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Abstract

This work deals with strong impli-
cations (S-implications in short) de-
rived from uninorms continuous at
]0, 1[2. The general expression of
such implications is found and sev-
eral properties are studied. In par-
ticular, the distributivity of the S-
implications over conjunctive and
disjunctive uninorms is investigated.
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1 Introduction

The most usual kinds of implication functions
used in fuzzy logic are strong implications or
S-implications given by

I(x, y) = S(N(x), y) for all x, y ∈ [0, 1],

where N is a strong negation, and residual
implications or R-implications given by

I(x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}

for all x, y ∈ [0, 1]. Commonly, these implica-
tions are performed by t-norms and t-conorms
(see for instance [6]) and they are success-
fully used in several aggregation problems,
like aggregation of fuzzy relations, mathemat-
ical morphology and others.

On the other hand, uninorms are a spe-
cial kind of aggregation operators that have
proved to be useful in many fields like expert

systems, neural networks, aggregation, fuzzy
system modelling, measure theory, mathe-
matical morphology, etc. They are interesting
because of their structure as a special combi-
nation of a t-norm and a t-conorm (see [2]
or [6]), and because they must be conjunc-
tive (U(1, 0) = 0) or disjunctive (U(1, 0) = 1).
This allows to define fuzzy implications func-
tions from uninorms and, in fact, several stud-
ies have been made in this direction in [1] and
[8]. In these references only three classes of
uninorms are used, namely, uninorms in Umin

and Umax, representable uninorms and idem-
potent ones.

However, another important class, that in-
cludes representable uninorms, is the class
of uninorms continuous in ]0, 1[2 introduced
and characterized in [5]. This work wants
to deal with strong implications derived from
this kind of uninorms (that we will call here
continuous uninorms although they are con-
tinuous only in the open square ]0, 1[2). The
study of R-implications is not included for
lack of space. The uninorm used to obtain S-
implications must be disjunctive and thus two
possible kinds of continuous uninorms work.
We give the expression of S-implications for
both kinds of continuous uninorms. More-
over, several properties are studied and spe-
cially the distributivity of such implications
over conjunctive and disjunctive uninorms.

2 Preliminaries

We suppose the reader to be familiar with ba-
sic results concerning t-norms and t-conorms
that can be found, for instance, in [6]. Any-



way, given any a, b ∈]0, 1[, we will use the fol-
lowing notations: ϕa : [0, a] → [0, 1] will de-
note the increasing bijection given by ϕa(x) =
x/a, and ψa,b : [a, b] → [0, 1] the one given by
ψa,b(x) = x−a

b−a . Moreover, given any increas-
ing bijection ψ : [a, b] → [0, 1] and any binary
operator F : [0, 1]2 → [0, 1], Fψ : [a, b]2 →
[a, b] called the ψ-transform of F , will denote
the operator given by

Fψ(x, y) = ψ−1(F (ψ(x), ψ(y))).

Definition 1 A uninorm is a two-place func-
tion U : [0, 1] × [0, 1] −→ [0, 1] which is
associative, commutative, increasing in each
place and such that there exists some element
e ∈ [0, 1], called neutral element, such that
U(e, x) = x for all x ∈ [0, 1].

It is clear that the function U becomes a t-
norm when e = 1 and a t-conorm when e =
0. For any uninorm we have U(0, 1) ∈ {0, 1}
and a uninorm U is called conjunctive when
U(1, 0) = 0 and disjunctive when U(1, 0) = 1.
The structure of any uninorm U with neutral
element e ∈]0, 1[ is always as follows. It works
like a t-norm in the interval [0, e], like a t-
conorm in the interval [e, 1] and it takes values
between the minimum and the maximum in
all other cases.

The known classes of uninorms most com-
monly used are:

• Uninorms in Umin and Umax, those with
the 0-section and 1-section continuous
except perhaps at the point x = e.

• Idempotent uninorms, those satisfying
U(x, x) = x for all x ∈ [0, 1].

• The class U(e), introduced in [4], given
by those uninorms with neutral element
e satisfying U(x, y) ∈ {x, y} for all x, y
such that min(x, y) ≤ e ≤ max(x, y).
Note that this class includes both pre-
vious classes.

