6' a decision rule which observes Xl with probability 1 and thereafter

behaves exactly the same as 6", we have
1 .
P{1,8%)= 2 pjr(i’°[J]>+(1-po-p1)r(i,a'), 1=0,1
j=0

. " = [J] [5]
S, e(0,8%)+(1-0)r(1,8%) = = ,(Cr(0,6 JNH(1-O)r(1,6"77))
J:

+ (1-p_-p;) (Er(0,6")+(1-C)r(1,8").
Hence, by (%), if p, + Py >0
¢r(0,6%) +(1-¢)r(1,8%) > (p *+p;) (¢r(0,6%)+(1-C)r(1,8%))
+(1-p_-p;) (¢r(0,8 ") +(1-¢)r(1,6"))
S Cr(0,8M)+(1-C)r(1,8%) > ¢r(0,8")+(1-¢)r(1,8")

which is a contradiction.

Then, by Theorem 6.1, the Bayes rule r.t.

o1
1—@(.@. 1)

Theorem 2. Let { < ¢ < C.

{,1-C certainly observes Xl' It is given by

m
Accept Hy, if jgl{fl(xj)/fo(xj)} >
accept H . "
HBoept B if £ & (- 1; and
1-C T —_—
continue sampling as long as C ;l-_ 1)< " < C 1
1-C 2 e = 1
4 1-Cl7

Proof. For every positive integer m
r(i,s) = Pr{n<m|Hi,6}E[10ss|n<m;Hi,5]+Pr{nzm|Hi,a}E[lossln;m;Hi,a].
Let the first term in the right-hand side of the above expression be

denoted by Ki(mla), and the second term rewritten as

v o e
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3+ ZPrinsm|8;X. =% ,..,X  .=X
Xl,.NX = ' P11 =1 " m-1

J=1

(Unless § uses randomization in describing its sampling rule, the first

factor of the summand would have the value O or 1.)

Let éx % be the decision rule which behaves exactly the same as §
l,-o., m
after observing X1=x1,...,Xm=xm. Then we have
E[1055|n2m3H1:53X1=X1, X o=x.} = em + r(i, 6X1""’Xm)
and so
r(i,8)= K;(m|8)+ = ... = g(xy,..0,x, 1]8) {embr(d, 5X1”_.,X )} n f, (xj),
1""xm m

where g(Xl"°"Xm_1|5)E Pr{ngm[é;xl=x1,".,Xm_1=xm_1}. Thus with

f(x ceesX )= gfo(xl)"'fo(xm)+(1'G)f1(Xl)‘"fl(Xm)’ we have

l’
¢r(0,8)+(1-¢)r(1,8) = ¢K (m|8)+(1-¢)K (m]8)

+ = ... Zg(x . .,Xm__lla){cm+cf (x Xp) .. o( m)r(O 6X1' <)
T

l, "JXm f(xl,c-o,XmT

+ _SE‘Qfl(Xl)"'fl(Xm) r(1,5. < )Y flx,i0x),
1oeeesXy

f(xl,...,xm)

In order to minimize the above expression for every fixed yseeesXy

and m, § must be the Bayes solution r.t. Cfo(xi)"‘fo(xm)
i Eaddt (X )
m ,1,o-o’m

2

(1-0)f (x9) oo P (X)) hien 1s given from Theorem 1, by
oy
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Accept Hl’ if 0 < Cfo(xl)---fo(xm) < [
f(X:---:Xm)

observes X .., if ¢ < " < {3 and

accept H_, 1f ¢ < ’ <1

By Theorems 1 and 2 we have shown that the Wald sequential-probability-
ratio test is optimal in the sense that for gilven prior probabilities
¢,1-C it minimizes the average risk ¢r(0,8)+(1-0r(1,8). We shall next

prove another optimal property.

Theorem £ 2'. Let a sequential-probability-ratio test & with the

boundaries A and B with B < O < A have the strength (a,B), 1.€.,

Pr{8 accepts H;|H } = & and Pr{§ accepts HO|H1} = 8., Then for any

other test 8' such that

Pr{s' accepts H1|HO} < a, and

A

Pr{§' accepts HolHl} B,

we -have
Ei(nlb) < Ei(nlé‘), i=0,1.
Proof. For any 0 < { < 1 we have

¢ (2 atcE (n]8))+(1-) (1,8+cE (n]8)) = ¢r(0,8)+(1-¢)r(1,6)
< Cr(O,b')+(1—g)r(1,6')=Q(L0Pr{a' accepts H1|HO}+ch(n|6'))

+ (1-¢) (¢ Pr{s’ accepts H0|H1}+cEl(n|5'))
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o CE (n]6)+(1-0)E, (n]8) < CE (n]8')+(1-¢)E (n]s").
This inequality must hold for all 0 < ¢ < 1. Hence, from continuity

considerations we must have Ei(n|5) < Ei(nlb'), i=0,1.

