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Abstract

This work deals with strong impli-
cations (S-implications in short) de-
rived from uninorms continuous at
]0,1[2.  The general expression of
such implications is found and sev-
eral properties are studied. In par-
ticular, the distributivity of the S-
implications over conjunctive and
disjunctive uninorms is investigated.

Keywords: Uninorm, t-norm, t-co-
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1 Introduction

The most usual kinds of implication functions
used in fuzzy logic are strong implications or
S-implications given by

I(z,y) = S(N(x),y)

where N is a strong negation, and residual
implications or R-implications given by

for all z,y € [0,1],

I(z,y) =sup{z € [0,1] | T(z,2) <y}

for all z,y € [0, 1]. Commonly, these implica-
tions are performed by t-norms and t-conorms
(see for instance [6]) and they are success-
fully used in several aggregation problems,
like aggregation of fuzzy relations, mathemat-
ical morphology and others.

On the other hand, uninorms are a spe-
cial kind of aggregation operators that have
proved to be useful in many fields like expert
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systems, neural networks, aggregation, fuzzy
system modelling, measure theory, mathe-
matical morphology, etc. They are interesting
because of their structure as a special combi-
nation of a t-norm and a t-conorm (see [2]
or [6]), and because they must be conjunc-
tive (U(1,0) = 0) or disjunctive (U(1,0) = 1).
This allows to define fuzzy implications func-
tions from uninorms and, in fact, several stud-
ies have been made in this direction in [1] and
[8]. In these references only three classes of
uninorms are used, namely, uninorms in Uiy
and Upax, representable uninorms and idem-
potent ones.

However, another important class, that in-
cludes representable uninorms, is the class
of uninorms continuous in ]0,1[? introduced
and characterized in [5]. This work wants
to deal with strong implications derived from
this kind of uninorms (that we will call here
continuous uninorms although they are con-
tinuous only in the open square ]0, 1[%). The
study of R-implications is not included for
lack of space. The uninorm used to obtain S-
implications must be disjunctive and thus two
possible kinds of continuous uninorms work.
We give the expression of S-implications for
both kinds of continuous uninorms. More-
over, several properties are studied and spe-
cially the distributivity of such implications
over conjunctive and disjunctive uninorms.

2 Preliminaries

We suppose the reader to be familiar with ba-
sic results concerning t-norms and t-conorms
that can be found, for instance, in [6]. Any-



way, given any a,b €]0, 1], we will use the fol-
lowing notations: ¢, : [0,a] — [0,1] will de-
note the increasing bijection given by ¢, (x) =
x/a, and 4y : [a,b] — [0,1] the one given by
Yap(x) = —=. Moreover, given any increas-
ing bijection ® : [a,b] — [0, 1] and any binary
operator F : [0,1]? — [0,1], Fy : [a,b]?

[a, b] called the -transform of F', will denote
the operator given by

Fy(z,y) =9~ (F(W(2), $(9)))-

Definition 1 A uninorm is a two-place func-
tion U : [0,1] x [0,1] — [0,1]
associative, commutative, increasing in each
place and such that there exists some element

€ [0,1], called neutral element, such that
Ule,x) = x for all x € [0,1].

which is

It is clear that the function U becomes a t-
norm when e = 1 and a t-conorm when e =
0. For any uninorm we have U(0,1) € {0,1}
and a uninorm U is called conjunctive when
U(1,0) = 0 and disjunctive when U(1,0) = 1.
The structure of any uninorm U with neutral
element e €]0, 1] is always as follows. It works
like a t-norm in the interval [0, €], like a t-
conorm in the interval [e, 1] and it takes values
between the minimum and the maximum in
all other cases.

The known classes of uninorms most com-
monly used are:

e Uninorms in Upin and Upax, those with
the 0O-section and 1-section continuous
except perhaps at the point x = e.

e Idempotent uninorms, those satisfying
U(z,z) =z for all z € [0,1].

e The class U(e), introduced in [4], given
by those uninorms with neutral element
e satisfying U(z,y) € {z,y} for all z,y
such that min(z,y) < e < max(z,y).
Note that this class includes both pre-
vious classes.

e Representable uninorms, see definition 2
below.

e Continuous in ]0, 1[?, characterized in [5].