• Representable uninorms, see definition 2
below.

• Continuous in ]0, 1[2, characterized in [5].

Because we will mainly use the last two classes
of uninorms in the paper, we recall them.

Definition 2 ([2]) A uninorm U with neutral
element e ∈ ]0, 1[ is said to be representable
if there is an increasing continuous mapping
h : [0, 1] → [−∞, +∞] (called an additive
generator of U), with h(0) = −∞, h(e) = 0
and h(1) = +∞ such that U is given by

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and ei-
ther U(0, 1) = U(1, 0) = 0 or U(0, 1) =
U(1, 0) = 1.

Remark 1 Representable uninorms were ini-
tially introduced under another name in [3].
A representable uninorm is clearly continuous
in [0, 1]2 \ {(0, 1), (1, 0)}, and strictly increas-
ing in ]0, 1[2. Moreover, there exists a strong
negation N with fixed point e such that for all
(x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}

U(x, y) = N(U(N(x), N(y))).

This negation N is given by N(x) =
h−1(−h(x)), where h is an additive generator
of U .

Uninorms continuous in ]0, 1[2 were character-
ized in [5] as follows.

Theorem 1 ([5]) Suppose U is a uninorm
continuous in ]0, 1[2 with neutral element e ∈
]0, 1[. Then either one of the following cases
is satisfied:

(a) There exist λ ∈ [0, e[, u ∈ [0, λ], two con-
tinuous t-norms T and T ′ and a representable
uninorm UR such that U can be represented
as U(x, y) =





Tϕu(x, y) if x, y ∈ [0, u]
T ′ψu,λ

(x, y) if x, y ∈ [u, λ]
UR

ψλ,1
(x, y) if x, y ∈ ]λ, 1[

1 if min(x, y) ∈ ]u, 1]
and max(x, y) = 1

min(x, y) or 1 if (x, y) = (u, 1)
or (x, y) = (1, u)

min(x, y) elsewhere.

(1)

(b) There exist v ∈]e, 1], ω ∈ [v, 1], two
continuous t-conorms S and S′ and a repre-



sentable uninorm UR such that U can be rep-
resented as U(x, y) =





Sψv,ω(x, y) if x, y ∈ [v, ω]
S′ψω,1

(x, y) if x, y ∈ [ω, 1]
UR

ϕv(x, y) if x, y ∈ ]0, v[
0 if max(x, y) ∈ [0, ω[

and min(x, y) = 0
max(x, y) or 0 if (x, y) = (0, ω)

or (x, y) = (ω, 0)
max(x, y) elsewhere.

(2)

Denote by CU the class of these uninorms
and, particularly, by CUmin the class of uni-
norms with form (1) and by CUmax the class
of uninorms with form (2). A uninorm U in
CUmin (or in CUmax) will be denoted as U =
(e, u, λ, T, T ′, UR) (or U = (e, v, ω, UR, S, S′))
to represent its parameters.

Remark 2 Any uninorm U in CUmin with
u = 0 or U in CUmax with v = 1 is a rep-
resentable uninorm.

Definition 3 A binary operator I : [0, 1] ×
[0, 1] → [0, 1] is said to be an implication op-
erator, or an implication, if it satisfies:

I1) I is nonincreasing in the first variable
and nondecreasing in the second one.

I2) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, any implication satisfies I(0, x) =
1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas the
symmetrical values I(x, 0) and I(1, x) are not
derived from the definition.

The following proposition can be found in [1].

Proposition 1 Let U be a representable uni-
norm with neutral element e ∈]0, 1[ and ad-
ditive generator h. Let U∗ be the disjunctive
representable uninorm with the same additive
generator h, and N be the strong negation
given by N(x) = h−1(−h(x)). Then,

i) The residual implicator IU is given by
IU (x, y) =
{

h−1(h(y)− h(x)) if (x, y) 6∈ {(0, 0), (1, 1)}
1 otherwise.

ii) IU (x, y) = IU∗(x, y) = U∗(N(x), y) for all
x, y ∈ [0, 1].

