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Abstract

This paper proposes an extension
of Formal Concept Analysis (FCA)
techniques in order to deal with
representation of concepts in terms
of fuzzy bags. Our extension was
tested in a preliminary experimen-
tation with encouraging results. In
particular, the proposed technique
was adopted as a tool for automatic
quick-and-dirty ontology construc-
tion.

Keywords: Ontology Construc-
tion, Formal Concept Analysis,
Fuzzy Bags.

1 Introduction

The Semantic Web vision relies on ontolo-
gies to structure its underlying data for sup-
porting basic and advanced machine under-
standing. Automatic learning of ontology has
been identified since long as a key issue for
integrating diverse sources of unstructured,
semi-structured, and fully structured infor-
mation. Also, bottom-up learning of ontolo-
gies from text documents is a fundamental
support for modeling the domain of interest
of an organization [13]. Tools like Text-To-
Onto [14] are now available that attempt to
learn structured ontologies from free text, dic-
tionaries, or legacy domain model. Text-to-
ontology learning methodologies rely on basic
techniques for text document classification,
and usually start by indexing text documents

via vectors of (normalized) keyword occur-
rences. Thus, documents can be classified us-
ing a standard vector space model where every
document d, is considered to be a vector d in
the term space, i.e. the overall vocabulary. In
this scenario, each document is represented by
the (TF ) vector dft

= (ft1 , ft2 , ..., ftn) where
fti is the frequency of the ith term in the doc-
ument. In order to account for documents of
different lengths, each document vector is nor-
malized so that it is of unit length. This en-
coding is used in order to group similar docu-
ments by means of distance measures, such as
the well-known cosine distance. These groups
of documents, loosely called clusters, repre-
sent typical classes of the domain. In ontology
learning, however, a further step is required,
because domain classes must be ordered into
a hierarchy. Some approaches rely on prelim-
inary linguistic processing, where terms are
analyzed, aggregated into concepts, and pro-
gressively organized according to taxonomical
relations and rules ([1], [8], [7], [12]). Other
extraction methodologies apply Formal Con-
cept Analysis (FCA), a time-honored tech-
nique used to build hierarchies of common
subset of attributes from a set of data items
[20]. Namely, the concept hierarchy is ob-
tained applying an algorithm (several versions
exist, see [17], [10], [19]) to derive a lattice
of shared terms within the document set. A
major problem of FCA is related to the iden-
tification of noise, i.e. irrelevant information.
Even the analysis of a small document set re-
quire to deal with a large number of terms;
very often, most of them are not interesting
for the analysis.



In this paper we propose a method for ex-
tending FCA to represent document vectors
in terms of fuzzy bags. We claim that our
extension can ameliorate the quality of the
hierarchy produced, because additional infor-
mation related to relevance and cardinality of
individual data items’ attributes can be taken
into account that would be lost by traditional
methods. This additional information can be
used in order to partition concepts of the hi-
erarchy in sub-concepts differentiated accord-
ing to the relevance and the cardinality of at-
tributes. According to our proposal, a term
vector is described as a fuzzy bag [22], [23].
Fuzzy bags are a straightforward extension of
fuzzy sets, where each element can have mul-
tiple instances. In a fuzzy set each element is
associated to a membership value. In our set-
ting, multiple membership values can be asso-
ciated to a single term in order to expressing
the relevance of a term in the vector. This
way, individual terms can be represented as
a single entry, while still taking into account
cardinality differences; also, irrelevant terms
can be easily discarded. The paper is orga-
nized as follows: Section 2, analyzes the re-
search works related to our proposal; Section
3 gives an introduction to the problem of rep-
resenting vectors of terms in terms of fuzzy
bags; Section 4 provides a formal definition of
our extension of FCA; Section 5 provides an
example of ontology construction by means
of our method; Section 6 describes the results
achieved and further research lines.

2 Related work

Different approaches have been proposed to
integrate FCA and fuzzy logic. In [2] and in
[11] the set of truth values has the structure
of a complete residuated lattice, where Galois
connections are expressed in terms of fuzzy
binary relations. This approach provides a
very expressive representation of the correla-
tion between documents and terms but it is
not very compliant to the common output of
knowledge extraction applications. In [15] the
notion of a L-Fuzzy context is proposed, where
linguistic variables are used in order to rep-
resent uncertainty in the term-document re-

lationship. However, linguistic variables can
be defined only on the basis of human inter-
pretation, and this approach turns out not
to be feasible when dealing with very large
document sets. In [16] a technique is pro-
posed called Fuzzy Formal Concept Analysis
(FFCA), in which term relevance is repre-
sented by a membership value in the range
[0, 1]. This way, documents are not described
as term vectors but as fuzzy sets, where each
term is associated to a membership value ex-
pressing its relevance w.r.t. the document set.
In this paper we extend this notion, represent-
ing documents as fuzzy bags and extending
the operations on the document set according
to the operations on fuzzy bags.