Because we will mainly use the last two classes
of uninorms in the paper, we recall them.

Definition 2 ([2]) A uninorm U with neutral
element e € 10,1[ is said to be representable
if there is an increasing continuous mapping
h :[0,1] — [—o0,400] (called an additive
generator of U ), with h(0) = —oo, h(e) =0

and h(1) = 400 such that U is given by
Uz,y) = h™" (h(z) + h(y))
for all (z,y) € [0,1]2\ {(0,1),(1,0)} and ei-

ther U(0,1) = U(1,0) = 0 or U(0,1) =
U(1,0) = 1.

Remark 1 Representable uninorms were ini-
tially introduced under another name in [3].
A representable uninorm is clearly continuous
in [0,1]%\ {(0,1), (1,0)}, and strictly increas-
ing in 10, 1[2. Moreover, there exists a strong
negation N with fixed point e such that for all

(z,) € 0,1\ {(0,1), (1,0)}
Ulz,y) = N(U(N(z), N(y)))-

This mnegation N is given by N(z) =
h=Y(—h(z)), where h is an additive generator

of U.

Uninorms continuous in ]0, 1[? were character-
ized in [5] as follows.

Theorem 1 (/5]) Suppose U is a uninorm
continuous in |0, 1[> with neutral element e €
10,1[. Then either one of the following cases
is satisfied:

(a) There exist X € [0,¢e], u € [0, ], two con-
tinuous t-norms T and T" and a representable
uninorm UT such that U can be represented

as U(z,y) =

Tgﬁu(may) z'fa:,y € [O,U]
T, (z:y) if 2,y € [u,\]
UR%’l(a:,y) if x,y € |\ 1]
1 if min(zx,y) € Ju, 1] (1)
and max(z,y) =1

min(z,y) orl if (z,y) = (u,1)

r (a?,y) = (17u)
min(x, y) elsewhere.

(b) There exist v €le, 1], w € [v,1], two
continuous t-conorms S and S’ and a repre-



sentable uninorm UR such that U can be rep-
resented as U(x,y) =

Sty (@, Y) ifz,y € [v,w]
S{Z}w’l(z,y) if x,y € [w, 1]
Uf,, (z,y) if z,y €10,9]
0 if max(z,y) € [0,w] 2)
and min(z,y) =0

max(x,y) or 0 if (z,y) = (0,w)

r(z,y) = (w,0)
max(x,y) elsewhere.

Denote by CU the class of these uninorms
and, particularly, by CU/™™ the class of uni-
norms with form (1) and by CU™** the class
of uninorms with form (2). A uninorm U in
CU™™ (or in CU™) will be denoted as U =
(e,u, \, T, T",U) (or U = (e,v,w,U%, S, 5")

to represent its parameters.

Remark 2 Any uninorm U in CU™™ with
uw =0 orU in CU™ with v =1 is a rep-
resentable uninorm.

Definition 3 A binary operator I : [0,1] X
[0,1] — [0,1] is said to be an implication op-
erator, or an implication, if it satisfies:

I1) T is nonincreasing in the first variable
and nondecreasing in the second one.

12) 1(0,0) = I(1,1) = 1 and I(1,0) = 0.
Note that, any implication satisfies I(0,z) =
1 and I(z,1) =1 for all € [0, 1] whereas the
symmetrical values I(z,0) and I(1,z) are not
derived from the definition.

The following proposition can be found in [1].

Proposition 1 Let U be a representable uni-
norm with neutral element e €]0,1] and ad-
ditive generator h. Let U* be the disjunctive
representable uninorm with the same additive
generator h, and N be the strong negation
given by N(x) = h=Y(=h(z)). Then,

i) The residual implicator Iy is given by
IU(:Ea y) =
{h_l(h(y) —h(z)) if (z,y) €{(0,0),(1,1)}

1 otherwise.

11) IU(‘T7y) IU*(x7y) = U*(N(.’E),y) fOT all
1

z,y € [0,1].