If we can find the values of A and B such that r(0,5g) = r(1,8.), then
6g with such A and B 1s a minimax decision rule. But, actually, we
cannot find such exact values, so we shall have to be satisfied with
approximations.

Before stating approximations we present the following theorem,.

THGOPeHlﬁ%3 For the Wald sequential-probability-ratio test, we have

(1) Closure; or more precisely, there exists

0 <p <13 Py(n>N) < const p", for sufficiently large N.

(11) Wald-Blackwell identity:

Ee(zi+"'+zn) = Ee(n)Ee(Z).

Proof. (i) Assume that Pe(Z > 0) > 0. The argument for the case
Pe(Z < 0) > 0 is similar. Since there exists a A > O such that

Pe(Z > A) > 0, we have if Y = A+(£B} + 1

b

Y - %
PG{-ZI zi>A+(aB)} > (Pe{z> A"'(—;Bl})Y > (Pe{z > A})Y =p >0
1=
and
(m#l)y
Pe{n>kY} < Pe{ b zy £ A-B, m=0,1,...,k-1}
i1=my+1 -

-

=(Pe{ 5 z,< A-BN¥ < (1-p*)¥ = [(1-p®) /YK = 0K (5ay).
1=1
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Thus setting N = ky + h (0<h< Y-1), we obtain if N > Y

Pe{n > N} < Pe{n>kY} < ka = pN/ﬁh < pN/pY—l-

N N
(11) Let Zy = = z;, and consider N large and fix it. We have
i=1
= = <
Py (n>N)Eq (2 |nsN) = Ey(2) Pe(n=N)Ee(ZN|n§N)

NEe(Z) - Pe(ngN){Ee(lengN)+Ee(N-n|n§N)Ee(z)}

N{1-Pe(n§N)}Eg(z)—Pe(ngN)Ee(zn|n§N)+Pe(ngN)Ee(n|n§N)Ee(z),

in which the left hand side (Naz) 0] (because E N‘ln>N <maX(A B)

and in the right hand side

Py (ngN)Eg (2, IngN) 7320y Ee(Z),

P, (nsN)E, (n|ngN) ZE:Z) Ey(n)

and
—
< o
NPe(n>N) (N—os) (because Ee(n) ).
Let
—{Xl,...,xm)IIf X1=xl,...,Xm=xm, then the Bayes test bg stops

sampling and accepts Hi} (i=0,1; m=1,2,...). Our approximation is to

assume that

m
jil log(fl(xj)/fo(xj)) = B, for all (Xl,...,xm)ésom; and

= A, fOl“ a-ll (Xl,.aq,xm)éslm
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This approximation looks drastic, but it works fairly well if the

densities fo(x) and f,(x) do not differ greatly from each other. Since

o]

(o8]
- - = S
a(A,B) mElPO(Slm) 1-a(A,B) i=1Po( om)
[e0] (o]
8(A,B) = = P.(S_), 1-g(A,B) = = P.(S_),
) Bl 1\ om 4 m=1 1 om
we have, using the above approximation
A .
e"a(A,B) £ 1-8(A,B)
B .
e’(1-a(A,B)) = B(A,B),
which is equivalent to
B
a(A,B) = 1Ae =
' e-e
(*)
A
B(A,B) 2 & Sy
e -e
Moreover we have by the approximation
E (z)+...42 ) = a(A,B)A + (1-a(A,B))B #
o'"1 ' (#)
E,(z+...42z ) < B(A,B)B + (1-8(4,B))A
From (#) and (#),
E (2 4...42) Logr eh1
E(n) = o %17 = (A g+t B—p 5 )/I(0:1)
L{©:1) e -e e -e
A B
E,(n) = Ey(zgte.42)) (B S+ aet 1 ) /1(1:0)
I{1:0) e -e e -e
and by setting
a = eb, b=¢e® (sothat 0<b<1<a),
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we have

r(0,6) i

WoatoE, (n) = w, 352+ 1rooy) ( 559 losa + 55§ logb)

]
=
+

_ 3 b(a-1) c 1-b a-1
3-"(:]-55) = W16+CEl(n) = Wl —a-b + m)- ( . baloga + -E—-sblogb)

These are approximations for the risks of the Wald sequential-probability-

ratio test.
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Appendix C

Multivariate information transmission

The transmission of information requires the presence of a source
of information coupled with an appropriate channel; the two together.

form what it is called an information system, or communication system.

Here an information system is described in terms of Jjoint probabilities
of inputs and outputs, and a channel is defined by 1ts transition
probabilities. ‘

The formulae are written as if x, y, etc. were continuous real
variables; the obvious modifications must be made if they are discrete,
vector-valued, etc.

Let us consider a communication channel and its input and output.
Transmitted information measures the amount of association between the
input and the output of the channel. If input and output are independent
no information is transmitted. On the other hand, if both are perfectly
correlated, all the input information is transmitted through the channel.
Iﬁ most cases, naturally, information transmission is found between
these extremes.

