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Faculty of Statistics

Complutense University
Madrid, Spain

dagomez@estad.ucm.es

Javier Montero
Faculty of Mathematics
Complutense University

Madrid, Spain
monty@mat.ucm.es

Greg Biging
College of Natural Resources

University of California
Berkeley, California, U.S.A.
biging@nature.berkeley.edu

Abstract

Over the last decades, many fuzzy
classification algorithms have been
proposed for image classification,
and in particular to classify those
images obtained by remote sensing.
But relatively little effort has been
done to evaluate goodness or effec-
tiveness of such algorithms. Such a
problem is most of the times solved
by means of a subjective evaluation,
meanwhile in the crisp case qual-
ity evaluation can be based upon
an error matrix, in which the ref-
erence data set (the expert classi-
fication) and crisp classifiers data
set are been compared using specific
accuracy measures. In this paper,
some of these measures are trans-
lated into the fuzzy case, so that
more general accuracy measures be-
tween fuzzy classifiers and the refer-
ence data set can be considered.

Keywords: Accuracy assessment,
remote sensing, fuzzy classification.

1 Introduction

The evaluation of effectiveness of classifica-
tion algorithms is always a must, being itself
a part of the classification process: the expert
classification can not be avoided meanwhile
behavior of a classifier has not been properly
tested. In the crisp framework, evaluation of
a classifier can be made by comparing pixel by

pixel if the classes proposed by the classifier
and the expert are the same or not. A good
classifier will show a high percentage of co-
incidences with the expert classification. Re-
mote sensing literature distinguishes three dif-
ferent steps within this accuracy assessment
(Stehman et al. [19]): sampling design, mea-
surement design (usually requiring an expert)
and data analysis. But standard classical ap-
proaches can not be directly translated into
very complex images, like the ones considered
in remote sensing, where regions may show no
particular pattern and large transition mix-
ture zones. In this paper, we will generalize
some particular crisp models so that accuracy
assessment can be applied in case reference
data set is fuzzy.

In the crisp framework, an error matrix is
been built from the data reference set (classi-
fication given by the expert for some pixels)
and the classification given by the classifier.
The diagonal of this matrix represents the set
of pixels in which the classifier and the data
reference set coincide. However, as pointed
out by Congalton and Green [4], standard ac-
curacy assessment based on the error matrix
can not be directly applied when dealing with
fuzzy classifiers or when the expert opinion is
given in fuzzy terms.

In order to be able to assess the accuracy of a
fuzzy classification, some approaches consider
measures based on a linguistic scale of accu-
racy (see, e.g., [7] and [12] for two different
approaches). Alternative approaches also for
fuzzy classification are based on a fuzzy er-
ror matrix that generalizes the classical crisp



error matrix. In particular, Binaghi [3] con-
siders (for each pixel) the degree to which a
pixel has been classified in class i by the clas-
sifier and in class j by the expert (by means
of the min operator). A fuzzy error matrix
is then obtained from this information. Af-
ter that the overall, producer and user accu-
racy for each pixel is obtained normalized by
the sum of membership degrees of the expert
opinion (see [3]).

With the same aim but with a different point
of view, in this work we build a new disagree-
ment measure that takes into account decision
maker preferences. Such a measure general-
izes the classical measure for crisp experts and
crisp classifiers in case all errors are consid-
ered equally important by the decision maker,
allowing fuzzy experts and fuzzy classifiers,
without even imposing a Ruspini’s partition
as the basic classification system (see [2]).

The paper is organized as follows: first of
all (section 2) we review main classical ac-
curacy measures (overall, producer and user
measures). In section 3 a new family of dis-
agreement measures for fuzzy classification is
proposed, taking into account decision maker
preferences, so those classical accuracy mea-
sures can be translated into the fuzzy case
(section 4). In section 5 we present two pos-
sible approaches for the construction of the
matrix of weights, followed by some final re-
marks (section 6).

2 The crisp case

Let us consider a fixed remote sensing image,
divided into a set of pixels P , with T ⊂ P the
family of pixels to be tested. Let A1, . . . Ak

be the set of crisp classes under considera-
tion. The error matrix N is then defined as
a frequency matrix, where each element nij

represents the number of pixels that the ex-
pert classified a pixel in Ai but the classifier
did in Aj .