3 S-implications from continuous
uninorms

Definition 4 Given a disjunctive uninorm U
and a strong negation N, the operator defined

by
I(z,y) =

1s an implication operator, called the strong
implication of U and N.

U(N(z),y) forall z,y € [0,1]

Note that, for a uninorm U € CU, U is dis-
junctive if and only if one of the following
items holds:

a) U= (e,u, \,T, T, UR) is in CU™™, A\ =0
(consequently only a t-norm 7' is needed
in its expression), and U(1,0) =1

b) U = (e,v,w, U S, ") is in CU™>,

In both cases, the general structure of the
strong implication of such uninorm U can be
easily derived and it is given in the following
two propositions, respectively.

Proposition 2 If U = (e,u,0,T,U") is a
disjunctive uninorm in CU™", then Iy n is
given by Iy n(z,y) =

Ty, (N(2),y)
Uty (N (@), y)
1 ife=0o0ry=1
min(N(x),y) otherwise.

Proposition 3 If U = (e,v,w,U%,S,8") is
a disjunctive uninorm in CU™*, then Iy n is
given by Iy n(z,y) =

St (N (), 9) if © € [N(w), N(v)]
and y € [v, w]

Sps (N (), y) if # € [0, N(w)]
and y € [w, 1]

UR, (N@)y) i o €N,
and y €]0,v]

0 if e =1,y € [0,w[, or
y =0,z €]N(w),1]

0 or max(N(z),y) if (z,y) = (1,w) or
(2,9) = (N(w),0)

max(N(z),y) otherwise.

if v € [N(u),1] and y € [0, u]
if x €]0, N(u)[ and y €]u, 1]
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Figure 1: Iyny with U € CU™™ where op-
erators in the figure are applied to the pairs
(N (z),y).

We can see the general structure of Iy y being
U € CU™" and being U € CU™* in figures 1
and 2, respectively.

From its definition, it is clear that strong im-
plications Iy always satisfy contrapositive
symmetry with respect to IV,

I(N(y), N(z)) = I(z,y)

because U is commutative and N involutive,
and the exchange principle

Iz, 1y, 2)) = I(y, I(x, z))

for all z,y, z € [0, 1], because U is commuta-
tive and associative.

for all z,y € [0, 1]

Other interesting property is the distributiv-
ity of such implications over conjunctive and
disjunctive uninorms. That is,

Iyn(Ue(z,y), 2) = Us(lu,n (2, 2), Tu,n (y; 2))

(3)
for all z,y, z € [0, 1], where U, and U, are uni-
norms in one of the classes considered, such
that U, is conjunctive, Uy is disjunctive and
their underlying t-norms and t-conorms are
continuous.

This property was already studied for strong
implications derived from other types of uni-
norms in [9]. Thus, we complete here that
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Figure 2: Iy n with U € CU™, where op-
erators in the figure are applied to the pairs

(N (x),y)

study for continuous uninorms. First of all,
we have the following result.

Theorem 2 With the previous notations,
Iyn, Ue and Uy satisfy equation (3) if and
only if U. and Uy are N-dual and U is dis-
tributive over Uy.

Then, we have to solve the distributivity
equation of a uninorm U € CU over a uni-
norm Uy:

U(:U?Ud(y:z)) - Ud(U(xvy)7U(x7Z)) (4)

for all z,y,z € [0,1]. We will distinguish two
cases depending on which class is in the uni-
norm U.

3.1 Distributivity when U € CU/™™"

We start with the case that U € CU™™, that
is, A=0.

Lemma 1 Let U = (e,u,0,T,UR) be a dis-
junctive uninorm in CU™™, and let Uy be a
disjunctive uninorm with neutral element eq,
such that U is distributive over Uy. Then
Uleq,eq) = eq,eq < u and Ugy(e,e) < 1.

Lemma 2 Let U = (e,u,0,T,U%) be a dis-
Junctive uninorm in CU™™, and let Uy be a



disjunctive uninorm with neutral element eg,
such that U is distributive over Uy. Then
Ui(z,z) =z for all z € [0, u].

Corollary 1 Let U = (e,u,0,T,U") be a
disjunctive uninorm in CU™™, and let Uy be a
disjunctive uninorm with neutral element eg,
such that U is distributive over Ug. Then Uy
is mor representable, nor in CU.