3 S-implications from continuous
uninorms

Definition 4 Given a disjunctive uninorm U
and a strong negation N , the operator defined
by

I(x, y) = U(N(x), y) for all x, y ∈ [0, 1]

is an implication operator, called the strong
implication of U and N .

Note that, for a uninorm U ∈ CU , U is dis-
junctive if and only if one of the following
items holds:

a) U = (e, u, λ, T, T ′, UR) is in CUmin, λ = 0
(consequently only a t-norm T is needed
in its expression), and U(1, 0) = 1.

b) U = (e, v, ω, UR, S, S′) is in CUmax.

In both cases, the general structure of the
strong implication of such uninorm U can be
easily derived and it is given in the following
two propositions, respectively.

Proposition 2 If U = (e, u, 0, T, UR) is a
disjunctive uninorm in CUmin, then IU,N is
given by IU,N (x, y) =




Tϕu(N(x), y) if x ∈ [N(u), 1] and y ∈ [0, u]
UR

ψu,1(N(x), y) if x ∈]0, N(u)[ and y ∈]u, 1[
1 if x = 0 or y = 1
min(N(x), y) otherwise.

Proposition 3 If U = (e, v, ω, UR, S, S′) is
a disjunctive uninorm in CUmax, then IU,N is
given by IU,N (x, y) =





Sψv,w(N(x), y) if x ∈ [N(w), N(v)]
and y ∈ [v, w]

S′ψw,1
(N(x), y) if x ∈ [0, N(w)]

and y ∈ [w, 1]
UR

ϕv(N(x), y) if x ∈]N(v), 1[
and y ∈]0, v[

0 if x = 1, y ∈ [0, w[, or
y = 0, x ∈]N(w), 1]

0 or max(N(x), y) if (x, y) = (1, w) or
(x, y) = (N(w), 0)

max(N(x), y) otherwise.
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Figure 1: IU,N with U ∈ CUmin, where op-
erators in the figure are applied to the pairs
(N(x), y).

We can see the general structure of IU,N being
U ∈ CUmin and being U ∈ CUmax in figures 1
and 2, respectively.

From its definition, it is clear that strong im-
plications IU,N always satisfy contrapositive
symmetry with respect to N ,

I(N(y), N(x)) = I(x, y) for all x, y ∈ [0, 1]

because U is commutative and N involutive,
and the exchange principle

I(x, I(y, z)) = I(y, I(x, z))

for all x, y, z ∈ [0, 1], because U is commuta-
tive and associative.

Other interesting property is the distributiv-
ity of such implications over conjunctive and
disjunctive uninorms. That is,

IU,N (Uc(x, y), z) = Ud(IU,N (x, z), IU,N (y, z))
(3)

for all x, y, z ∈ [0, 1], where Uc and Ud are uni-
norms in one of the classes considered, such
that Uc is conjunctive, Ud is disjunctive and
their underlying t-norms and t-conorms are
continuous.

This property was already studied for strong
implications derived from other types of uni-
norms in [9]. Thus, we complete here that

N(x)

y

Sψv,w

S′ψw,1

UR
ϕv

0

w

v

1

0 N(w) N(v) 1

s

s

Figure 2: IU,N with U ∈ CUmax, where op-
erators in the figure are applied to the pairs
(N(x), y)

study for continuous uninorms. First of all,
we have the following result.

Theorem 2 With the previous notations,
IU,N , Uc and Ud satisfy equation (3) if and
only if Uc and Ud are N -dual and U is dis-
tributive over Ud.

Then, we have to solve the distributivity
equation of a uninorm U ∈ CU over a uni-
norm Ud:

U(x,Ud(y, z)) = Ud(U(x, y), U(x, z)) (4)

for all x, y, z ∈ [0, 1]. We will distinguish two
cases depending on which class is in the uni-
norm U .

3.1 Distributivity when U ∈ CUmin

We start with the case that U ∈ CUmin, that
is, λ = 0.

Lemma 1 Let U = (e, u, 0, T, UR) be a dis-
junctive uninorm in CUmin, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. Then
U(ed, ed) = ed, ed ≤ u and Ud(e, e) < 1.