3 Representing term vectors as

fuzzy bags

Fuzzy bags can be used for extending the tra-
ditional representation of documents as vec-
tors of terms. Indeed, a conventional term
vector has the limitation of not taking into
account the cardinality of term relevances.
For example, keywords extracted from a doc-
ument can be used to infer the topics the doc-
ument deals with, but the association between
keywords and topics cannot be treated equally
in all cases, because keywords may have a dif-
ferent degree of significance for different top-
ics. For this reason, a relevance value can
be modeled by means of a fuzzy membership
function. For example a document associated
to a set of keywords composed by “cluster-
ing”, “ontology”, and “fuzzy set” can be re-
lated to the topic ontology learning with a
membership degree equal to 0.8, but with the
topic fuzzy set theory with a degree equal to
0.3. Other method can be used in order to
assign a relevance value to a term. The gen-
eral idea is to evaluate the informativeness
of a term in a document. The conventional
approach is to compute a ratio between the
frequency of the term in the analyzed doc-
ument and in the whole domain vocabulary.
But other approaches take into account the
context in which a term is inserted; and in
this case different relevance values can be as-
sociated to a single term.



Fuzzy bags are an interesting tool in order to
model multiple relevance values, because they
represent the distribution of the cardinality
of an element according to different member-
ship values. In [6] a method for representing
semi structured-data (e.g. XML documents)
in terms of fuzzy bags is proposed. The ra-
tionale of this approach is encoding informa-
tiveness of XML elements according to their
structural position. A preliminary method
for evaluating the informativeness of an ele-
ment is to divide a membership degree ini-
tially equal to 1 by the nesting level of the
element. Fig. 1 shows a cluster of XML doc-
uments encoded according to this method:

A = {1/R, 0.5/a, 0.5/b},
B = {1/R, 0.5/a, 0.5/b, 0.3/b},
C = {1/R, 0.5/a, 0.5/b, 0.3/c, 0.3/c},
D = {1/R, 0.5/a, 0.5/b, 0.3/c, 0.3/c},
E = {1/R, 0.5/a, 0.5/b, 0.3/c, 0.3/a}.

Figure 1: Representation of XML documents
in a cluster

Using the FGcount notion of cardinality pro-
posed by Zadeh in [25], the cardinality of
a fuzzy bag can be represented listing a
membership-value/cardinality pair obtained
applying on the fuzzy bag an α-cut operator
for each membership-value from 0 to 1. Ac-
cording to this definition the XML documents
in Fig 1 can be encoded as follows:

A = {{0.5/1} ∗ a, {0.5/1} ∗ b},
B = {{0.5/1} ∗ a, {0.5/1, 0.3/2} ∗ b},
C = {{0.5/1} ∗ a, {0.5/1} ∗ b, {0.3/2} ∗ c},
D = {{0.5/1} ∗ a, {0.5/1} ∗ b, {0.3/2} ∗ c},
E = {{0.5/1, 0.3/2}∗a, {0.5/1}∗b, {0.3/1}∗

c}.

This construction is adopted in [5] for defin-
ing fuzzy bags in a way fully compatible with
fuzzy sets. This construction proposes the no-
tion of gradual integer, because it is able to
represent the cardinality of a fuzzy bag ac-
cording to the distribution of different mem-
bership degrees. In [4] a complete discussion
on gradual integers and the corresponding
arithmetic operations is provided, on the ba-
sis of these arithmetic operations a set of set-
theoretical operations on fuzzy bags is pro-
posed. Relying on these works we will be able
to manage the representations of terms vec-
tors in terms of fuzzy bags.

4 Fuzzy Formal Concept Analysis

Standard FCA techniques build a concept lat-
tice by organizing a binary relation over a pair
of sets D and A, where D represents the data
items (called documents in he FCA terminol-
ogy) and A the attributes [20].

Definition 1. A formal context is
a triple K = (D,A,R) where D and
A are sets and R is a binary relation
R ⊆ D ×A.

Table 1 shows a description of a formal con-
text. The numbers in the left column indicate
documents belonging to the document set D
while the letters in the first row indicate the
attributes A. A true boolean value in a cell
belonging to a row d ∈ D and a column a ∈ A
means that the document d contains the at-
tribute a.

The table can also be summarized by two
functions: f and g, defined as follows.

Definition 2. The function f maps
a set of documents into set of com-
mon attributes, whereas g is the dual
for the attribute sets.