Lemma 3 Let U = (e,u,0,T,UR) be a dis-
junctive uninorm in CU™™, and let Uy be a
disjunctive uninorm with neutral element eg,
such that U 1is distributive over Uy. For all
y < eq < z <1 we have that Uy(y, z) # z.

Corollary 2 Let U = (e,u,0,T,UR) be a
disjunctive uninorm in CU™™, and let Uy be a
disjunctive uninorm with neutral element eg,
such that U is distributive over Ug. Then Uy
is not in Umax and, if it is in U(eq), it must
be given by Uy(z,y) =

min(x,y) ifz <eq andy <1, or,
y<egandz <1 (5)

Spur (@, y) if (x,y) € [u,1]?

max(x,y)  otherwise.

Theorem 3 Let U = (e,u,0,T,UT) be a dis-
junctive uninorm in CU™™, and let Uy be a
disjunctive uninorm in one of the classes con-
stdered in the Preliminaries. Then, U is dis-
tributive over Uy if and only if eq < u and

(i) Uleq,eq) = eq, that is, there exist
T and T" t-norms such that T =
(€0,%,77), (%, 1,T")).

(i) There exists S a t-conorm such that Uy
is given by equation (5).

(i) U is distributive over S, that is, S =
max or S is strict and the additive gen-
erator s of S satisfying s (%) =1, is

also a multiplicative generator of U™,

The general structure of U € CU™™ and Uy
such that U is distributive over Uy is depicted
in figure 3.
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0 ed U e 1

Figure 3: U € CU™™ (up) distributive over
Ug € U(e) (down).

3.2 Distributivity when U € CU/™**

Now we consider the case when U € CU™®*.
Similarly as in the previous case we obtain the
following results.

Lemma 4 Let U = (e,v,w,U%,S,8") be a
disjunctive uninorm in CU™®*, and let Uy be
a disjunctive uninorm with neutral element
eq, such that U is distributive over Uy. Then
e<v<eg, Uleg,eq) = eq and Uy(e,e) > 0.

Lemma 5 Let U = (e,v,w,UR, S, S") be a
disjunctive uninorm in CU™?*, and let Uy be
a disjunctive uninorm with neutral element
eq, such that U 1is distributive over Uy. Then
Ug(z,x) = z for all x € [v,1]. Consequently,
Uy can not be continuous in |0, 1[%.

Lemma 6 Let U = (e,v,w, U, S, S") be a
disjunctive uninorm in CU™™, and let Uy be a



disjunctive uninorm with neutral element ey,
such that U 1is distributive over Uy. For all
0 <y <eq<z we have that Uy(y,z) # y.

Lemma 7 Let U = (e,v,w,U% S, 8') be a
disjunctive uninorm in CU™*, and let Uy be
a disjunctive uninorm with neutral element
edq, such that U is distributive over Uy, and
eq < w. Then Uy(z,0) = U(x,0) for all
x € [0,1].

Corollary 3 Let U = (e,v,w,U%,S,8") be a
disjunctive uninorm in CU™®*, and let Uy be a
disjunctive uninorm with neutral element ey,
such that U is distributive over Uy, and eg <
w. Then Uy is not in Umin and, if it is in
U(eq), it must be given by Uy(z,y) =

T‘Pu (xvy) Zf (Ji,y) € [OJU]Q

max(z,y) if x> eq andy >0, or,
x>eqgandx >0

max(z,y) if0€ {z,y} and max(z,y) > w

UO,w)  if (z,y) €{(0,w), (w,0)}

min(x,y) otherwise.

(6)

Lemma 8 Let U = (e,v,w,U% S, 8) be a
disjunctive uninorm in CU™*, and let Uy be
a disjunctive uninorm with neutral element
ed, such that U is distributive over Uy, and
w < eq. Then Uy(x,0) = x for all x > ey,
that is, Uy must be in Upax.

