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Abstract 

 
Granular representation of experimental 
data D is defined as a transformation 
A G(Y) where A are information 
granules in the space of input data D and 
G(Y) is a family of information granules 
in the output space. In this paper, we 
propose an alternative to the granular 
representation method based on the use 
of possibility and necessity measure and 
the solution of fuzzy relational equations. 
The proposed method is an iterative  
multiple regression with fuzzy 
independent and dependent variables. 
The regression problem is posed as a 
gradient descent optimisation which 
provides both computational efficiency 
and generality.  
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1. Introductory comments 
 
Granular modelling has emerged as one of the 
fundamental concerns underpinning granular 
computing [1-2], [12-13] that permeates a broad 
array of pursuits of computational intelligence. 
With the notion of information granules and the 
granularity being central to various aspects of 
problem abstraction and modularisation, we 
encounter different formal ways of expressing 
information granularity. While the notion of 
granularity is usually expressed in the language of 
sets (fuzzy sets, rough sets, etc.) the fundamental 
construct in building information granules is that 
of mapping. The product of granular mapping is 
commonly referred to as a granular model of a 
system. In a descriptive manner, by granular 

mapping we mean a transformation from some 
input space to output space that is characterised 
at the granular level; this means that it operates 
on information granules defined in the 
corresponding spaces. There are two fundamental 
categories of problems arising in such setting, 
that is: 1) analysis of granular mappings which is 
inherently associated with data interpretation 
aspects (such as in rule-based systems) and 2) 
design of these mappings which requires the 
development of the experimentally meaningful 
and transparent associations between the 
information granules. 

In this paper we focus on the second aspect of 
granular mapping and provide an alternative to 
our earlier approach, based on the use of 
possibility and necessity measure and the 
solution of fuzzy relational equations [3]. The 
approach advocated here is that of regression 
analysis. 

 Regression analysis is one of the basic tools 
of scientific investigation enabling identification 
of functional relationship between independent 
and dependent variables. In the classical 
regression analysis both the independent and 
dependent variables are given as real numbers. 
However, in many real-life situations, where the 
complexity of the physical system dictates 
adoption of a more general viewpoint, regression 
variables are given as non-numerical entities such 
as linguistic variables. Unfortunately, such real-
life situations are outside the scope of the 
classical regression analysis.  

  Following the introduction of the concept of 
fuzzy sets by Zadeh in 1965 [11-13] various 
researchers attempted extending the regression 
analysis from crisp to fuzzy domain. One of the 
first results concerning a more general form of 
regression analysis was contributed by Tanaka et 
al. [10] in which they consider crisp independent 
and fuzzy dependent variables. A further 



 

generalisation of the regression model was 
introduced by Diamond [4, 5] who considered both 
independent and dependent variables as triangular 
fuzzy numbers. Diamond’s approach has been 
subsequently used to develop fuzzy regression 
model with regression variables expressed as 
arbitrary fuzzy numbers, Grzegorzewski and 
Mrowka [6] and others [1, 7, 9]. Another 
generalisation of the regression model, involving 
the use of fuzzy random variables was suggested  
by Korner and Nather [8]. However, in all of the 
above approaches the analytical formulae 
quantifying the values of the parameters of the 
regression model have been derived only for the 
case of a simple linear regression, i.e. for the single 
independent single dependent variable system. 

In this paper we re-formulate the regression 
problem and express it as a gradient descent 
optimisation. In doing so we generalise the simple 
regression model to multiple regression and lay 
foundation for a further generalisation to multiple 
non-linear regression with fuzzy variables. 

In Section 2 we provide a boackground 
discussion of the classical regression analysis, 
fuzzy numbers and fuzzy simple linear regression. 
In Section 3 we extend the scope of fuzzy 
regression to multiple variables and provide a 
gradient descent optimisation algorithm that 
provides a practical way of calculating regression 
coefficients. 

 
2. Background discussion 

  
A. Classical regression analysis 

The general task of regression analysis is 
defined as identification of a functional 
relationship between the independent variables 
x=[x1, x2, …,xn] and dependent variables y=[y1, y2, 
…,ym], where n is a number of independent 
variables in each observation and m is a number of 
dependent variables. The regression model is 
expressed in this case as 

 
εxfy += )(    (1) 

 
where, )(xf is a vector function )](),...,([ 1 xx mff  and 

],...,[ 1 mεε=ε  is a vector of random error of 
functional approximation. The general model (1) is 
frequently simplified by assuming a linear 
relationship between the independent and 

dependent variables, thus reducing the task of 
identification of a functional relationship ()f to 
an identification of parameters of a linear 
function. Furthermore, the multiple dependent 
variables y  are considered separately to give m 
independent regression models. In the simplest 
case of a single independent and single 
dependent variable the regression model is given 
as 

ε++= xaay 10    (2) 
 

The above is frequently referred to as a simple 
linear regression model.  

