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Abstract

In semantic web a query can con-
tain several vague concepts of user’s
gradual preferences. This particu-
lar preferences need to be combined
to get an overall ordering of results.
We propose a fuzzy description logic
with existential restrictions, crisp
roles, fuzzy concepts and fuzzy com-
bining functions (fuzzy aggregation
operators). For web consulting we
need to solve the instance problem.
We show some results on polynomial
complexity of instance problem.
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1 Introduction and motivation

In the semantic web context, information has
to be retrieved, processed, shared, reused
and aligned in an automatic way by software
agents.

In [16] G. Stoilos et al. describe experience
with applications in the semantic web. They
have shown that these applications are rarely
a matter of true or false answers, but rather
procedures that require degree of relatedness,
similarity or ranking. Similar motivation led
to development of fuzzy description logic for
the semantic web in [18] and [17] by U. Strac-

cia. See also specialized workshops and pro-
ceedings [19] and [7].

Exact constraints of a query often lead to
empty or too many answers. Using fuzzy
atomic concepts, we can better express grad-
ualism of user preferences. Another source of
fuzziness referred in the literature are uncer-
tain or vague values.

In fuzzy databases [6] J. Galindo et al. de-
scribe fuzzy attribute type 1 - “these are
represented as usual attributes because they
do not allow fuzzy values. Nevertheless, in-
formation is stored in the fuzzy background
knowledge base about the nature or context
of them. They are classical attributes that
admit fuzzy processing.” By our opinion, this
coincides with information on the web. Infor-
mation on the web can be vague or imprecise,
but there is no degree of fuzziness attached to
it (web is “read only”). Source of fuzziness is
in vagueness and preferences of user’s query
and his/her interpretation of data.

Motivation example. Imagine a user U
looking for a hotel which is cheap, close to
a beach, and has a new building. Let us first
assume our data are as in table 1 (where dis-
tance is the distance to the nearest beach and
yoc is the year of construction).

Table 1: Hotel attribute values .
Hotel price distance yoc

h1 150 300 1980
h2 200 450 2000

Particular attribute preferences of the user
U can be expressed by fuzzy subsets



fU
cheap, f

U
close, f

U
new of particular attribute do-

mains , e.g. fU
cheap(150) = 0.75, fU

close(300) =
0.6, fU

new(1980) = 0.2 and similarly for other
values.

This results in a table with user’s U degree of
preferences of particular attribute in table 2.

Table 2: U-Degree of hotel attribute score
Hotel cheap U close U new U

h1 0.75 0.6 0.2
h2 0.5 0.3 0.9

Notice that no hotel is clearly better in all
attributes.

Here the main point of our motivation comes.
Practical experiences have shown that com-
parison of user’s overall ordering of objects
with score of particular attributes is seldom
a conjunctive or disjunctive combination (see
e.g. [20]). In databases it means that some
orderings cannot be described by neither con-
junctive nor disjunctive queries. We need a
more general combination (fusion, aggrega-
tion) of different features of a query. One
solution is to work with a fuzzy aggregation
(e.g. weighted sum), which can order objects
with incomparable particular attributes. By
an inductive method ([20]) we can learn the
combination function of user U to be

@U (cheap U, close U, new U) =

=
2 ∗ cheap U + 3 ∗ close U + new U

6

.

This for hotel h1 gives

@U (0.75, 0.6, 0.2) =

=
2 ∗ 0.75 + 3 ∗ 0.6 + 0.2

6
=

3.5
6

= 0.58...

and this is an overall degree with which the
hotel h1 is good for the user U. But not the
numerical value counts here, it is rather the

comparison of overall degree for both hotels.
For the hotel h2 we get @U (0.5, 0.3, 0.9) =
0.46, so, global score of hotel h2 is strictly
smaller, hence the hotel is less preferable for
user U than h1 (of course, for another user
with a different combination function this
need not be the case).

This feature of querying, namely combination
of particular attribute score to a global score,
was already studied in GAP - generalized an-
notated programs of M. Kifer and V. S. Sub-
rahmanian [11], information retrieval by R.
Fagin [4], database rank aware querying by I.
F. Ilyas et al in [9] and D. Papadias et al [15],
just to mention a few.

Example on the web.

We consider a model of web services presented
by D. Fensel et al. in [5] (depicted bellow,
boxed items denote data and circled items de-
note processes).