We are interested in the amount of information transmitted. Suppose
that we have a bivariate probability distribution with the density
function p(X,y). This means that if the input variable assumes a value
or signal x, then noise of the channel alters 1it, at the output, to

a value between y and y + dy with probability p(y|x)dy where

p(y|x) = p(x,¥)/fp(x,y)dy, and that the rules governing the selection of
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signals at the input must be constructed so that they take on values
between x and x + dx with probabilities p(x)dx = dx[p(x,y)dy. To avoid
complexity we use the notation p(:) to represent the density functions
of the random variables.-, without any suggestion that they have the
same density.

Under these conditions, and if successive signals are independent

the amount of information transmitted per signal i1s defined by Shannon as

J[ p(x,y)log p(x,y) dxdy,

(1)  T(x;y) = H(x) + H(y) - H(x,y)
p(x)p(y)

where H(x) = -[/p(x)logp(x)dx, H(y) = -fp(y)logp(y)dy and
H(x,y) = -[/p(x,y) logp(x,y)dxdy. We know by Theorem 2,1 that T(x,y) is
non-negative and equals zero if and only if x and y are independent.

When we introduce the conditional entropies

H (¥) = -[[p(x,¥)logp(y|x)axdy,  etec.
we easiiy have the following additive formula:
H(X, X5, e ,%,) = H(x,) + H_ (x,) + ... + H (%) (% >2).
1’72 Xy 1 X5 2 Xl)”"xk—l-xk 5 Ea

Thus we have another expression of T(x;y) as
(2)  T(xsy) = H(x) - Hy(x) = H(y) - He(y).

Now let us consider the case where we have several sources that
transmit to y. Then we take the input variable as multidimensional and
we have, for instance,

(3)  T(u,v;y) = H(u,v) + H(y) - H(u,v,y) = H(u,v) - Hy(u,V)
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We can express T(u,v3;y) as a combination of the bivariate transmissions

between u and y, and v and y. Define T _ (vi;y) as transmitted informa-
o

tion between v and y for a particular value of u, namely U, - If we set

T,(vs¥) = [T, (vi¥)p(u )dug,

(
u o]
wWe easlly see that

(%) 1 (vsy) = H(v) + H (y) - H,(v,7)

= Hy(v) - H, (v) = H(y) - H, ,(¥).

U,y
Hence we have from (2), (3), and (4)
(5) T(u,v;y) = T(usy) + T, (vsy) = T(v;y) + T (u;y),
which means that the additive formula for information transmission also
holds true. We have from (2) and (4)

T(vsy) - T (vsy) = (H(y) - H(¥)) - (H(y) - H ()

(H(v) - Hy(v)) + (H,(v) - H, (v)) = o

These identities show the symmetry of the left hand side expression in
the arguments u and v, and u and y. Since the symmetry between v and ¥y
is clear from the definitions (1) and (3), we have

(6) A(uvy)

T(vsy) - T (v;y)

T(usy) - T,(usy)

>
= T(uzv) - Ty(u;v) s O.

We shall, following McGill (1956), call A(uvy) the interaction information

between the three variables, It is the gain or loss in transmitted

information between any two of the variables, due to additional knowledge

of the third variable.
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We shall derive another important expression for A(uvy) as follows:
subtracting T(v;y) from both sides of the first identity of (5) we have
T(u,v;y) - T(v3y) = T(u;y) - A(uvy). From (3) we have T(u,v;y) =
H(u) + Hu(v) + H(y) - H(u,v,y). Then by these two identities and the

fact that T(uzv) = H(v) - Hu(v), we finally get

(7} Aluvy) = - (H(u) + H(v) + B(y) - H(u,v,y)) + (T(u;v)+T(u;y)+T(v3y)) .
We shall show in the following several examples in which transmission

of information is effectively analyzed by using the above.

Example 1

According to the definition (6) interaction information is positive
(negatiﬁe) when the effect of holding one of the interacting variables
constant is to decrease (increase) the amount of association between the

other two. And we have

Theorem 1. A necessary and sufficient condition for the three random

variables u, v, and y to be independent is that we have

(a) T(uzv) = T(v;y) = T(u;y) = 0; and

(p) A(uvy) = 0.
Proof. Necessity is almost clear., Since any pair of the two among the
three independent variables are independent, the condition (a) is necessary
and (b) is an immediate consequence of (7). To prove sufficiency we

must show that independence results from H(u,v,y) = H(u)+H(v)+H(y). Since

fffp(u,v,y)log p(uJVJy) dudvdy = O
p(u)p(v)p(y)

we have, by Theorem 2.1, p(u,v,y) = p(u)p(v)p(y), which completes the proof.
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It is well known that the condition (a) alone is not sufficient for

independence between the three variables. Let X = {al,a2,a3,a4} be a

probability space with probabilities 1/4 for each elementary event

a; (i=1,...,4). Set

A = {al’aQ}’ B = {31,8.3}, C = {al’au}
and let u,v, and y be indicator functions of the events A, B, and C,
respectively. Then we easily see that the three random variables are
pairwise independent but are not mutually independent. We have

