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Abstract

Non-stationary fuzzy sets have pre-
viously been introduced to allow the
modelling of variation in the mem-
bership value associated with a given
value of the base variable of a fuzzy
set. In order to explore how the
form of the primary membership func-
tion (MF) affects the inference process
within a non-stationary fuzzy system,
a study was carried out on a fuzzy
system implementing the XOR prob-
lem, in which either Gaussian or Tri-
angular MFs were employed. Investi-
gations were carried out into different
‘perturbation functions’ and different
type of variation. These non-stationary
fuzzy systems were also compared to
conventional type-2 fuzzy systems fea-
turing equivalent ‘Footprints of Uncer-
tainty’. It was observed that non-
stationary fuzzy systems using a Sine-
based perturbation function produced
almost the same results as interval type-
2 systems (except for centre variation of
Gaussian MFs). In other cases, more
complex relationships between the un-
certainties obtained with the two meth-
ods were observed. This observation
requires further investigation.

Keywords: Interval Type-2 Fuzzy Sets, Non-
Stationary Fuzzy Sets, Gaussian Membership
Function, Triangular Membership Function.

1 Introduction

In 1975, Zadeh [1] proposed ‘fuzzy sets with
fuzzy membership functions’ as an extension of
the concept of an ordinary, i.e. type-1, fuzzy set
and went on to define fuzzy sets of type n, n = 2,
3, ..., for which the membership function ranges
over fuzzy sets of type n - 1 to model the uncer-
tainties and minimize their effects.

Type-2 fuzzy sets are characterized by three-
dimensional MFs. The membership grade for
each element of a type-2 fuzzy set is a fuzzy set in
[0,1]. The additional third dimension provides ad-
ditional degrees of freedom to capture more infor-
mation about the represented term. Type-2 fuzzy
sets are useful in circumstances where it is diffi-
cult to determine the exact membership function
for a fuzzy set, which is useful for incorporating
uncertainties. However, the use of type-2 fuzzy
sets in practice has been limited due to the sig-
nificant increase in computational complexity in-
volved in their implementation. Recently, Mendel
has introduced a concept known as the footprint
of uncertainty which provides a useful verbal and
graphical description of the uncertainty captured
by any given type-2 set. Mendel has particularly
concentrated on a restricted class of general type-
2 fuzzy sets known as interval type-2 fuzzy sets
[2]. Interval type-2 sets are characterised by hav-
ing secondary membership functions which only
take the values 0 or 1. This restriction greatly sim-
plifies the computational requirements involved
in performing inference with type-2 sets. Mendel
and John developed a simple method to derive
union, intersection, and complement, and compu-
tational algorithms for type reduction (necessary
for type-2 defuzzification) [3].
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Figure 1: Mechanisms of a type-2 Fuzzy System

Fuzzy systems which are used for representing
and inferring with knowledge that is imprecise,
uncertain, or unreliable consist of four main inter-
connected components: rules, fuzzifier, inference
engine, and output processor. Once the rules have
been established, fuzzy systems can be viewed
as a non-linear mapping from inputs to outputs.
Type-1 Fuzzy system use only type-1 fuzzy sets
and a Fuzzy system which uses at least one type-
2 fuzzy set is called a type-2 fuzzy system. Fig. 1
shows the mechanisms of a type-2 fuzzy system.
The interested reader is particularly referred to [2]
for a summary tutorial and for more details.

All humans, including experts, exhibit variation
in their decision making. Variation may occur
among the decisions of a panel of human ex-
perts (inter-expert variability), as well as in the
decisions of an individual expert over time (intra-
expert variability). Up to now it has been an
implicit assumption that expert systems, includ-
ing fuzzy expert systems (FESs), should not ex-
hibit such variation. While type-2 fuzzy sets cap-
ture the concept of introducing uncertainty into
membership functions by introducing a range of
membership values associated with each value of
the base variable, they do not capture the no-
tion of variability — a type-2 fuzzy inference
system will always produce the same output(s)
(albeit a type-2 set with an implicit representa-
tion of uncertainty) for given the same input(s).
Garibaldi et al [4]-[8] have been investigating the
incorporation of variability into decision making
in the context of FESs in medical domain. In
this work, Garibaldi proposed the notion of ‘non-
deterministic fuzzy reasoning’ in which variabil-
ity is introduced into the membership functions
of a fuzzy system through the use of random al-
terations to the parameters of the generating func-
tion(s). Later, Garibaldi and Musikasuwan [9, 10]
extended and formalised this notion through the