G // WVUTPQRSWSD // WS

��ONMLHIJKGD

OO

ONMLHIJKSD

��
UD

OO

AS

Main point of the [5] model is the distinction
between user desire UD and abstracted goal
G processable by the system. Second distinc-
tion is between a web service WS, understood
as a computational entity accessible over the
Internet, and an actual service AS (discovered
via this). In this setting [5] recognize goal dis-
covery GD - a process abstracting from indi-
vidual and specific features of the user query
to a semantically annotated query. Web ser-
vice discovery WSD is based on matching ab-
stracted goal description with semantic anno-
tation of web services. This is related to our
problem, if we assume that semantic is ex-
pressed by description logic or a web modeling
language based on description logic. Service
discovery SD is a processes recognizing an ac-
tual service from a set of services available at
WS.



In this paper we describe our task in this
realm of web services.

The paper is organized as follows: first we
describe the syntax and semantics of a fuzzy
description logic f − ELGcr. Further we dis-
cuss the instance problem for f − ELGcr from
the point of view of web consulting. We con-
clude with some observations, comparison and
plans for future research.

2 A fuzzy description logic f − ELGcr

In order agents and services can negotiate and
find an answer, we have to consider our prob-
lem as a part of web modeling languages. As
description logic has become a part of stan-
dards for the semantic web, we would like to
have these features in models of description
logic. A standard reference for description
logic is F. Baader et al. [2].

In this paper we propose a fuzzy EL-type de-
scription logic (for references on EL descrip-
tion logic see R. Kuesters and R. Molitor [13]).
We look for a logic which has minimal neces-
sary tools to allow construction of concepts
which aggregate particular attribute score to
global score according to user preferences, as
in our example.

In this section we introduce a description logic
which in some parameters (e.g. crisp roles,
without negations) is a weakening of fuzzy de-
scription logic of U. Straccia [17], [18] and in
some parameters is a strengthening (aggrega-
tions). Moreover we use only existential re-
strictions which have surprisingly great ex-
pressive power wrt. applications ([2], [13]).
We loose the ability to describe fuzziness in
roles (e.g. uncertainty in values) but we gain
combination of particular user preferences to
a global score. Intended meaning is, com-
plex concepts describe user query and atomic
concepts play the role of selection conditions
(similarly as in WHERE expressions in an
SQL query).

Note that we do not have negation in our logic
because it can be hidden in atomic concepts
(similarly as SQL selection conditions are usu-
ally closed on negation).

Our alphabet consists of (mutually disjoint)
sets NC of concepts names containing >, NR

role names, NI instance names.

Our example in description logic. Basic
building boxes of description logic are con-
cepts and roles. Here, roles express data
(properties of resources - hotels in our case)
stored in crisp data. Although the basic
model of expressing triplets “resources - prop-
erties - values” are oriented graphs, we use
here the language of logic.

We describe an example of the f − ELGcr de-
scription logic alphabet (subscript cr stands
here for “crisp roles”). Our f − ELGcr alpha-
bet Lex consists of roles names

N ex
R = {hotel price, hotel distance, hotel yoc}.

atomic concept names

N ex
C = {cheap U, close U, new U,

cheap hotel U, close beach hotel U,
new hotel U, good hotel U}.

Some of them we sometimes abbreviate as
Hcheap U,Hclose U,Hnew U .

Further, our language Lex contains instance
names (either typed or untyped), this can look
as follows

N ex
I = {h1, h2, 150, 300, 1980, . . .}.

Our language of description logic further con-
tains constructor ∃ and a finite set G of com-
bination functions symbols (G standing for
global scoring functions) and the arity func-
tion ar : G −→ {n ∈ N : n ≥ 2}.

In our case Gex = {@U}.

Concept descriptions in f − ELGcr are formed
according to the following syntax rules

C −→ >|A|@(C1, . . . , Cn)|∃r.C

Example in description logic (contin-
ued).

Using above, in our DL f −ELGcr we can have
more complex concepts like

∃ hotel price.cheap U
∃ hotel distance.close U
∃ hotel yoc.new U



@U (Hcheap U,Hclose U,Hnew U)

Now we have the language Lex =
{N ex

R , N ex
C , N ex

I ,∃,Gex}. In order to give
this syntax a meaning we have to define
interpretations of our language. As already
motivated by our example, we are modeling
gradual user preferences. The modeling tool
for this is many valued logic (which so far did
not touch syntax of our description logic).

In our description logic f−ELGcr we have inter-
pretations parameterized by a (possibly par-
tially, usually linearly) ordered set of truth
values with aggregations.