A(uvy) = H(u,v,y) - (H(u) + H(v) + H(y)) = 2log 2 - 3log 2 = -log 2

Example 2

[o0]
Let {Xn}n=1 be a stationary (in the strict sense) Markov process

with order s (> 1). Since for every n (> s) and m
H(Xm¥i’xm+2""’xm+n) = H(Xm+l""’Xm+s)+(n's)me+l,:ii,Xm+S(Xm+s+1)
= H(Xl,...,XS)+(n—S)HX1,'..,XS(XS+1)
by stationarity of the procé;s, we have
(8) im0 Ry ) = e ()

Thus the mean information per symbol contained in sufficiently long
messages is equal to the conditional entropy of the process. The

conditional entropy determines the redundancy of the process, i.e.

(9) H(XS+1)_HX1,o--,X (XS‘H-) T(Xy5000,% 3%
R, = S ! :
S H(Xs+177 H

s+1)

Xs+l)
Evidently we have 0 < Rs <1, and Rs = 1 if and only if the value of
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X 1 1s determined by the set of values (Xl,...,Xs).

Redundancy measures inter-symbol correlation of the message. To analyze
the redundancy of the process is equilvalent to analyzing the transmitted

information T(xl,...,xS;x A natural generalization of (5) yields

s+1)'

(10) T(Xl""’xs5xs+1) - T(Xs5xs+1)+Tks(Xs—l3Xs+1)+TxS_1,XS(XS—25XS+1)

X ,XS(X15XS+1)

2,-..

=T(Xl;xs+l)+TX (x2;x8+1)+T

i )+. . T X 3X .
1 xl,xe(XB’Xs+1) X ( 8’ s+ﬂ

120 %gm
If we note the relation

(11) T(Xl,.. = T(x x

"XS;XS+1) 15X2""’ s+1)

we obtain another expression

(12) T(Xl,...,xs;xs+l) = T(xl;x2)+TX2(>gl;x3)+TX (xl;xu)+...+'

ps %3

TX2,...,XS(X1;XS+1)’

A proof of (11) is as follows:

T(Xl"'o’XS;XS'{'l) = H(Xl)"')XS)+H(XS+1) - H(Xli" ',XS+1)

H(Xe,...,Xs+l)+H(X1)—H(X1,...,XS+1) (by stationarity)

= T(%y 3% 00 0sXgyy)

Example 3 Series connection of channels. (Sakaguchi, 1957)
Hereafter we shall denote a communication system by
e = [X,{p(y|x)|xex},yl
where X and § represent the input and output spaces, respectively. The a

priori probability distribution p(x) over the input space is not relevant
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to the definition of the channel. If we connect the input of a channel

&y = [y,{p(z|y) |y€Y},Z] to the output of another channel
&y = [x,{p(y|x)|x€x,ul, then we have a new channel

e, + e, = [1,{p(z]x)]|=xex},z]
where

(13) p(z|x) = [p(y|x)p(z|y)dy.

We shall show that a positive interaction information is produced
between the variables x, y and z. Clearly we have p(zl|x,y) = p(z|y)
x)=H _(Xx).
(x)=H (x)

and p(x|y,z) = p(x|y). Hence we have H (z) = Hy(z) and H

¥ Y52

Thus we obtain from (4)
Ty(x;z) = Hy(x) - Hy,z = Hy -

and therefore from (6)

(14) 0 < A(xyz) = T(z3x) = T(x;y) - T (x5y) = T(y;2) - T, (y;2)

The information transmitted between x and z is due to a correlation with

a third variable y. Holding the interacting variable constant causes the

transmitted information to disappear. The equations in (14) also show

that the series connection, or equivalently, forming the "convolution"

(13) of two channels decreases the association between the two ends of

each channel,

Example 4 Parallel connection of channels.
Given two channels
ey = [I,{pi(y|x)|X€I},u] (i=1,2)
with common input space X and common output space }, we consider the

mixture
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ce *(1-¢)e, = [1,(¢p; (v]x)+(1-0)py(y]x) [x€x,u]

where O < ¢ < 1. This can be thought of as follows: with probability C,
a value y is observed according to the density pl(ylx); with probability
1-¢, y is observed according to pg(ylx). The recipient is informed only
of ¥y and not of which channel with probability ( or 1-¢, worked.