Definition 2.1 Given the error matrix N =
(nij), the producer accuracy for the class Ai

is defined as
nii

k∑

j=1

nji

Definition 2.2 Given the error matrix N =
(nij), the user accuracy for the class Ai can
be defined as

nii

k∑

j=1

nij

The user accuracy of a class Ai estimates the
probability of right assessment when the user
(the classifier) proposes class Ai, while the
producer accuracy of a class Aj estimates the
probability that a pixel of class Aj is iden-
tified by the classifier. The overall accuracy
will estimate the probability po of right clas-
sification (same opinion for both expert and
classifier), and can be therefore used to get
a global comparison between different classi-
fiers.

Definition 2.3 Given the error matrix N =
(nij), the overall accuracy is defined as

p̂o =

k∑

i=1

nii

|T |
being |T | the number of pixels we are testing.

Proposition 2.1 Assuming independence of
right classification between different pixels,
the observed overall accuracy p̂o has a Nor-
mal limit distribution, so for a large enough
sample its distribution can be approached by
a Normal distribution with expected value the
probability po of right classification and vari-
ance

po(1− po)
|T |

Proof: Straightforward from the Central
Limit theorem.

In this way we can easily obtain confidence
intervals for right classification.

Example 2.1 Let us consider the example
given in [4],where three crisp classes A1, A2



and A3 were considered: Forest, Wetland and
the Urban Areas, respectively. The producer’s
accuracy and the user’s accuracy for each
class can be therefore obtained as the ratio be-
tween the diagonal element (number of pixels
well classified) and the total in that column or
row. If the error matrix is

M =




23 9 6
3 18 5
4 3 29




we obtain the accuracy measures given in table
2.1. It can be checked that overall accuracy is
70/100 = 70%, in such a way that [0.61, 0.79]
is an interval confidence for po at 0.05 signif-
icance level.

Class Producer User
Forest 23

30 = 77% 23
38 = 61%

Wetland 18
30 = 60% 18

26 = 69%
Urban 29

40 = 73% 29
36 = 81%

3 The mathematical model

Traditional remote sensing accuracy assess-
ment assumes crisp classes, in such a way that
agreement between the classifier (C) and the
expert (E) is modelled according to a two-
valued model: perfect agreement (0) or total
disagreement (1). This restriction implies a
strong oversimplification of reality, since the
continuum of variation in many landscapes
will be difficult to be properly represented.
In order to address this issue, we will propose
a continuous error measure that summarizes
the differences between a crisp reference data
set (most expert are still crisp) and a fuzzy
classifier.

From a mathematical point of view, a pixel
being classified by the expert (E) or by the
classifier (C) as the crisp class Ai, can be
modelled as a k dimensional vector, k being
the number of different classes under consid-
eration, in such a way that all coordinates
take value 0 except the i-th coordinate, which
takes value 1. A crisp classifier or a crisp ref-
erence data set can be then considered as a

function assigning to each pixel p a vector in
{

x ∈ {0, 1}k/
∑

i

xi = 1

}

Hence, in case our k classes are fuzzy and we
assume that assignments is made in terms of
a Ruspini’s partition [17] (see also [2]), both
classifier C and expert E will be defined as
mappings

E : P −→
{

x ∈ [0, 1]k/
∑

i

xi = 1

}

and

C : P −→
{

x ∈ [0, 1]k/
∑

i

xi = 1

}

Hence, disagreement between classifier and
expert can be measured by means of a dis-
tance in such a k dimensional space, assigning
to each pixel a real value

D : T −→ <

where T is the subset of pixels (or polygons)
selected for the accuracy assessment (an alter-
native valuation set can be given in terms of
linguistic terms, see [20]). A standard mea-
sure for disagreement between classifier and
expert is given below.

Definition 3.1 Given a remote sensing im-
age P and a family of classes A1 . . . Ak under
consideration, E an expert function and C a
classifier function, then the error of the pixel
p given by the classifier C with reference data
set E is defined as:

Df (E(p), C(p), p) =
k∑

i=1

|E(p)i − C(p)i|

where E(p)i is the i-th coordinate of E(p) and
C(p)i is the i-th coordinate of the C(p).

Notice that this definition does not assume a
crisp expert neither a crisp classifier. If classes
are fuzzy in nature, mathematical models
should acknowledge such a situation, and the
expert should in terms of fuzzy classes. But
in practice we find that most expert classifiers



are crisp, perhaps because of the complexity
in defining all parameters of a fuzzy classi-
fication. In this case, the above distance is
unrealistic, giving excessive distance values to
transition zones. So, we propose the following
modified definition.