introduction of a notion that they termed a ‘non-
stationary fuzzy set’. In the research presented
here, we explored non-stationary fuzzy systems
using two difference shapes of primary MFs, i.e.,
Gaussian and Triangular MFs. The experiments
were designed by constructing the interval type-2
and non-stationary fuzzy systems using Gaussian
or Triangular MFs as the primary MFs in a system
to predict the results of the standard XOR prob-
lem. Various inputs were presented to the fuzzy
systems and were propagated through the infer-
ence rules to form the output (consequent) sets.
The lower, mean, upper, and interval of the out-
put for each case were computed and recorded.

2 Non-Stationary Fuzzy Sets and
Systems

As mentioned in Section 1, Garibaldi proposed
the notion of ‘non-deterministic fuzzy reasoning’
in which variability is introduced into the mem-
bership functions of a fuzzy system through the
use of random alterations to the parameters of
the generating function(s). Later Garibaldi and
Musikasuwan extended and formalised this no-
tion through the introduction of a notion that they
termed a non-stationary fuzzy set [9, 10]. Fig. 2
shows how the inferencing mechanisms might be
implemented in such non-stationary FESs. At
each instantiation a non-stationary fuzzy system
operates as type-1 fuzzy system. However, each
particular instantiation may vary from the pre-
vious one by a small amount (caused by apply-
ing the perturbation function to the parameter of
the MFs), to produce slightly different output(s).
Hence the output(s) are recorded and then the pro-
cess will be repeated some number of times. Once
all repeated processes have been completed, the
final outputs will be calculated. Again, there is
a range of options for how to determine the final
output from the repeated runs.

Definition 1 A non-stationary fuzzy set, denoted Ȧ, is char-
acterised by a membership function, µȦ(x, t), where (x) ∈ X
and µȦ(x, t) ∈ [0,1] and t is a free variable, time — the time
at which the fuzzy set is instantiated, i.e. as in Equation 1,

Ȧ =
∫

x∈X
µȦ(x, t)/x , µȦ ∈ [0,1] (1)
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Figure 2: Proposed mechanisms of a Non-
Stationary Fuzzy System

Any membership function may be used. In prac-
tice, of course, only a few alternative membership
functions are found in type-1 fuzzy sets, namely
piecewise linear including left-slope, triangular,
right-slope, and trapeziodal; gaussian; and sig-
moidal. Three main alternative kinds of non-
stationarity have been proposed [10]:

• Variation in location — i.e. small alterations to the
centre point of the primary membership function

• Variation in slope — i.e. small alterations to the width
of the primary membership function

• Noise variation — i.e. making small alterations (verti-
cally) in the value of the membership function.

At any given moment of time, i.e. in any spe-
cific instantiation, a non-stationary fuzzy set will
instantiate a standard type-1 fuzzy set.

2.1 Perturbation Functions

A function, termed the perturbation function, is a
function of time that will generate small changes
in the base membership function. In theory, this
could be a true random function — i.e. the mem-
bership function parameter could be a true ran-
dom variable: hence the terminology of non-
stationary fuzzy sets. In general, it would be ap-
pear that any function of time might be used as the
perturbation function, where the only restriction
is that membership function remains in bounds.
Given that any measurement of time is arbitrary
and relative, the actual set of functions that might
be useful in practice is more restrictive. Any units
might be used for time, t, but the most natural
would be to express time in seconds (s), in the
absence of any good reason not to. Again, given
that any physical notion of time is relative, any
arbitrary point in time might be chosen as zero.