Considering k pairs of observations of 
independent and dependent variables (x1, y1), 
…,(xk, yk) and assuming the least squares 
criterion C(.) for the minimisation of the 
discrepancies between the model and the actual 
observations 
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one can derive optimal estimators for the 
parameters of the linear model (2) by solving 
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B. Fuzzy simp-le linear regression 

In order to generalise the simple linear 
regression to the case of imprecise independent 
and dependent variables we follow the approach 
proposed by Diamond [5] and adopt a subfamily 
of fuzzy sets, called fuzzy numbers, as a formal 
framework for the representation of imprecise 
data. A fuzzy number can be formally defined as 
follows: 
 



 

Definition 1 A fuzzy subset A of the set of real 
numbers R with membership function 

]1,0[: →RAµ is called a fuzzy number if 
i) A is normal, i.e. there exist an element 

0z such that 1)( 0 =zAµ  
ii) A is fuzzy convex, i.e. Rzz ∈∀ 21 ,  

)()())1(( 2121 zzzz AAA µµλλµ ∧≥++ , 
]1,0[∈∀λ ; 

iii) Aµ  is upper semi continuous; 
iv) }0)(:{)sup( >∈= zRzA Aµ  is bounded. 

 
A fuzzy number A can be represented as a family 
of nonfuzzy sets called α-cuts, Aa defined as 
 

})(:{ αµα ≥∈= zRzA A    (6) 
 

giving a set representation 
 

]}1,0(:{ ∈= ααAA    (7) 
 

Based on the resolution identity we get 
 

]}1,0(:)(sup{)( ∈= ααµ
α

zIz AA   (8) 
 

where )(zI Aα
represents the characteristic function 

of Aa From the definition of the fuzzy number it is 
easily seen that every α-cut of a fuzzy number A is 
a closed interval )](),([ ααα

UL AAA =  where 
 

})(:inf{)( αµα ≥∈= zRzA A
L   (9) 

})(:sup{)( αµα ≥∈= zRzA A
U   (10) 

 
Consequently for two fuzzy numbers A and B with 
α-cuts )](),([ ααα

UL AAA =  and 
)](),([ ααα

UL BBB =  we can define a distance 
between A and B as 
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Using the formalism of fuzzy numbers we can 
express the fuzzy simple linear regression problem 

as a problem of identification of parameters 
Rbb ∈10 , of a fuzzy linear model 

 
XbbY 10 +=     (12) 

 
The parameters b0, b1 are evaluated by 
minimizing the error measured as a distance 
between the actual observations and the estimates 
evaluated from the model  
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It must be noted however that the exact form of 
the error function H(.) depends on the sign of the 
parameter b1. If b1>0 then 
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and if b1<0 then 
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Having pre-determined the sign of the parameter 
b1 we can calculate exact numerical values of b0 
and b1 by solving either 
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In the first case we obtain 
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and in the second case the regression parameters 
are evaluated as 
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and X~ , Y~ , xxSS  are evaluated as in (20), (21), (22) 
respectively. 
 
C. Gradient descent optimisation  

Although with the quantification of the 
regression error, (14) and (15), it is possible to find 
analytical solution to equations (16) and (17), in 
the case of a large number of regression variables 
such a direct solution becomes rather complex. As 
an alternative approach one can perform iterative 
refinement of initial gueses of the regression model 
parameters 0b  and  1b  taking the partial derivatives 
of (14) or (15) as indicators of the local gradient of 
the functional H. The computational advantage of 
this approach is rooted in the fact that the 
calculation of the values of partial derivatives of  H 
is much simpler than solving systems of 
simultaneous equations such as (16) or (17). 
Indeed, the approach can be easily applied even if 
the regression model is non-linear. For the simple 
regression model given by (12) the gradient 
descent optimisation can be summarised as: 

 

[Gradient descent algorithm for simple fuzzy 
regression] 
 
a)  Make an initial guess of 0b  and 1b  say 0

0b  and 
0
1b ; 

 
b)  Set the iteration counter i=1; 
 
c)  Evaluate gradient H with respect of regression 

model parameters as per equation (14) or (15); 
 
d)  Calculate the value of the parameter update 
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e)  Update parameter estimates 
 

0
1

00 bbb ii ∆+= −  and 1
1

11 bbb ii ∆+= −         (29) 
 
f)  If ε>∆ 0b  or ε>∆ 1b  then update iteration 

counter i=i+1 and repeat from c); otherwise 
stop. 