We shall discuss the effect of forming the mixture., We introduce
a third variable u, which is independent of x, and informs the recipient
about which channel 61 or 82 worked, but not about the value of y. Let
us denote the transmitted information through &,,€, and gel*(l-g)62

when the same a priori distribution p(x) over Y is assumed, as
T(l)(x;y), T(g)(x;y) and T(x;y), respectively, From (6) and the
definition of the variable u, the interaction information A(xyu) is

non-negative:

0 > A(xyu) = - Ty(xsu) = T(ysu) - Telysw) = T(xsy) - Ty(x59).
Since Tu(x;y) = QT(l)(x;y) + (1-Q)T(2)(X;y) we obtain
D (x;y) + (1—€)T(2)(X;y),

(15) T(x3y) < cT(

which is the same inequality as in (ii) of Theorem 5.2,

Theorem 2 The transmitted information T(x;y) through the mixture

gel*(l-g)82 is convex in 0 < ¢ < 1. For any prior distribution p(x),

the uniform (in ¢) equality of (15) holds if and only if

p,(y]x)  p(¥) identically.

pL(¥[x) © b (y)

Proof. We can rewrite
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T(x5y) = [/p(x)(¢pq (¥]x)+(1-C)p,(¥]x)) 1)10gfP1 (VI X)+(1-C)pp (F]%) gyqy
Qpi(y)+(l C)poly)

with pi(y) = [p{x)p y|x Ydx (i1=1,2). Direct differentiation gives
d T(x3y) = ffp(X)(pl(yIX)—pg(yIX))loggpl(y|x)+(1'€)Pg(Y|X)dx:dy,
¢ Cpq (¥)+(1-C)py ()
2 2
a® T(x;y) = ffp(x) P1FIR Py gy (P (3) - pp(9))7 gy
ac Cpl( %)+ (1o {y[x) Cpq (¥)+(1-C)p, ()
which, by convexity of the function §(u,v) = (u-v)2 in the region

Cut(1-Q)v
{(u,v)]u,v > 0}, is found to be non-negative. The second part of the
theorem follows at once from the strict convexity of the related

function {(u,v).

Example 5 Regression and information transmission.
Let p(x,y) be the density function of a bivariate probability
digtribution. We introduce the third random variable
z =y - o(x)
where o(x) is the regression function of y on x, i.e.
p(x) = [fyp(ylx)dy.

Since Hx,y(z) = Hy,z(x) = Hz,x(y) = 0, we have from (4)

T, (x53) = H(x) = H (¥),
Ty(x;z) = Hy(x)
Thus we obtain from (6)

|
jas
—
N
~

(16) T(x5y) = T(xs2) + T (x3y) - Ty(x32) = T(x;2) + H(y) - H(z).

In the right hand side of the above equalities we note that T(x;z) ¢ O
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b

£ 0. We call, following Féron and Fourgeaud (1951), these

but H(y) - H(z)

quantities T(x;z) and H(y) - H(z), the elastic part and the hard part,

respectively, of the transmitted information T(x;y).
Tt can be shown that T(x;z) = 0 if and only if
(17) p(ylx) = Aly - o(x)),
where A(z) 1s some density function such that A(z) >0, [A(z)dz =1
and [zA(z)dz = O.
Quite similarly if we define
w=1x - ¥(y),
where §(y) 1s the regression function of x on y, 1.€.
b(y) = fxp(x|y)ax
then we have
T(x3y) = T(y;w) + H(x) - H(w)

in which T(y;w) > O but H(x) - H(w) > 0. We again have T(y;w) = O when
<

and only when the conditional density is written in the form
p(x|y) = B(x - ¥(¥))
by some density function B(w) with the mean value O.
We say that the bivariate probability distribution has hard

correlations when T(x;z) = T(y3;w) = 0, We know that bivariate normal

distributions have hard correlations and linear regressions., And we have

Theorem 3 The only bivariate probability law which has hard correlations

and linear regressions is the Gaussian law.

Proof. The Gaussian law has the stated properties. We shall prove the

converse. Without losing generality we can, by the assumptions, write
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1l

p(y|x) = A(y - pyx)

(18)

p(x|y) = B(x - p,¥)
where pq and p, are the linesr regression coefficients. By simple
applications of the Schwartz’' inequality we obtailn p12§Var. x/Var. ¥y,
p22 < Var. y/Var. x and thus we have |plp2[ < 1 in the non-trivial case.
Differentiating the identity
logf(x) + log A(y-p;x) = log g(y) + log B(x-p,Y)
(£(x) and g(y) denoting the densities of x and y respectively) with
respect to x and y, we get
(19)  pyA"(y-pyx) = poB" (x-py¥)
log A(z) and B(z) = log B(z).

where we have set A(z)
If we set in (19) x = 0 and y = O, we have
p1 A" (¥) = poB"(-poy) s p1A" (-pyx) = pB" (%)

respectively. Hence we have by |p1p2| <1

A"(y) = (pp/py)B" (~po¥) = A"(pypo¥) = ... = A"(p " p, y) =...=A"(0)=
_1/8,say

B"(x) = (py/pp) A" (-py%) = B'(pyppx)=...=B" (py "0, x)=. . .=B" (0)=
-1/v, say.