A few possibilities for perturbation functions in
practice are:

• sine / cosine based, e.g.:

f(t) = sin(ωt) (2)

• pseudo-random, e.g.:

s(t +1) = (25,214,903,917s(t)+11) mod 248

f(t) =
s(t +1)−247

247 (3)

• differential time-series, e.g.:

f(x, t) →
dx(t)

dt
=

0.2x(t − τ)
1+ x10(t − τ)

− 0.1x(t) (4)

3 Experiments

In order to investigate the effect of different pri-
mary membership shapes in non-stationary fuzzy
sets, Gaussian and Triangular MFs were com-
pared with interval type-2 sets. As stated earlier,
this paper is continued from [9] and this section
focuses on constructing fuzzy systems to solve
the standard XOR problem.

In this study, fuzzy systems were constructed to
predict the output of truth value where both input
variables can take any value in the range of [0,1].
All fuzzy systems consist of two input variables
which are Input1 and Input2, one output variable
which is Output, and four rules. Each variable
consist of 2 Gaussian or Triangular MFs which
are Low and High. The following 4 rules are used
for all fuzzy systems. These rules are constructed
based on the standard XOR problem.

1. IF Input1 is Low AND Input2 is Low
THEN Output is Low

2. IF Input1 is Low AND Input2 is High
THEN Output is High

3. IF Input1 is High AND Input2 is Low
THEN Output is High

4. IF Input1 is High AND Input2 is High
THEN Output is Low

There are three kinds of perturbation function that
were used in this study, as follows:

• Sine based function (where ω = 127) (Eq. 2)

• Uniformly distributed function (Eq. 3)

• Normally distributed random function



Sine based and Uniformly distributed functions
return numbers in the range [−1,1], while the
third (the Matlab randn function) returns real
numbers sampled from a Normal distribution with
mean zero and standard deviation one.

3.1 Gaussian Primary Membership
Functions

The primary Gaussian MFs as shown in Fig. 3
were used and two kinds of variation were inves-
tigated, i.e. centre variation and width variation.

3.1.1 Non-stationary Fuzzy Systems

In both case of centre and width variations, 3
different fuzzy systems (described by perturba-
tion function used to generate MFs, i.e.; Sine
function, Uniformly distributed, and Normally
distributed) were designed with two inputs (an-
tecedents), one output (consequent), two Gaus-
sian MFs for each antecedents and consequent,
and four rules. All terms (two inputs and one
output) had two Gaussian membership functions,
corresponding to meanings of Low and High. Low
membership functions all had centre 0.1, High
membership functions all had centre 0.9. Finally,
the initial widths for all MFs for all terms were
0.5. Note that the parameters of the primary mem-
bership functions were chosen completely arbi-
trarily, since we do not consider their precise val-
ues to be of any importance. The purpose of the
study is purely to explore the similarities and dif-
ferences between the non-stationary fuzzy sys-
tems and the equivalent interval type-2 systems
in each case.

The four input vectors, (0.25,0.25) (0.25,0.75)
(0.75,0.25) and (0.75,0.75), were presented to the
system and each time the non-stationary fuzzy
sets were generated by replacing centre (c) or
width (σ) with c = c + 0.05 f (t) or σ = σ +
0.05 f (t) (where f (t) represents the chosen per-
turbation function), respectively. To clarify, the
non-stationary fuzzy sets were regenerated for
each input vector. This process was repeated a
fixed number of times (30 times for this study).
As an aside, note that it would appear to be a
perfectly acceptable design choice to generate the
fuzzy sets of the non-stationary system once be-
fore presenting the four input vectors, and then to
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Figure 3: Gaussian primary membership func-
tions used in the experiments

regenerate once again for the next set of four in-
put vectors. We are continuing to investigate such
alternative design choices in ongoing work.

3.1.2 Interval type-2 Fuzzy Systems

Two interval type-2 systems were also designed
with 2 inputs (antecedents), 1 output (conse-
quent), 2 Gaussian MFs for each antecedent and
consequent, and four rules. The membership
functions all had the same centre and width pa-
rameters as described above.