Definition 3.2 Given a remote sensing im-
age P and a family of classes A1 . . . Ak under
consideration, E a crisp expert function and
C a fuzzy classifier function, then the error
of the pixel p given by the classifier C with
reference data set E is defined as:

Dc(E(p), C(p), p) =
k∑

i=1

wij |E(p)i − C(p)i|

where E(p)i is the i-th coordinate of E(p),
C(p)i is the i-th coordinate of the C(p), j
is represents the class to which p is assigned
(E(p)j = 1) and each wij ∈ <+ represents the
importance of the error when a unit sampling
that belongs to class j is classified as class i.

Notice that whenever both classifier and refer-
ence data are crisp, the above error function
can be viewed as a weighted error function
that takes value wij if the expert E(p) has
classified the pixel as Aj and the classifier has
classified the same pixel as Ai. Moreover, if
we take wij = 1, ∀j, then the disagreement
measure is just the classical one. In a more
general approach, these weights can depend
on the maximum value E takes, or any other
dispersion measure for E.

Notice also that our approach does not impose
any particular structure on the classification
system (as pointed out in [1, 2], fuzzy par-
titions in the sense of Ruspini as quite often
unrealistic).

4 Accuracy measures

Last definition of disagreement between ex-
pert and classifier allows to generalize the con-
cept of producer accuracy, user accuracy and
overall accuracy for the case in which not all
errors are equal, and for the case in which the
classifier is fuzzy but the expert is crisp.

Definition 4.1 Given a remote sensing im-
age P with A1, . . . Ak the family of available
classes, an accuracy data set T ⊂ P with car-
dinality |T |, a crisp reference data set E(p)
for all p ∈ T , a fuzzy classifier C and an er-
ror Dc(E,C, p) for all p ∈ T , the producer’s
accuracy for a class Ai is defined as

∑

p∈P/E(p)i=1

(1−Dc(E, C, p))

ni

where ni = card{p ∈ P/E(p)i = 1} is the
number of pixels assigned by the expert to
class Ai.

Notice that 1 − Dc(E, C, p) can be viewed
as the agreement between the crisp expert
and the fuzzy classifier for the classification
of pixel p. Hence, from now on we will denote

Ac(E, C, p) = 1−Dc(E, C, p)

the agreement degree between the crisp expert
and the fuzzy classifier.

Example 4.1 Let us continue the previous
example, and let us assume the following
weight matrix for error:

W =




0 2/3 2/3
1 0 4/3
1 4/3 0




Lets also assume the following reference data
set versus classifier matrix:

Forest Wetland Urban
Forest 23 9 6

Wetland 3 18 5
Urban 4 3 29
Total 30 30 40

Then the producer accuracy for Wetland class
can be determined as

9 ∗ (1
3) + 18 + 3 ∗ (−1

3 )
30

=
20
30

= 66%

It should be noticed that under the classi-
cal approach, the producer accuracy for Wet-
land class was 18

30 , obtained when considering
equally important all errors (see [4]).



Definition 4.2 Given a remote sensing im-
age P with classes A1, . . . Ak, the accuracy
data set T ⊂ P , the crisp reference data
set E, the fuzzy classifier C and the error
Dc(E,C, p) for all p ∈ T , the user’s accuracy
for a class Ai is defined as:

∑

p∈P/Max{C(p)}=C(p)i

Ac(E,C, p)

ni

where ni = card{p ∈ P/Max{C(p)} =
C(p)i}.

Definition 4.3 Given a remote sensing im-
age P with classes A1, . . . Ak, the accuracy
data set T ⊂ P , the reference data set E, the
classifier C, and the error Dc(E, C, p) for all
p ∈ T , the overall accuracy is defined as:

p̂o =

∑

p∈P

Ac(E, C, p)

|T |

Notice from the previous examples that the
coefficients of the weighted matrix must sum
k2 − k as in the classical way. This condition
should be imposed in order to compare the
overall accuracy from different classifications.

In case in which the classifier is crisp and all
the weights are equal, all three the accuracy
measures (producer,user and overall) will be
the classical measure.

Proposition 4.1 Given a digital image P
with accuracy training site T ⊂ P , E being a
crisp expert and C a fuzzy classifier, if p0 rep-
resents the expected value for a perfect match-
ing between the expert and the classifier, then
the overall accuracy of definition 4.3 can be
approximated, for a large enough training site
and assuming independent behavior between
pixels, by a Normal distribution with expec-
tation p0 and variance

p0(1− p0)
|T |

Proof: once C and E are fixed, D(C, E, .)
or A = 1 − D(C, E, .) can be viewed as ran-
dom variables taking a real value for each

p ∈ P . If we denote by µ the expected
value of D(C,E, .) then the expected value
of A(C, E, .) will be 1− µ.