Integrating we get by (18)

(20) p(y|x) = A(y-px) = (QﬂB)'l/eeXp{-(y—pIX)Z/(EB)}
' B(x-p,y) = (2my) Y 2exp(-(x-p,y)2/(2V))

and B,Y > 0. Since p(y|x)/p(x|y) = g(y)/f(x), we must have

(21)  pyB = pp/Y.

p(x|y)
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If we set x = 0 and ¥y = O in the relation f(x)p(y|x) = &g(y)p(x]y), we

obtain from (20) that

8(0)(\(/6)—1/263(13{_5_2_/ Y }

‘ 2 1—p1p2

f(O)(B/Y)_l/QeXp{_ﬁ/ 8 }
2 l—plp2

Eliminating the constants we finally get

1 (xg 2p Xy 4 v

1 exp ) _ _
2mo, 0y JEtEQ 2(1-p2A€12 9392 022
where o, = v/(1-pypp)s Op B/(1-p1py) and p
here that since (21) and B,Y > O we have p,p, > 0. Thus we have

Hh
P
&,

I

02

S

—
]

p(ny) =

1}
n

(plpg)l/g. We note

finished the proof.
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Problems Section 2

(1)

(2)

and

(%)

A =

Appendix D

Solutions of Problems

By theorem 2.1 (i)

We have I(0:1)

i

=1

n

5 L) Los(srk/t)
= {(s==)1og(s=—=/<—)} > 0
2X, 2x,72y;°0° =
1/2 1/2
O
ffolog TI ax = 2ffo f

i

0o

E

1/2

@
1

J£ A\
> 2(ffod1)log—j————?e-= - 2 logf{f £ydA
fvfofldx
> 2(1-[[f f; db)
1/2 1/2 1/2  1/2.
Jlf -t |an = [~ -f; (£, +f;  )ax
1/2  1/2 1/2  1/2
2, 41/2 2. ,1/2
< (e -r B Rpe e )Py
1/2 1
= (2-2f\[f f; ar) (2+2f4fofl ar)
< 2yE(1-fyTE, an)l/?,
iy £ -f
. - 0 ., o 71
I(0:1) = Jf log = d\ < Jf, 7 d
1 : 1
fo fO
=7 -1) {5 -1)f; + £}ar
1 1 :
£
= o) 2
S e 1)°f; d
We find that P P, . a,+9
I(py:py)-I(py:py)  P+py Lop _PoP1 Wt G
— = og —=log
Po™Py Py™Py po+p1 _ b4 qo+ql
Po™Pg 9%%



Let po+p1 _ X, qo+q1 Yy The function x log x+1 is symmetric,

boPy 9~91 . x-1
convex and decreasing for x > 1. Since
X -y= 2 and |x| - |yl = 2(poﬂjl'l)
P,-P; IPo-P1 |

it follows that, if (po+p1-1)(po—pl) = Dy4; - P4, > O, then
y<-1<1<x, |x]>]y|] and A <0
or

x<:1<1<y, |x|] <|y|] and A >0

and

both of which yield I(po:pl) < I(pl:po). Similarly the case in which

(pg*py-1) (P -Py) = Pya; - P q, < O gives I(p_:p;) > I(p;:p.).
(5) By corollary to theorem 2.1 the(lnﬁquality
L (E

I(f :fy) =2 sup 3 Mg (E )108 —gITET)

{Ej} J
is evident. We show the reverse inequality.

From the existence of I(f :f) we can find a K such that

£ (x
(%) £ (x) uo{11og | > K}
- £ < 1 ° > K11 i ixj < e
% S ol O%—?Irg)l }1log 5
by {]1og ?IT§7| > K}
n fo(x)
Let {|log ?—(—7| < K} = 21 E;s {'1ngIT§7! > K} = E 4> With n

sufficiently large such that

log h. - log hi <e i=1,...,n
— T 2
where h, = inf fo(x) and EZ =  sup f‘o(x)
- XEEi flixi eri flixi
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Since o (Ey)

u_(E,)log —
ol  (Ep) .
<
ub(Ei)logE; < fo(x) = HO(Ei) log hi’
lo d
éi B EIEY Yo
we have
n ub( i) fo(X)
EbotEmltenrEy < 6y RS T ol
= llog?—|<K
2
n u (E,) r (x)
< = |p (E)log === - [ 1log —3 au_|
= 4=1 0 1 My (Ey) E, f(x) o
S g (E,) (log By )
< 2 p (E,)(log h, - log h,) < g
=42 o1 i s aAl =5
This, together with (#*) yilelds
M .)log "o0' Ll > og H - €
=1 ©°1 EITEI) = fl flIX$ o]
|logf—|5K
5=

from which we obtain the desired inequality.

(8) The right half of the inequalities is evident, To show the left

half, we note that (N)
(K) v, (@) (N) (W)
2 v (Gj)log : < I(vo v )
J Ul )(GJ)

where the sum is taken over any set of pairwlse disjoint {Gj} such

that } = U G

J J
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Problems Section 4.

(1) Take S, = {t|t>0}, Sy = {t|t<0} in corollary to theorem 2.1

0 s OEwo
(3) (a) inf TI(0:8)) =
8 o€ (8+8)2/2 5 8w
(6-8)%/2 , 8w
inf I(e:el) B
8 €0 0 , 8w,
Thus it follows that
E(n) > sup - 2 10g{ab(1-a) 15 (1-a) ety
Too<exkl 8
= = - —l§ log{4a(1l-a)}(= M, say).