If X and Y are respectively sets of documents
and attributes:



Table 1: An sample formal context visualized
in tabular form.

0 a b c d e

1 1 1 0 0 1
2 1 0 1 1 1
3 0 1 1 1 1
4 1 0 0 1 0
5 0 0 1 1 1
6 1 1 1 0 1
7 1 1 0 1 0

f(X) = {a ∈ A|∀d ∈ X, dRa}
(1)

g(Y ) = {d ∈ D|∀a ∈ Y, dRa}
(2)

For example in the context of Table 1 f(35) =
cde and g(ab) = 167. A couple (X,Y ), of mu-
tually corresponding closed subsets is called a
formal concept.

Definition 3. A formal concept ia a
couple (X,Y ) where X = g(Y ) and
Y = f(X). X is called the extent
and Y the intent of the concept.

For example (167, ab) is a formal concept but
(167, a) or (23, cde) are not. The set of cou-
pled documents and attributes are not the
ones that can be obtained by applying f or
g respectively.
These definitions allows us to define the lat-
tice formed organizing in a partial order the
formal concepts belonging to a formal con-
text.

k∨

i=1

(Xi, Yi) = (
k⋃

i=1

f(Xi),
k⋂

i=1

Yi), (3)

k∧

i=1

(Xi, Yi) = (
k⋂

i=1

Xi,
k⋃

i=1

g(Yi)). (4)

Note that, for instance, concept (235, cde)
has the super-concept (2356, a) and the sub-
concept (2, acde).

Now, let us present in some detail our ex-
tension of FCA methodologies by interpreting
documents as fuzzy bags.

Definition 4. A formal context ex-
tended to deal with fuzzy bags is a
triple Kex = (D,A,Rex) where D
and A are sets and Rex is a fuzzy
bag on domain D × A. Where each
relation (d, a) ∈ Rex is a gradual in-
teger Ωd(a).

In FCA the codomain of the function f , i.e.
the set of attributes common to a given set
of documents X, is equivalent to the intersec-
tion of the documents in X, and identifies a
set of common attributes Y . Hence, in our
extension, the function fex has to return the
intersection among the fuzzy bags associated
to the documents in X, and the fuzzy bag ob-
tained by this intersection must be included
by all the fuzzy bags of X, as formally de-
scribed in equation 5.

Ωfex(X) ⊂ Ωi,∀i ∈ X (5)

According to [5], equation 6 gives us the def-
inition of intersection among two gradual in-
tegers.

ΩA∩B(x) = min(ΩA(x),ΩB(x)) (6)

Because minimum is an associative operation,
we can apply it to a set of attributes. In other
words, in our extension the function fex maps
a set of documents to a fuzzy bag generated
by the intersection of gradual integers asso-
ciated to their common attributes, For each
attribute a ∈ Y the gradual integer of a is
computed according to the equation 7.

Ωfex(X)(a) = min
i∈X

Ωi(a) (7)

Similarly, the function gex maps a fuzzy bag
Ωgex(Y ) generated by the minimum of the
gradual integers, associated to a set of at-
tributes Y , to all the documents described by
a fuzzy bag including Ωgex(Y ).



Ωgex(Y )(a) = min
i∈Y

Ωi(a) (8)

5 Building the hierarchy

Our extension of FCA techniques was experi-
mented with a dataset selected from the XML
Data Repository of the University of Wash-
ington [26]1. This repository hosts entries
belonging to different digital archives of re-
search publications, and therefore needs lit-
tle pre-processing in terms of stop-word fil-
tering besides disregarding connective parti-
cles such as prepositions and articles. Also, it
is a typical example of heterogeneous data in
semi-structured format. As alternative exam-
ples, we might consider the publications en-
tries from the DBLP and from the Sigmod

databases.
We start by encoding these documents as
fuzzy bags [6]; then, a clustering of the doc-
ument set is executed. Each cluster is identi-
fied by a representative, called cluster-head,
usually equivalent to the intersection of all
documents belonging to the cluster. Cluster-
heads are used to define the initial context of
our FCA analysis. Being fuzzy bags, cluster-
heads are composed of term/ gradual inte-
ger pairs, as discussed in our previous exam-
ple. Table 2 shows the context formed by our
cluster-heads. For the sake of conciseness, in
the sequel fuzzy bags’ elements (the terms of
the context’s vocabulary) are denoted by the
initial letters of the element name; also, some
attributes are omitted.

Figure 2: The lattice provides a first hierarchy
of candidate classes.

1Note that for our present purposes, XML tag
names have no special status w.r.t. content terms.

Table 2: The context of our cluster-heads.

vol. tit. auth. jour. proc.