Interpretations are based on a choice of prefer-
ence structure. Let P = {P,≤, {@• : @ ∈ G}}
be such that (P,≤, 1P , 0P ) is a complete lat-
tice and @• : P ar(@) −→ P are totally contin-
uous functions in the sense of lattice theory
(see [11], this notion requires also functions
to be order preserving - so e.g. negation is
not totally continuous in the sense of lattice
theory). Moreover we assume our global scor-
ing functions fulfill

@•(1P , . . . , 1P ) = 1P

and
@•(0P , . . . , 0P ) = 0P

hence @• are fuzzy aggregation operators in
the sense of T. Calvo et al. [3]. P is a prefer-
ence structure.

Notice, we do not assume our fuzzy EL-type
logic contains u connected to a specific t-
norm. Fuzzy aggregations generalize both
fuzzy conjunctions and disjunctions. In the
case G = {@} is a one element set, we will
write f − EL@

cr.

For a preference structure P, a P-
interpretations is a pair I =

〈
∆I , •I

〉
,

with nonempty domain ∆I and interpreta-
tion of language elements

aI ∈ ∆I , for a ∈ NI (with unique name as-
sumption)

AI : ∆I −→ P , for A ∈ NC

rI ⊆ ∆I ×∆I , for r ∈ NR.

The P-interpretation I extends to arbitrary
f − ELGcr concepts by

(∃r.C)I(x) = inf{CI(y) : (x, y) ∈ rI}

and

(@(C1, . . . , Cn))I(x) = @•(CI
1 (x), . . . , CI

n (x))

Note that interpretation of existential restric-
tions is a special case of the fuzzy description
logic by [17], assuming fuzzy conjunction is a
t-norm ⊗ fulfilling ⊗(1P , p) = p.

Example of fuzzy interpretations of f −
ELGcr. In our case P = [0, 1] and in a Herbrand
like interpretation H we can have

h1H = h1, 150H = 150, ... and hence
∆H = {h1, h2, 150, 300, 1980, . . .},
hotel priceH(h1, 1000)
cheap UH(1000) = 0.75
good hotel UH(h1) = .58

Note, these values coincide with our intro-
ductory example but need not be same in
all interpretations of our language. We need
some analogy of domain specific axioms as it
is usual logical systems.

TBox axioms are same as in general descrip-
tion logic of [2] and consist of statements of
the form C ≡ D and C v D.

A TBox T is a finite set of TBox axioms. An
interpretation I is a model of above TBox ax-
ioms if CI = DI and CI ≤ DI (see [17]).

Following U. Straccia [17] we have to define
ABox expressions using thresholds. For a
p ∈ P , a ∈ NI and C an f − ELGcr concept,
〈a : C ≥ p〉 is a P-ABox expression. Note, DL
syntax and TBoxes do not depend on pref-
erence structure, ABox depends on a chosen
preference structure P.

A P-ABox is a finite set A of P-ABox expres-
sions. A fuzzy P-interpretation I is a model
of A if it satisfies all assertions, especially if
CI(aI) ≥ p.

Example TBox and ABox axioms.

cheap hotel U ≡ ∃ hotel price.cheap U
Hclose U ≡ ∃ hotel distance.close U
new hotel U ≡ ∃ hotel yoc.new U
good hotel U ≡ @U (cheap hotel U,

close beach hotel U,
new hotel U)



and an ABox expression (we do not use con-
crete domains here) e.g.

h1 : cheap hotel U ≥ 0.75

All problems and questions of classical de-
scription logic which end with yes-no answer
are in fuzzy logic subject to answers with a
certain degree - in our case from P . We can
formulate a yes-no problem with a threshold
(e.g. strong version with true with degree 1 or
degree at least some p ∈ P ) or as a v-problem
(variable-problem) to find best degree true in
all models (see e.g. [17], [18] or analogy in
fuzzy logic programming [21]).

An equivalence problem C ≡T ,A D wrt a
TBox T and an ABox A asks whether in all
interpretations I which are model of T and A
is CI = DI .

Similarly, a subsumption problem C vT ,A D
questions CI(x) ≤ DI(x) for all x ∈ ∆I .
Here in the ≤ is hidden the question whether
the truth value of a many valued implication
CI(x) −→ DI(x) equals 1P for all x ∈ ∆I .