Lemma 2 Let U = (e, u, 0, T, UR) be a dis-
junctive uninorm in CUmin, and let Ud be a



disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. Then
Ud(x, x) = x for all x ∈ [0, u].

Corollary 1 Let U = (e, u, 0, T, UR) be a
disjunctive uninorm in CUmin, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. Then Ud

is nor representable, nor in CU .

Lemma 3 Let U = (e, u, 0, T, UR) be a dis-
junctive uninorm in CUmin, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. For all
y < ed < z < 1 we have that Ud(y, z) 6= z.

Corollary 2 Let U = (e, u, 0, T, UR) be a
disjunctive uninorm in CUmin, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. Then Ud

is not in Umax and, if it is in U(ed), it must
be given by Ud(x, y) =





min(x, y) if x < ed and y < 1, or,
y < ed and x < 1

Sψu,1(x, y) if (x, y) ∈ [u, 1]2

max(x, y) otherwise.

(5)

Theorem 3 Let U = (e, u, 0, T, UR) be a dis-
junctive uninorm in CUmin, and let Ud be a
disjunctive uninorm in one of the classes con-
sidered in the Preliminaries. Then, U is dis-
tributive over Ud if and only if ed ≤ u and

(i) U(ed, ed) = ed, that is, there exist
T ′ and T ′′ t-norms such that T =(〈

0, ed
u , T ′

〉
,
〈 ed

u , 1, T ′′
〉)

.

(ii) There exists S a t-conorm such that Ud

is given by equation (5).

(iii) UR is distributive over S, that is, S =
max or S is strict and the additive gen-
erator s of S satisfying s

(
e−u
1−u

)
= 1, is

also a multiplicative generator of UR.

The general structure of U ∈ CUmin and Ud

such that U is distributive over Ud is depicted
in figure 3.

T ′ϕed

T ′′ψed,u

UR
ψu,1min

min

0

ed

u

e

1

0 ed u e 1

min

max

Sψu,1

min

min

max

max

0

ed

u

e

1

0 ed u e 1

Figure 3: U ∈ CUmin (up) distributive over
Ud ∈ U(e) (down).

3.2 Distributivity when U ∈ CUmax

Now we consider the case when U ∈ CUmax.
Similarly as in the previous case we obtain the
following results.

Lemma 4 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be
a disjunctive uninorm with neutral element
ed, such that U is distributive over Ud. Then
e < v ≤ ed, U(ed, ed) = ed and Ud(e, e) > 0.

Lemma 5 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be
a disjunctive uninorm with neutral element
ed, such that U is distributive over Ud. Then
Ud(x, x) = x for all x ∈ [v, 1]. Consequently,
Ud can not be continuous in ]0, 1[2.

Lemma 6 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be a



disjunctive uninorm with neutral element ed,
such that U is distributive over Ud. For all
0 < y < ed < z we have that Ud(y, z) 6= y.

Lemma 7 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be
a disjunctive uninorm with neutral element
ed, such that U is distributive over Ud, and
ed < ω. Then Ud(x, 0) = U(x, 0) for all
x ∈ [0, 1].

Corollary 3 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud, and ed <
ω. Then Ud is not in Umin and, if it is in
U(ed), it must be given by Ud(x, y) =




Tϕv(x, y) if (x, y) ∈ [0, v]2

max(x, y) if x > ed and y > 0, or,
x > ed and x > 0

max(x, y) if 0 ∈ {x, y} and max(x, y) > ω
U(0, ω) if (x, y) ∈ {(0, ω), (ω, 0)}
min(x, y) otherwise.

(6)

Lemma 8 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be
a disjunctive uninorm with neutral element
ed, such that U is distributive over Ud, and
ω ≤ ed. Then Ud(x, 0) = x for all x > ed,
that is, Ud must be in Umax.