CH1 0.3/4 0.8/4 0.8/4 0.5/4 0

CH2 0.5/19 0.8/19 0.8/19 0.5/19 0

CH3 0.5/1 1/1, 0.5/5 0.5/5 0 1/1

CH4 0.5/1 0.5/1 0.5/1 0.5/1 0.5/1

CH5 0.5/1 1/1, 0.5/12 0.5/23 1/1 0.5/6

Applying fex and gex we obtain the hierar-
chy in Fig. 2. Note that hierarchy isolated
c1 as the subset of the attributes common to
all the documents of our context. In c2 we
have documents published in proceedings, in
c3 documents published in a journal, and in c4
documents published both in proceedings and
journals. Note that this hierarchy could have
been obtained by standard FCA techniques;
but in our extension gradual integers encode
information about relevance and cardinality
of terms. Now by this information we can re-
trieve additional formal concepts, further par-
titioning the ones obtained in the first hierar-
chy. For instance, we can consider cardinality
as a modifier of the extent of a concept and
we can require that documents having strong
cardinality differences belong to different for-
mal concepts. This can be done by compar-
ing the intent of each document belonging to
a formal concept to the intent of the concept
(that is, the fuzzy bag corresponding to the
formal concept). All documents having strong
relative differences in cardinality will form the
intent of a new concept, while the correspond-
ing extent is obtained computing the intersec-
tion among their attributes according to equa-
tion 7. In order to do that, we must be able
to provide a semantics to the predicate “hav-
ing relevant attributes with strong differences
in cardinality”. In ordinary arithmetics, two
numbers are equal if dividing one to the other
we get a result equal to 1. The same principle



can be applied to gradual integers but we need
to approximate them in an exact reperesenta-
tion. According to the notion of cardinality
exposed in [21], the cardinality of a fuzzy set
can be interpreted as the exact number sum-
ming all the cardinality of a set weighted by
their membership values. Formally we have:

|A| =
∑

xi∈A

f(µ(Xi)) (9)

Where f is an increasing function in [0, 1],
where f(0) = 0 and f(1) = 1. For instance,
f(x) = x2. This way the relative weight of
higher membership values is increased.

Now we can compute the relative difference
between the exact numbers approximating
the gradual integers related to two attributes
of a document. This result is compared to
the number 1 and we obtain a measure that
can be used to define the semantics of the
predicate “having relevant attributes with dif-
ferences in cardinality”. This can be dome
by the complement of the relative difference.
Formally we have:

1 −
|Ωi(a)|

|Ωj(a)|
(10)

In our example, the formal concept c2 has an
intent composed by the documents CH1 and
CH2. Comparing the extent of CH2 to the ex-
tent of c2 we have to calculate the difference
between each single attribute. For instance we
get |{0.3/1∗vol}|/|{0.5/19∗vol}| = 0.01. The
complement of this division is 1−0.01 = 0.99.
Similar results are obtained for the other at-
tributes. Now, computing an average among
the results of each attribute, we obtain a dis-
tance equal to 0.98. This value allow us to
said CH2 “has strong differences in cardinal-
ity” with c2 with a degree of 0.98. This moti-
vate us to generate a new formal concept. A
similar analysis can be done with the docu-
ment CH5 as shown in Fig. 3.

A further step consists in pruning the hier-
archy to eliminate irrelevant attributes. This
can be done setting a threshold on the mem-
bership values associated to the attributes of

Figure 3: A hierarchy where cardinality can
generate new formal concepts.

the fuzzy bags forming the context. For in-
stance, if the confidence threshold T is equal
to 0.4 we impose to the formal context the
condition expressed in equation 11. The re-
sult is the removal of the attribute volume

from some formal concepts of the hierarchy.

µ(a, d) ≥ T (11)

Figure 4: Pruning the hierarchy by means of
a confidence threshold T .

The hierarchy obtained was used as an ini-
tial representation of the domain of scientific
publications. Ontology engineers has to man-
ually develop this tentative representation in
order to obtain an ontology fitting a standard
format.



6 Conclusions

In this paper we proposed an extension of
FCA techniques exploiting a fuzzy represen-
tation of documents in terms of fuzzy bags.
The adoption of fuzzy bags is motivated by
the opportunity to encode information related
to relevance and attributes cardinality in a
simple format. We proposed a formal re-
definition of FCA according to our extension.
Then, we introduced a preliminary experi-
mentation of our technique in the field of on-
tology construction. In this filed the adoption
of our extension is motivated by the capabil-
ity to describe tentative classes according to
additional feature, such as cardinality or rel-
evance of attributes. Our preliminary results
are encouraging and point to a promising line
of research investigating the notion of order
relation among gradual integers to derive new
operations to be applied on the formal con-
text.
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