We have two version of consistency (satisfi-
ability) problem. A f − ELGcr concept C is
strongly (weakly resp.) satisfiable wrt T and
A if there is a P-interpretation I, which is a
model of both T and A such that there is an
x ∈ ∆I with CI(x) = 1P (CI(x) > 0P resp.)

Instance problem. An individual a is an
instance (for p ∈ P a p-instance) of C with re-
spect to a P-ABox A (denoted a ∈A C (≥ p))
if for all P-interpretations I which are model
of A we have CI(aI) = 1P , or ≥ p resp. A
p ∈ P is a correct answer to a v-instance prob-
lem ?−a : C wrt A if CI(aI) ≥ p in all models
of A and p is the greatest such element of P .

3 Instance problem in f − ELGcr for
web consulting

Web consulting example. We continue in
our example. In the web service model of D.
Fensel et al. [5] we start with a desire of a
user U

Q =

“a hotel which is cheap, close to a beach, and

has a new building”

in UD.

The goal discovery process finds an f − ELGcr
concept CQ = good hotel U in the language
Lex (it is not our task to discuss this GD pro-
cess).

Now, the web service discovery process has
to find a service able to answer this query.
Assume first, the web service semantic is de-
scribed in a description logic language with
same atomic concepts and roles and allocates
a web service Travel WS and within it a spe-
cial service described by an ABox Ahotel, as
depicted bellow:

CQ ∈ G // WVUTPQRSWSD // Travel WS

��ONMLHIJKGD

OO

ONMLHIJKSD

��
Q ∈ UD

OO

Ahotel ∈ AS

Now the problem whether a hotel (e.g. h1)
fits and in which degree user U requirements
based on Ahotel is exactly an instance prob-
lem, of h1 ∈Ahotel

CQ.

Our starting point is a solution of instance
problem in crisp description logic EL.

The instance problem for description logic
with existential restrictions was shown to be
polynomial time solvable by R. Kuesters and
R. Molitor in [13] (for acyclic forms). Main
idea of their solution is following. Query
concepts are represented as (labeled) EL-
description trees. ABox is represented as an
(labeled) EL-description graph. The instance
problem is shown to be equivalent to finding a
homomorphic embedding of the tree into the
graph (preserving some monotonicity condi-
tions on labels).

This monotonicity condition on labels is a re-
cursive call of a simple subsumption problem
along the tree embedding, namely an individ-
ual a is in a concept C on the query tree side if



there is on the ABox side a concept D contain-
ing a and moreover if we know that D vA C.
Then from a ∈A D follows a ∈A C.

These monotonicity conditions use a knowl-
edge true in all models (a sort of logical ax-
ioms) about the interpretation of u or an in-
formation from a TBox.

In [13] the following tautology is used, valid
in all models.

Namely (after a suitable permutation, us-
ing commutativity) for all EL concepts
C1, . . . , Cn, Cn+1, . . . , Cn+m and two valued
EL interpretations J , we have CJ

1 u. . .uCJ
n u

CJ
n+1u . . .uCJ

n+m ⊆ CJ
1 u . . .uCJ

n and hence
if the query concept requires an individual to
be in un

i=1Ci and in the ABox there is an in-
formation that this individual is in un+m

i=1 Ci,
the requirement is fulfilled. Hence the em-
bedding of the tree into graph can be easily
constructed checking inclusion of finite sets of
labels {C1, . . . , Cn, Cn+1, . . . , Cn+m}.

So, Kuesters-Molitor KM-algorithm is cor-
rect, because uses correct inclusions between
intersections. The KM-algorithm is also com-
plete, because using only intersection (with-
out negation and union) the only remaining
tautologies are equalities of the form C ∩C ≡
C, and this is handled by the fact that labels
of EL-graphs are sets of concepts appearing
in expressions.

So Kuesters-Molitor result can be reformu-
lated as follows.

Theorem [13]. For a preference structure
Pc = {{0, 1},≤, 1, 0} the instance problem for
Pc − ELucr is polynomialy solvable.

Notice, that using the inclusion ∪n
i=1Ci ⊆

∪n+m
i=1 Ci we can get analogous results for t,

namely the following holds

Theorem. The instance problem for Pc −
ELtcr is solvable in polynomial time.

Just notice, that the a ∈ tn
i=1Ci has to be ful-

filled in the ABox A and a ∈ tn+m
i=1 Ci should

be a part of query concept CQ tree.

A little bit further, we can exploit also the
inclusion un

i=1Ci v tn+m
i=1 Ci, this mixes inter-

section on the ABox side and union on the
query side. Nevertheless, one can imagine
that an ABox contains such information and
a query such a requirement.