Corollary 4 Let U = (e,v,w,U%,S,8") be a
disjunctive uninorm in CU™®*, and let Uy be a
disjunctive uninorm with neutral element ey,
such that U 1is distributive over Uy, and w <
eq. Then if it Uy is in U(eq), then U € Upax
and there exists a t-norm T such that Ug must
be given by

Ty, (z,y)  if (2,y) €[0,v]?
Ui(z,y) = { max(z,y) if max(z,y) > eq
min(x,y) otherwise.

(7)

Theorem 4 Let U = (e,v,w,UR,S,8") be a
disjunctive uninorm in CU™*, and let Uy be
a disjunctive uninorm in one of the classes
considered in the Preliminaries. Then, U is
distributive over Uy if and only if eq > v,
U(eq,eq) = eq, there exists T a t-norm such

that U is distributive over T (that is, T =
min or T is strict and the additive generator
t of T satisfying t(2) = 1 is also a multiplica-
tive generator of UT), and one of the follow-
ing two cases holds:

i) eq < w and then Uy is given by equation

(6), or

i1) w < eq and then Uy is given by equation

(7).

The general structure of U and Uy such that
U is distributive over Uy is depicted in figure
4 for case i), and figure 5 for case ).

1
max S’
w
max So
€d
S max
v
e UR max
0
0 e v ed w 1
1
w max max
€d
min min
v
max
e T min
0
0 e v ed w 1

Figure 4: U € CU™®* (top) distributive over
Uy € U(e) (bottom), with v < eg < w.
3.3 Other related distributivities

Related to equation (3) there are several dis-
tributivity equations involving implications



1
max S5
€d
max S1
w
S max
v
e UR max
0
0 e v w ed 1
1
max max
€d
w min min
v max
€ T min
0
0 e v w ed 1

Figure 5: U € CU™** (top) distributive over
Uy € Upax (bottom), with w < eg4.

and uninorms. Namely,

Iy, (2, Ualy, 2)) = Ug(Iun (2, ), Lun (2, 2))
(8)
Iy n(Ud(z,y), 2) = Uc(lu,n (, 2), Lun (Y, 2))
(9)
Iyn (2, Uely, 2)) = Ue(Tun (2, y), Iun (2, 2))
(10)
where uninorms with subscript ¢ are conjunc-
tive and those with subscript d are disjunc-
tive. All of these properties were studied for
strong implications derived from other types
of uninorms in [9]. As in such reference, it can
be easily proved using contrapositive symme-
try of strong implications that equation (8)
is equivalent to equation (3) taking U, the
N-dual of U; and consequently we have the
following theorem.

Theorem 5 Let U be a continuous disjunc-
tive uninorm, and Uy = (eq, T4, Sq) and U} =

(e}, 15, S)) two disjunctive uninorms. Then
Iy, Ug and U} satisfy equation (8) if and
only if Ug = U}, and U is distributive over Ug.

Thus, Theorems 3 and 4 give all the solutions
of equation (8). Analogously equation (9) is
equivalent to equation (10) using this duality,
and so, we only need to solve this last equa-
tion. Again, we easily have,

Lemma 9 Let U be a continuous disjunc-
tive uninorm and U, U, two conjunctive uni-
norms. Then, Iy n, Ue and U] satisfy equa-
tion (10) if and only if U. = U, and U is

distributive over U.,.

Thus, we need to solve the distributivity equa-
tion of U over U.. However, in this case there
are no solutions among the four classes of uni-
norms considered, as it can be proved follow-
ing the lemmas below.

Lemma 10 Let U be a continuous disjunc-
tive uninorm and U, a conjunctive one. If
U is distributive over U., necessarily U €
Cumax'

Lemma 11 Let U = (e,v,w,U%,S,8") be a
disjunctive uninorm in CU™®, and let U, be a
conjunctive uninorm. If U is distributive over
U., then

e c<v<ee, Ulese) =ee. and Ug(e,e) >
0.

o Usx,x) =z for all x € [v,1] and conse-
quently U. can not be in CU.

e U, can not be in U(e.).

Let us finally note that a similar study can
be done for R-implications derived from uni-
norms continuous in ]0,1[?, that is not in-
cluded here for lack of space. However, again
two different kinds of implications are ob-
tained and in both cases new solutions of the
distributivity equation can be found.
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