6

(e¢) Since

U
sup Pe(Test accepts HO) =1-P(X+8 2> &)

8 €wy U -2yms Im 5
= m6 y
t
- [@ exp{- 5} dt,
Vo =
then, in order for the above expression to be
1 £°
<0 = — f eXp{— —2"} at
= S

we must have U, _ T < 0.
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Problems Section 5,

(4) (a) Since
co
p(x) = [ p(8)p(x |gae
)
0 , <-3
x+ £ €
_ [ CAPSEERT l(l—e—a(x+ §)), %< X < %
- o € ¢
X+ % -a ag/2 _-ag/?
f : E e %e_ ( 5 _ [ ) X >%
X- =5 &
2
it follows that e o e
= X+ & co X+ =
T{g;x) = f2 dx ° [ ax [ 2 p(6,x)log ee xx de
g e x- £ pal
-7 )
€ X+ % .
= - f’g dx [ ae~28 log(l - e a(x+ 5))de
_ & o €
2
o X+ % » o
- [ax | ae 28 1 g ( aax(eae/E:e-a@/2))de
P x €
2
1-e7 8¢ 1 1-e
- a% f z log z dz - e [ log u du
o) 1-z o]
[
_ 1_e-a(x+ 4= e—ax(eag/Q_ e—aq/E))
g -7 1
= - = ¥ log z dz = === log(1l-t) dt
¢] 1-z € t
102 1-e7d%
= ag 2 ( 2
J=1 J
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(6) (a) The Fisher information regarding ¢ 1is

2
1(¢) = f (- g%glog r(x) £ (x)an = - [( $ Tog fg(x))zfg(x)dx
fo(x)-f (x) 2
= [ (=2 fc(xi )t (x)an
(£ (x)-£ (X)) (£, (x)-T,(x))
_ 1 C 1 ¢ 2
-t/ e .
1

= Ty (1 - f1f2/fC dx )

(b) We consider the case where f; and f, are such that f2(x)/f1(x) is

continuous, strictly decreasing and lim fQ(X) = 0,
X 00 fllxi
Let ., f2 and ¢ be fixed, and let r be the unique root of the equation
£, (x)
2 _ ¢ R 3
fl(x) = 1% if it exists.
If no root exists we define r = -» or O according as the domain of the

densities is the entire real line or the non-negative axis. Under this

convention we have, by the bounded convergence theorem,

r ) f (X)f (X)
s(¢) = ( f +[) e @
-0 r C
17 f 17 o
T I1-C L1 64y SR E-£ 14 (-6 *
T-07t, ct,
T 2 T ¢fy (%) m ] ® o (1-¢)fo(x) m
- 1¢ 2V Gy e+ 2 (- () N
since (1-¢) (%) ) g
0 < Cfl(x) h - , 4f Xi > r
(I-0) T, (%) -
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NOW, for the normal densities with equal variances, we find
__Q +
log U.] |J.2 2
2 Il ( )/ )

Using the above expansion we obtain the desired expression,'

(7) (2) Let & and v be any two distributions in ¥¥ and let m = af+(1-a)v,

) (K

= U+

where O < ¢ < 1. Then
(x) (Tflf]_(x) Kf}{( ) )
n =\ ST
=n fj( x) S e )
x)+ X)

J
figlfl( (l Q)Vl 1(
aa(X)F(Toa)e(x) — 7" " )
- aq(x) 5,11 (%) )+ (1-a)r(x) M £, (x) )
G-Q(X)-l-(l—'a)r»(xy q(x),oo- G.Q(X)*'(l-q)l"(X) I’(X) I

where q(x) = = §J J( x) and r(x) = 3 ijj(x)' It follows that from the

concavity of U °

Un(x) 2 GETRetRTRRy V(S0 + gorRrtE T V)

Hence
E[U(n(X))|m] = fU(m(x)) (aa(x)+(1-a)r(x))d)
> afU(E(x))a(x)dr + (1-a) /U(v(x))r(x)dx
= aE[U(E(X)) |81 + (1-a)E[U(w(X))]|wv].
(p) Let U, = E[U(&(X),...,X ))[€]. Then
U, = E{E[U(E(Xy,..,X )N (X))IB(X,...% 1) 1]8)

CEU(e(Xy, X)) - T0e,E(X, . uX ) 1) 5TUTIE]

U _; - E{Ile,8(X;,...,X {)35U][8} U, 4.

193



Problems Section 6.