 
In order to converge to the solution the 

algorithm requires appropriate selection of 
parameters 0µ  and 1µ  and the selection of the 
termination criteria ε . However, even with a 
heuristic selection of these parameters (which 
may require repeated runs of the algorithm) the 
evaluation of the regression model parameters 
remains computationally very appealing. 

 
 
3. Multiple fuzzy linear regression 
 

The fuzzy simple linear regression model (12) 
can now be extended to a fuzzy model with 
multiple independent variables 

 
m

m XbXbXbbY ++++= ...2
2
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10   (30) 



 

 
where mXXXY ,...,,, 21  are all fuzzy numbers 

defined on R  and mbbbb ,...,,, 210  are real numbers. 
The parameters mbbbb ,...,,, 210  are evaluated by 
minimising the cost function H(.) defined as a 
squared distance between the fuzzy observations 
and the corresponding fuzzy dependent variable Y  
evaluated from (30). 
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with a distance function d(.) defined as in (11). 

Using the α-cut representation of fuzzy 
numbers it is necessary to ensure that the minimum 
and maximum value of α-cut intervals are properly 
matched for both positive and negative values of 
model parameters mbbbb ,...,,, 210 . We can formalise 
this requirement by introducing the following 
substitution of variables 
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where L and U denote the corresponding lower and 
upper bounds of the α-cut intervals and j=1,…,m. 
With these substitutions the cost function H(.) can 
be written explicitly as 
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(34) 
 

Using the expression (34) we can calculate 
gradients of the cost function (.)H

)
with respect of 

the regression parameters as 
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With the above equations (30)-(38) we can now 
define the gradient descent algorithm for multiple 
fuzzy regression. 
 
[Gradient descent algorithm for multiple 
fuzzy regression] 
 
a)  Make an initial guess of mbbb ,...,, 10 : 

00
1

0
0 ,...,, mbbb ; 

 
b)  Set the iteration counter i=1; 
 
c)  Evaluate the α-cut intervals for individual 

regression variables taking into account the 
sign of the corresponding regression variable; 
(32)-(33); 

 



 

d)  Evaluate gradient of (.)H
)

with respect of 
regression model parameters as per equation 
(35) or (36); 

 
e) Calculate the value of the regression parameters 

update 
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where jµ  are the parameters controlling the 
convergence of the gradient descent optimisation. 
 
f)  Update parameter estimates 
 

j
i
j

i
j bbb ∆−= −1      j=0,…,m  (43) 

 
g) If ε>∆∃ = jmj b,...,1,0  then update iteration counter 

i=i+1 and repeat from c); otherwise stop. 
 
4. Computational complexity 
 
Computational complexity of the proposed fuzzy 
regression algorithm is a product of the number of 
iterations and the computational complexity of a 
single iteration. Since the cost function (34) is 
essentially a regular quadratic function the 
convergence properties of the iterative scheme are 
veru good and the number of iterations does not 
depend significantly on the number of regression 
variables. In most cases it is possible to achieve 
good solution with less than 10 iterations. But, of 
course, this is conditional on the prior 
normalisation of the individual regression variables 
so that the shape of the quadratic form is not 
unduly distorted. Alternatively, one can require 
that the individual convergence parameters are set 
by some heuristic procedure so as to achieve a 
balanced augmentation of the optimal solution in 
all dimensions. 
The computational complexity of a single iteration 
is essentially determined by the complexity of 
evaluation of the gradient in equations (35) and 
(36). It is clear from (37)-(40) that the calculation 

of the gradient is proportional to the square of the 
number of regression variables m. 
Consequently the whole algorithm can be 
described as having complexity O(m2kc), where k 
is the number of data items processed by the 
algorithm and c is a constant defined by the 
convergence accuracy requirement. 
The improvement offered by the proposed 
algorithm can be appreciated by comparing its 
computational complexity to the complexity of 
the direct analytical solution. (3)-(5). Since m=1 
for the simple linear regression model the 
complexity of the proposed algorithm is O(kc) 
while the complexity of the direct analytical 
solution is O(k2c), a significantly higher value. 
For the multiple regression models the advantage 
of the proposed gradient descent based approach 
is even more pronounced since the analytical 
methods are likely to be excessively complex. 
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