In the type-2 system, the footprint of uncertainty
of the type-2 MFs were created by deviating the
parameters of the original type-1 MFs by a per-
centage of the universe of discourse of the vari-
ables that they were associated to. Two different
methods were used to create these type-2 MFs:
by varying the centre point, and varying the width
around the original type-1 MF. In the case of
varying the centre, the centre of lower and upper
bounds MFs were defined by shifting the initial
centre point both left and right for 5% of universe
of discourse of variable that MF belongs to, re-
spectively, as follows:

- Centre of lower MF = c±0.05

Similarly, in the case of varying the width, the
width of lower and upper bounds MFs were de-
fined by shifting the initial width both left and
right for 5% of universe of discourse of variable
that MF belongs to, respectively, as follows:

- Width of lower MF = σ±0.05
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Figure 4: Primary triangular membership func-
tion used in the experiments

3.2 Triangular Primary Membership
Functions

For the case of triangular membership functions,
four kinds of variation were investigated, i.e.
centre variation, begin-point variation, end-point
variation, and begin & end point variation.

3.2.1 Non-stationary Fuzzy Systems

The triangular shapes used throughout this case
study to represent membership functions are
shown in Fig. 4. The non-stationary fuzzy sets
were then generated by replacing the begin-point
a and/or end-point b, or centre-point c in Fig. 4
with a = a + 0.05 f (t), b = b + 0.05 f (t), and
c = c + 0.05 f (t), where f (t) represents the cho-
sen perturbation function. This process was again
repeated 30 times. In all cases of variation, 3 dif-
ferent fuzzy systems (described by perturbation
function used to generate MFs, i.e.; Sine function,
Uniformly distributed, and Normally distributed)
were designed with two inputs (antecedents), one
output (consequent), two triangular MFs for each
antecedents and consequent, and four rules. All
terms (two inputs and one output) had two tri-
angular membership functions, corresponding to
meanings of Low and High. Low membership
functions all have ordinary centre c = 0.3, a =
0.1, and b = 0.5; High membership functions all
had ordinary centre c = 0.7, a = 0.5, and b = 0.9.

3.2.2 Interval type-2 Fuzzy Systems

Similarly, eight interval type-2 systems were
also designed with 2 inputs (antecedents), 1 out-

put (consequent), 2 triangular MFs for each an-
tecedent and consequent, and four rules. The
membership functions all had the same parame-
ters as described above.

In the type-2 system, the footprints of uncertainty
of the type-2 MFs were created by deviating the
parameters of the original type-1 MFs by a per-
centage of the universe of discourse of the vari-
ables that they were associated with. Four meth-
ods were used to create these type-2 MFs, to
match those of the non-stationary systems.

(1) Varying the centre point of the original type-1
MF. The centre of lower and upper bounds MFs
were defined by shifting the initial centre c both
left and right for 5% of the universe of discourse
of the variable’s MF, as follows:

- Centre of lower and upper MF = c±0.05

(2) Varying the begin-point of the original type-1
MF. The begin-point of lower and upper bounds
MFs were defined by shifting the initial begin-
point a both left and right for 5% of the universe
of discourse of the variable’s MF, as follows:

- begin-point of lower and upper MF = a±0.05

(3) Varying the end-point of the original type-1
MF. The end-point of lower and upper bounds
were defined by shifting the initial end-point b
both left and right for 5% of the universe of dis-
course of the variable’s MF, as follows:

- end-point of lower and upper MF = b±0.05

(4) Varying both begin and end points around the
original type-1 MF. The begin and end points of
lower and upper bounds MFs were defined by
shifting the initial begin and end points a and b
both left and right for 2.5% of the variable’s MF,
as follows:

- begin-point of lower and upper MF = a±0.025
- end-point of lower and upper MF = b±0.025

4 Methods

After all systems had been constructed, they were
used to predict the output of each of the four input
vectors ( (0.25,0.25) (0.25,0.75) (0.75,0.25) and
(0.75,0.75) ). The lower, mean, upper, and inter-
val of the results were computed and recorded.