(3) (a) Assuming a; < a, we have

1—&2
0 ’ 0<n< il
S =3 —a,l
N i 1-a a
fFl(u)duz (1—al)n—(_L—a2), 2 < <2
o) 1-a = a
- 1 1
n -1, a
—= < n < o,
a
and 1
1-a,
C ’ 0<CSsg—37"
= __2-a1 a2
= 3 » 1l-a a
RX(g) = (a1+a2—1)g+(1—a2), — g <C < +§
12 I
e jg <gz1
a,+a, =
The graph of RX(g) is shown by Figure a, 2/ ( o )
-p=/2(0 -1
(b) We have & le
¢ s 0 €€ = 5 o
Ry(C) = g2 _q ~k7/2(0"-1)
u 1 o -1
¢+ {i—g@(t— 02_1)+(1—c)gii( 5 )1dt, ¢, <€ =1,
where 2 = 26 J;é+2(02—1)1og(cn) and 1N = T%E , if 0 > 13 and
B 2
{’l t + '»uo 2
1-¢+f  {ce(t+ Yl 1 5L ) (———n=D ) 1% 0<C <
Ry(C) = I{,‘ I}j_o’é gt e 656
1"g 2 CO < g § 1:
1 =3 . ‘
where £ —_EE peﬁg(lgcg)log(cn) and n = TQE , 1f o < 1.
l-0 -

The graph of RX(Q) is shown by Figure b.
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f \\ y \
/ ~, . / \
A
| X
| ) A
' | ; X
1 t
0 1—32 % 8y 1 0 Co ik
2—a1—a2 al+a2

Figure b (Case for o>1)

Figure a (Case for a1+a2<1)
Let p(n)(e) be

&

(4) Take any 906® and {e(n)}oo c ® with e(n)(___> )eo
n=1 1 —co

the prior distribution assigning probability_% to each of e(n) and 60.
Then ( ' )
p,(x|8
==l n
(n) (9)

dx dp
pi(X)

py(x]8,)

r(e,,p™) = [fp,(x]8)10g

1

d
F(py (x]8 )+, (xl8 P)y) .

p, (x]8(™) i

+

(n)
1 X|0
> f pi( I )lOg %(pi(x|eo)+pi(x|e(n)))

Thus we get

81(e;,0 ™) /(M6 )2 —> 1,(s).

N—o0)

Taking the 1limit n - « in both sides of
n
I(sl,p( 5 > I(eg,p(n))

we obtain
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Problems Section 7,
(2) (a) Let wj(g) be the expected sum of j observations when ( is the a

priori probability for H1 and the optimal design is used. Then

- : e, (%) .
X {CBp +(1-C)E YOy (T !
W,..(C) = max
gis Ce, ()
v {gEgl+(l'qu2]{Y+wj(9g1(Y)+(1—c)g2(Y) )}J

(¢ = 0,1,...,N-13 wo(g) = 0), By the hypothetical assumption stated,

the right hand side equals s

_ - Gfl(X) X: ((;Ef +(1—§)Ef2)=X
{cBp +(1-C)E¢ ] e sE e oy e L 1
Y: (CE_ +(1-C)E_ )Y
&1 85
(p) Since 5
YFN(- %—,ue), under Hy
£, (X) 2
log 2 = pX - L o7 u2 2
fllX5 2 N(§—3 uo) o, under H,
2 5
N(- %— L,u7), under Hy
. g,(Y) . 0l .
og = -u¥ + 5=
g, (Y) e N %), under H,

the conditions stated in (a) are satisfied., The optimal design 1is:

X <

Choose according as C % )

Y >
(3) For the design Dl’ let 0y denoté the probability of obtaining heads
on the i-th toss. To avoid trivialities we shall suppose that p and q
are not both O or both 1; then |p+g-1| < 1. It is easy to show that

ai41 = (pta-1)ey + (p+a-2pa)

from which it follows that

196



_ _1yi-1 _ pta-2pg pta-2pg —_—
ap = (Pra-1)770(e) - o) TR (i) Yt

Hence in using the design D1

1im B 4 3 X 1D 3p,q7 = 1am (LN oy, 85
N-oo N 521 1171y Noco N -7 s
so that .
L(Dy |p,q) = max(p,q) - Lin [ L 2 %IDy5p,al
—00
52

= (v#8) - (v + =) = 8(1-8/(1-v)).

The corresponding quantity L(Do|p,q) 1s easily seen to have the value
(Y +06) -y =8,
(4) (a) Suppose for definiteness that M; 2 Hy'. If X is used first the
expected yield is

Mo Hy o
(#) My + ul(EI) + (l-ul)max( —T:EI s “1')
Since (*) > 2, 2 ul+u1' > 2“1" X followed by optimal 1s better than
Y followed always by X, which is better than Y followed always by Y.
Of the other two strategies starting with Y, the one requiring X if
Y = 1 has expected yield 2“1' + ulul' - ug' which can be shown to be
less than or equal to that for the strategy requiring Y if ¥ = 1, namely

(+) Myt 4yt + (T-pg )y
We have (¥) > (+), if and only if
elther u, > “2': or “1*“1“1' > ul'+u2',

Combining these results we get the first half of the statement.
(6) Proposition 2 holds true for any continuous uncertainty functions
with U(€) = O for €, = 0 or 1. However if U(§) N 4% §,1log &,

Proposition 1 is no longer true.
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