In the classical case, for example, D(C, E, .) ∈
{0, 1} in such a way that D(C,E, .) can be
viewed as a Bernoulli distribution and µ rep-
resents the probability of disagreement 1−po.
In the general case, µ = 1− po represents the
expected error frequency between the classi-
fier C and the reference data E. Analogously,
1− µ = po will represent the expected agree-
ment frequency.

Hence, if

p̂o =
∑

p∈T

A(E, C, p)
|T |

represents a sample mean of |T | indepen-
dent observations of the random variable
{A(E, C, )̇}, the Central Limit theorem as-
sures the above result when |T | goes to in-
finity.

Example 4.2 Let E be the crisp reference
data set given by an expert, let C1 be a classi-
fier (shown in table 1) and let C2 be the crisp
classifier that assigns to each pixel the class
with highest degree of membership according
to C1. Suppose that all errors have the same
importance (wij = 1 if i 6= j and 0 otherwise).

Table 1: Error table for fuzzy classifier C1

Frequency Data Classifier
8 (1, 0, 0) (0.8, 0.1, 0.1)
17 (0, 1, 0) (0.6, 0.4, 0)
14 (0, 1, 0) (0.5, 0.4, 0.1)
21 (0, 1, 0) (0.1, 0.4, 0.5)
5 (0, 0, 1) (0, 0.4, 0.6)
5 (0, 1, 0) (0, 1, 0)
10 (0, 0, 1) (0.5, 0.5, 0)
12 (0, 0, 1) (0, 0.1, 0.9)
8 (1, 0, 0) (0.7, 0.3, 0)
10 (1, 0, 0) (0.6, 0, 0.4)

Errors associated to C1 and C2 can be then
computed, obtaining a final accuracy of 61%
for C1 and 48% for C2. But notice that under
a standard approach accuracy assigned to both
classifiers will be the same, despite we real-
ize it is unrealistic. In fact, from a statistical



point of view (signification level α < 0.0001)
the accuracy of C1 is greater than the C2.

It should be pointed out that the fuzzy error
matrix proposed by Binaghi [3] gives the same
overall accuracy for the classifier in the above
example. In fact, it can be proved that if the
reference data is crisp and the fuzzy classifi-
cation is a Ruspini partition [17], then both
approaches are equivalent for the overall and
producer accuracies whenever wij = 1, ∀i 6= j
and wii = 0 otherwise. Notice that Binaghi’s
approach only takes into account one coor-
dinate (the one chosen by the crisp expert),
while our approach is based upon the behavior
of the remaining coordinates. Future research
should explore the possibility of a mixed ap-
proach.

Example 4.3 Let us suppose a 100 pix-
els image, where a crisp expert proposes
(1, 0, 0, 0) for all pixels. Let us as-
sume two classifiers, the first one assigning
(0.6, 0.1, 0.1, 0) to every pixel and the second
one assigning (0.6, 0.4, 0.1, 0) to every pixel.
The approach given by [3] does not make dif-
ference between these two classifiers, assign-
ing in both cases 60% to the overall accu-
racy. But it is clear that those situations are
not equivalent. In fact, our approach (taking
wij = 1, ∀i 6= j and 0 otherwise) assigns 80%
for the first classifier, and 50% for the second
classifier, which seems rather more appropri-
ate.

If the classification is not given in terms of
a Ruspini partition both approaches can be
very different. For example, the Binaghi ap-
proach for the overall measure considers that
E(p) = (1, 0, 0) and C(p) = (1, 0.2, 0) repre-
sents a perfect agreement, which in our opin-
ion is not appropriate (the agreement for this
case gets a 0.8 value under our approach).

5 Obtaining weights

As it can be perceived from the disagreement
measure given in definition 3.2, the weights
that represent the importance of the differ-
ent errors play an extremely important role.
In the following two subsection we propose

two alternative techniques in order to deter-
mine the importance of errors. The first one
is based on a Multicriteria Decision Making
approach, and the second one is based on the
distance between fuzzy sets.