Table 1: Lower, Mean and Upper Bounds for Gaussian Membership Functions

Vari- Type Perturb- Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

ation ation Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

Type-2 Interval 0.3687 0.3956 0.4224 0.5780 0.6050 0.6320 0.5780 0.6050 0.6320 0.3687 0.3956 0.4224

Centre Non- Normal 0.3853 0.3937 0.4020 0.5970 0.6056 0.6141 0.5970 0.6056 0.6141 0.3853 0.3937 0.4020

Stationary Uniform 0.3932 0.3933 0.4033 0.5791 0.6061 0.6331 0.5791 0.6061 0.6331 0.3932 0.3933 0.4033

Sine 0.3854 0.3939 0.4033 0.5795 0.6065 0.6335 0.5795 0.6065 0.6335 0.3854 0.3939 0.4033

Type-2 Interval 0.3836 0.3921 0.4007 0.5993 0.6079 0.6164 0.5993 0.6079 0.6164 0.3836 0.3921 0.4007

Width Non- Normal 0.3735 0.3911 0.4088 0.5912 0.6089 0.6265 0.5912 0.6089 0.6265 0.3735 0.3911 0.4088

Stationary Uniform 0.3734 0.3933 0.4097 0.5903 0.6067 0.6267 0.5903 0.6067 0.6267 0.3734 0.3933 0.4097

Sine 0.3732 0.3923 0.4098 0.5902 0.6078 0.6268 0.5902 0.6078 0.6268 0.3732 0.3923 0.4098

In the case of interval type-2 systems, the lower
and upper outputs were obtained directly [3], and
the mean is simply the average of lower and up-
per bounds. In the case of non-stationary systems,
for Sine and Uniform perturbation functions, the
lower bound values were derived from minimum
output value, the upper bound values were derived
from maximum output value, and the mean were
derived from average of the output value from 30
the repeated runs. Finally, the interval of the out-
puts were derived by computing the length be-
tween the lower and upper output values.

For the systems generated by Normally dis-
tributed random number (only), the lower and up-
per bounds are derived from m±s, where m is the
mean of the outputs over time and s is the standard
deviation. Finally, the outputs of four input sets
([(0.25,0.25) (0.25,0.75) (0.75,0.25) (0.75,0.75)])
were presented in Section 5.

5 Results

In the case of Gaussian MFs, with centre varia-
tion, the lower and upper bounds of the obtained
values and the final centroid output values for all
4 fuzzy systems are shown in Table 1. The same
information is also presented for width variation.

Similarly, in case of Triangular MFs, the lower
and upper bounds predicted values and the final
centroid output values for all systems are also
shown in Table 2 — for centre variation; begin
point variation; for end point variation; and for
both begin and end points variation, respectively.

The length of each results interval was calculated
and recorded. In case of Gaussian primary MF,
Fig. 5 shows the plots of mean of intervals for
the non-stationary systems together with interval
type-2 fuzzy systems. Similarly, in case of Trian-

gular primary MF, the plots of mean of intervals
for the non-stationary systems together with inter-
val type-2 fuzzy systems are shown in Fig. 6.

6 Discussion

The class of a type-2 fuzzy set is determined by
the secondary membership function. In compari-
son, the class of a non-stationary fuzzy set is de-
termined both by which kind of non-stationarity
used (variation in location, variation in slope or
noise variation) and by the form of perturbation
function used to deviate the primary membership
function — in this study we have used Normally
distributed, Uniformly distributed, and Sine based
perturbation functions applied to both variation in
location and variation in slope. It should be noted,
therefore, that herein lies a subtle difference be-
tween non-stationary fuzzy sets used in this pa-
per and type-2 fuzzy sets. In the non-stationary
fuzzy sets used here, the perturbation function
acts horizontally across the universe of discourse;
in type-2 fuzzy sets the secondary membership
functions are defined vertically along the mem-
bership value µ. For non-stationary fuzzy sets fea-
turing ‘noise variation’, the perturbation function
acts vertically. Of course, different perturbation
functions can still be used and, thus, such non-
stationary fuzzy sets might provide a more ‘di-
rect’ comparison with type-2 fuzzy sets. Again,
we are further exploring these areas.