Corollary 4 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be a
disjunctive uninorm with neutral element ed,
such that U is distributive over Ud, and ω ≤
ed. Then if it Ud is in U(ed), then U ∈ Umax

and there exists a t-norm T such that Ud must
be given by

Ud(x, y) =





Tϕv(x, y) if (x, y) ∈ [0, v]2

max(x, y) if max(x, y) ≥ ed

min(x, y) otherwise.
(7)

Theorem 4 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Ud be
a disjunctive uninorm in one of the classes
considered in the Preliminaries. Then, U is
distributive over Ud if and only if ed ≥ v,
U(ed, ed) = ed, there exists T a t-norm such

that UR is distributive over T (that is, T =
min or T is strict and the additive generator
t of T satisfying t( e

v ) = 1 is also a multiplica-
tive generator of UR), and one of the follow-
ing two cases holds:

i) ed < ω and then Ud is given by equation
(6), or

ii) ω ≤ ed and then Ud is given by equation
(7).

The general structure of U and Ud such that
U is distributive over Ud is depicted in figure
4 for case i), and figure 5 for case ii).

S1

S2

S′

UR

max

max

max

max

0

e

v

ed

ω

1

0 e v ed ω 1

s

s

T

min

min

min

maxmax

max

0

e

v

ed

ω

1

0 e v ed ω 1

s

s

Figure 4: U ∈ CUmax (top) distributive over
Ud ∈ U(e) (bottom), with v < ed < ω.

3.3 Other related distributivities

Related to equation (3) there are several dis-
tributivity equations involving implications
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1
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s

s

T

min

min

min

maxmax
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0

e

v

ω

ed

1

0 e v ω ed 1

Figure 5: U ∈ CUmax (top) distributive over
Ud ∈ Umax (bottom), with ω ≤ ed.

and uninorms. Namely,

IU,N (x,Ud(y, z)) = U ′
d(IU,N (x, y), IU,N (x, z))

(8)
IU,N (Ud(x, y), z) = Uc(IU,N (x, z), IU,N (y, z))

(9)
IU,N (x,Uc(y, z)) = U ′

c(IU,N (x, y), IU,N (x, z))
(10)

where uninorms with subscript c are conjunc-
tive and those with subscript d are disjunc-
tive. All of these properties were studied for
strong implications derived from other types
of uninorms in [9]. As in such reference, it can
be easily proved using contrapositive symme-
try of strong implications that equation (8)
is equivalent to equation (3) taking Uc the
N -dual of Ud and consequently we have the
following theorem.

Theorem 5 Let U be a continuous disjunc-
tive uninorm, and Ud = (ed, Td, Sd) and U ′

d =

(e′d, T
′
d, S

′
d) two disjunctive uninorms. Then

IU,N , Ud and U ′
d satisfy equation (8) if and

only if Ud = U ′
d and U is distributive over Ud.

Thus, Theorems 3 and 4 give all the solutions
of equation (8). Analogously equation (9) is
equivalent to equation (10) using this duality,
and so, we only need to solve this last equa-
tion. Again, we easily have,

Lemma 9 Let U be a continuous disjunc-
tive uninorm and Uc, U

′
c two conjunctive uni-

norms. Then, IU,N , Uc and U ′
c satisfy equa-

tion (10) if and only if Uc = U ′
c and U is

distributive over Uc.

Thus, we need to solve the distributivity equa-
tion of U over Uc. However, in this case there
are no solutions among the four classes of uni-
norms considered, as it can be proved follow-
ing the lemmas below.

Lemma 10 Let U be a continuous disjunc-
tive uninorm and Uc a conjunctive one. If
U is distributive over Uc, necessarily U ∈
CUmax.

Lemma 11 Let U = (e, v, ω, UR, S, S′) be a
disjunctive uninorm in CUmax, and let Uc be a
conjunctive uninorm. If U is distributive over
Uc, then

• e < v ≤ ec, U(ec, ec) = ec and Uc(e, e) >
0.

• Uc(x, x) = x for all x ∈ [v, 1] and conse-
quently Uc can not be in CU .

• Uc can not be in U(ec).

Let us finally note that a similar study can
be done for R-implications derived from uni-
norms continuous in ]0, 1[2, that is not in-
cluded here for lack of space. However, again
two different kinds of implications are ob-
tained and in both cases new solutions of the
distributivity equation can be found.
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