5.1 A multicriteria approach

It is a standard assumption in accuracy as-
sessment that all errors are equally important.
Introducing weights allows to take into ac-
count the opinion of the expert and the main
objectives of the study (by means of the rela-
tive importance of errors). Therefore, a differ-
ent weight matrix for each measure (producer,
user and overall) is required.

There are different ways to obtain an appro-
priate weight matrix. If we are building the
producer weight matrix, it can be imposed
that the all coefficients sum k(k − 1), as in
the classical approach.

From a multicriteria point of view there are
several approaches available in order to deter-
mine weights (see, e.g., [13, 16, 18] and [10]).
For example, if we want to apply Saaty’s ap-
proach, first we obtain the Saaty matrix (ask-
ing the decision maker to compare each pair
of errors in order to define wi,j and wi′,j′ ,
by means of linguistic values: 1 Same Im-
portance, 3 Moderate Importance, 5 Strong
Importance, 7 Show Importance and 9 Ex-
treme Importance, with 2,4,6,8 intermediate
values). Once Saaty matrix has been defined,
the weights are computed as the eigenvector
associated to the maximum eigenvalue (see
[18]).

5.2 Fuzzy distances

The classes of the remote sensing problem can
be described in fuzzy terms by means of the
spectral features of each class. Consequently,
for each class Ai, and for each band Br, we
have the functions µBr

Ak
. Taking into account

that for each Aj we have
(
µB1

Aj
, . . . , µBm

Aj

)
, a

distance function (see for example [6, 8, 15])
between fuzzy sets could be applied for each
pair of classes, D(Ai, Aj) = dij . On one hand,
small distances dij represent a hight simili-



tude between classes, so error will not be rel-
evant. On the other hand, high values of dij

represent different classes or big errors. Tak-
ing into account this information, the weights
matrix could be calculated proportionally to
distance values.

6 Final remarks

We have emphasized in this paper that we do
need to develop accuracy measures for fuzzy
classification. Our proposal pursues an evalu-
ation of accuracy of fuzzy classifications, so we
can properly deal with those large transition
zones so frequently present in remote sensing.
This is being done by means of a producer, an
user and an overall accuracy measure in which
the classifier is fuzzy but the reference data is
crisp. Of course the number of classes could
be in practice very high, much more than the
three classes examples considered in this pa-
per for a pedagogical purpose. But we do
not see in principle any suitability difficulty
in producing a continuum of different mem-
bership degrees resulting in a huge amount
of rows having a very small frequency, except
for its manageability (developing useful rep-
resentation techniques is a key problem when
dealing with complex information, as pointed
out for example in [9]). A real case study is
under progress.

This paper mainly addresses the assessment
problem when the classifier is fuzzy and the
reference data is crisp. In fact, all reference
data you can find in remote sensing literature
are crisp. But as is pointed in [12] more ef-
forts are needed in order to built fuzzy refer-
ence data sets that gather the fuzzy expert’s
opinions. For this case, is important to note
that the disagreement measure here proposed
can be easily generalized in order to be able
to assess the accuracy when the classifier and
the reference data be fuzzy.

Although fuzzy reference sets will be consider
in a future stage, it should be pointed out
that the producer or the user accuracy have
proper sense when dealing with crisp refer-
ence data or crisp classifier respectively. In
a complete fuzzy framework we have to be

extremely careful. For example, if we con-
sider an image in which most of the pixels
have been classified as

C(p) = (0.8, 0.1, 0.1)

by the classifier and E(p) = (1, 0, 0) by the
expert, our approach gives an user accuracy
of 80%, which seems more adequate than the
100% given in Binaghi [3]. Nevertheless, if we
have

C(p) = (0.34, 0.33, 0.33)

then this pixel p should not be considered in
order to measure the user accuracy for the
class A1, since assigning this pixel to the class
A1 is not significatively supported with re-
spect with the other classes. In this situation,
user accuracy may not be justified, due to the
high degree of fuzziness, which makes unreal-
istic the association to a unique class. In or-
der to measure the degree of fuzziness, some
authors (see, e.g., [7]) consider entropy mea-
sures, which can be therefore considered in or-
der to determine which pixels should be taken
into account for the user’s accuracy. This crit-
icism does not apply to the overall accuracy
measure proposed in this paper, which seems
to us a more relevant index about the quality
of the classification.

Moreover, whenever our fuzzy classifier de-
fines a Ruspini fuzzy partitions, the reference
data set is crisp and we take Wij = 1, ∀i 6= j
and 0 otherwise, our approach assigns the
same overall accuracy as Binaghi approach
[3].
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