Turning to the results obtained for the interval
of outputs obtained in the experiments carried
out. In Fig. 5 (Gaussian primary MFs), it can be
seen in (b) (width variation) that the output in-
terval is constant for the type-2 system and for
all the non-stationary systems. However, all the
non-stationary systems exhibit (the same) larger
output interval. This is a curious finding. In



Table 2: Lower, Mean and Upper Bounds for Triangular Membership Functions

Vari- Type Perturb- Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

ation ation Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

Type-2 Interval 0.2833 0.2981 0.3129 0.6871 0.7000 0.7129 0.6871 0.7000 0.7129 0.2871 0.3019 0.3167

Centre Non- Normal 0.2843 0.2986 0.3130 0.6881 0.7002 0.7123 0.6881 0.7002 0.7123 0.2874 0.3017 0.3161

point Stationary Uniform 0.2835 0.2997 0.3124 0.6873 0.7004 0.7124 0.6873 0.7004 0.7124 0.2873 0.3009 0.3160

Sine 0.2846 0.2989 0.3129 0.6871 0.7000 0.7129 0.6871 0.7000 0.7129 0.2871 0.3010 0.3166

Type-2 Interval 0.2828 0.3004 0.3180 0.6825 0.7003 0.7180 0.6825 0.7003 0.7180 0.2825 0.3000 0.3175

Begin Non- Normal 0.2812 0.3007 0.3203 0.6806 0.7003 0.7201 0.6806 0.7003 0.7201 0.2819 0.3001 0.3183

point Stationary Uniform 0.2829 0.3006 0.3173 0.6826 0.7006 0.7173 0.6826 0.7006 0.7173 0.2826 0.3005 0.3168

Sine 0.2828 0.3001 0.3180 0.6825 0.7000 0.7180 0.6825 0.7000 0.7180 0.2825 0.2999 0.3175

Type-2 Interval 0.2825 0.3000 0.3175 0.6820 0.6998 0.7175 0.6820 0.6998 0.7175 0.2820 0.2996 0.3172

End Non- Normal 0.2819 0.3001 0.3184 0.6775 0.6992 0.7210 0.6775 0.6992 0.7210 0.2788 0.3004 0.3221

point Stationary Uniform 0.2826 0.3006 0.3169 0.6822 0.7005 0.7168 0.6822 0.7005 0.7168 0.2822 0.3004 0.3166

Sine 0.2825 0.2999 0.3175 0.6820 0.6998 0.7175 0.6820 0.6998 0.7175 0.2820 0.2998 0.3172

Begin Type-2 Interval 0.2827 0.3002 0.3177 0.6823 0.7000 0.7177 0.6823 0.7000 0.7177 0.2823 0.2998 0.3173

& Non- Normal 0.2819 0.3003 0.3187 0.6814 0.7001 0.7188 0.6814 0.7001 0.7188 0.2815 0.2999 0.3183

End Stationary Uniform 0.2828 0.3006 0.3170 0.6825 0.7005 0.7170 0.6825 0.7005 0.7170 0.2824 0.3005 0.3167

point Sine 0.2827 0.3000 0.3177 0.6823 0.7000 0.7177 0.6823 0.7000 0.7177 0.2823 0.2999 0.3173
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Figure 5: Means of the intervals of the outputs for Gaussian non-stationary and interval type-2 fuzzy
systems (a) centre variation (b) width variation

contrast, it (a) (centre variation), the picture is
very much more complex. The type-2 system
has a constant output interval, as does the Nor-
mally distributed non-stationary system; however,
the Normally distributed non-stationary system
now has a smaller output interval. Furthermore,
the output interval of the Uniform and Sine non-
stationary system varies between that correspond-
ing to the Normally distributed non-stationary
system for ‘symmetric’ inputs (0.25,0.25) and
(0.75,0.75), and corresponding to the type-2 sys-
tem for the non-symmetric inputs (0.25,0.75) and
(0.75,0.25). Again, these findings are curious.

In Fig. 6 (Triangular primary MFs), again the re-
lationships are far from straight-forward. For be-
gin and end-point variation ( (b) and (c) ), the
output intervals appear to be non-symmetrical
with the inputs. This is perhaps not surpris-
ing, as the membership functions are being al-
tered in a non-symmetrical manner. However,

the absolute value of output interval for the Nor-
mally distributed non-stationary systems is larger
and the non-symmetry is more exaggerated. For
the case of centre variation (Fig. 6 (a)), all sys-
tems have approximately the same value of in-
terval, which varies according to the input val-
ues. For begin and end points (i.e. width) vari-
ation (Fig. 6 (d)), the interval of Normally dis-
tributed non-stationary systems are larger than all
others. We are unable to draw any definitive con-
clusions from the results obtained here. For all
cases except centre variation of Gaussian primary
MFs, the Sine perturbation function produces re-
sults which are very close to the interval type-2
systems. Why if should be different for the one
case, we are currently at a loss to explain.

Non-stationary fuzzy sets provide a relatively
straight-forward mechanism for carrying out in-
ference with fuzzy sets that are uncertain in some
way. Clearly non-stationary systems are not di-
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Figure 6: Means of the intervals of the outputs for Triangular non-stationary and interval type-2 systems
(a) centre variation (b) begin-point variation (c) end-point variation and (d) begin & end points variation

rect equivalents of type-2 systems. However, non-
stationary fuzzy systems may provide a mecha-
nism whereby a form of fuzzy reasoning which
approximates (in some meaning of the word) gen-
eral type-2 fuzzy inference in a simple, fast and
computationally efficient manner. We are contin-
uing investigations into the relationship between
the two frameworks (non-stationary systems and
type-2 systems) in order to explore this approx-
imation of interval and general type-2 inference
further.

Acknowledgements

This work was supported by the Royal Thai Gov-
ernment.

References

[1] L. Zadeh. The concept of a linguistic variable and its
application to approximate reasoning - I,II,III. Infor-
mation Sciences, vol. 8;8;9, pp. 199-249;301-357;43-
80, 1975.

[2] J. Mendel. Uncertain Rule-Based Fuzzy Logic Sys-
tems: Introduction and New Directions. NJ: Prentice-
Hall, 2001.

[3] J. Mendel and R. John. Type-2 fuzzy sets made sim-
ple. IEEE Transactions on Fuzzy Systems, vol. 10, pp.
117-127, 2002.

[4] T. Ozen and J.M. Garibaldi. Investigating adaptation
in type-2 fuzzy logic systems applied to umbilical
acid-base assessment. In Proc. of European Sympo-
sium on Intelligent Technologies, Hybrid Systems and
Their Implementation on Smart Adaptative Systems,
Oulu, Finland, June 2003.

[5] T. Ozen, J.M. Garibaldi, and S. Musikasuwan. Pre-
liminary investigations into modelling the variation in
human decision making. In Proc. of Information Pro-
cessing and Management of Uncertainty in Knowl-
edge Based Systems, Perugia, Italy, July 2004.

[6] T. Ozen, J.M. Garibaldi, and S. Musikasuwan. Mod-
elling the variation in human decision making. In
Proc. of Fuzzy Sets in the Heart of Canadian Rockies-
NAFIPS 2004, Banff, Canada, June 2004.

[7] T. Ozen and J.M. Garibaldi. Effect of type-2 fuzzy
membership function shape on medelling variation in
human decision making. In Proc. of IEEE Interna-
tional Conference on Fuzzy Systems, Budapest, Hun-
gary, July 2004.

[8] T. Ozen and J.M. Garibaldi. Nondeterministic fuzzy
reasoning. Submitted to IEEE Transactions on Fuzzy
Systems, 2005.

[9] J.M. Garibaldi and S. Musikasuwan. The Association
between Non-Satationary and Interval Type-2 Fuzzy
Sets: A Case Study. In Proc. of IEEE International
Conference on Fuzzy Systems, Reno, USA, May 2005.

[10] S. Musikasuwan and J.M. Garibaldi. Non-Stationary
Fuzzy Sets. In prep. for IEEE Transactions on Fuzzy
Systems, 2005.