Example of mixing intersection and
union between G and WS. In the case of
union, it suffices WSD mention less attributes
than the query in a disjunctive way. Along
[5] a WS can advertise offering its services in
Travel and special services either on prices or
distance to beach or age of building.

Nevertheless, we have to be careful in for-
mulating a result, namely in [1] using NP-
completeness of Monotone 3SAT problem, it
is shown that the instance problem for Pc −
EL{t,u}

cr is co-NP complete, hence practically
intractable. Our results reads as follows.

Theorem. Assume L1 is a Pc−ELtcr and L2

is a Pc − ELucr language, and C is a concept
either in L1 or L2 and A is an ABox either in
L1 or L2. Then the instance problem a ∈A C
is in PTIME.

In fuzzy case there is an easy and difficult gen-
eralization of these results. The easy uses t-
norms and conorms, the difficult deals with
aggregators.

Assume our preference structure is the stan-
dard fuzzy one, namely Pf = {[0, 1],≤, 0, 1}
and ⊗ is a t-norm and ⊕ corresponding dual
t-conorm. Moreover assume that u⊗ and t⊕
are corresponding description logic connec-
tives. Then we have the following:

Theorem. Assume L1 is a Pf−ELt⊕cr and L2

is a Pf − ELu⊗cr language, and C is a concept
either in L1 or L2 and A is an ABox either in
L1 or L2. Then there is a correct algorithm
for the instance problem a ∈A C in PTIME.

Proof. Note that for a t-norm and dual t-
conorm the following inequalities are valid.
⊗n+m

i=1 Ci ≤ ⊗n
i=1Ci ≤ ⊕k

i=1Ci ≤ ⊕k+l
i=1Ci

Completeness of our algorithm depends on the
fact, whether these are only connections be-
tween ⊗ and ⊕.

Moreover note, that this is true especially be-
cause the truth value computations can be
run parallel to KM-algorithm in a bookkeep-



ing procedure along the classical tree embed-
ding (see [21]).

From a application point of view it is hardly
to assume that all combination arose from a
single t-norm. Even for two t-norms the asso-
ciativity and commutativity cannot be guar-
anteed in general. One can study pairs of dif-
ferent t-norms and/or conorms, fulfilling one
of (here we relax our notation)

Our approach has an extra feature. Namely
fuzzy aggregation (annotations) are a gen-
eralization of both conjuctions and disjunc-
tions. The above problem can reformulated
and strengthened to the following

Problem. Assume @1 and @2 are two
fuzzy annotation operators on [0, 1].
Characterize those clases of operators
@(C1, . . . , Cn, Cn+1, . . . , Cn+m) for which the
following is decidable in polynomial time

(@1)n+m
i=1 Ci ≤ (@1)n

i=1Ci - we call these order
conjunctive operators

(@1)n
i=1Ci ≤ (@1)n+m

i=1 Ci - we call these order
disjunctive operators

@1(C1, . . . , Cn) ≤ @2(D1, . . . , Dk)

There are some initial results in [3].

Practical experiments with the fuzzy induc-
tive logic programming FILP in [20] have
shown that (at least for tested data and users)
some aggregation operators behave order con-
junctive if all values are small and order dis-
junctive if all values are large. FILP gets ag-
gregations after a discretisation step, and so
we can easily prove

Theorem. Assume @1 and @2 are two fuzzy
aggregation operators obtained by the FILP
method for different vectors of values s̄ and t̄.
Then deciding @1(s̄) ≤ @2(t̄) is polynomialy
hard for a class of FILP induced operator.

4 Conclusions

In this paper we have presented a fuzzy de-
scription logic f − ELGcr (here f refers to
fuzzy with possible specification of a prefer-
ence structure, G refers to a set of global score
combination function replacing classical con-

nectives, cr refers to crisp roles and EL refers
to description logic using only existential re-
striction (which in crisp case automatically
assumes conjunction, but not in our case)).
We gave an extensive motivation for our ap-
proach from web consulting domain, which is
related to instance problem of f − ELGcr. We
have shown some results on polynomial time
complexity of instance problem.

To conclude, we mention that our description
logic f − ELGcr has semantics equivalent to a
variant of generalized annotated programs of
[11], for details see [12].

Despite successful standardization efforts by
the W3C, there are still numerous different
ontology representation languages being used
and for practical applications we even need
these. P. Hitzler et al. in [8] argue for an
OWL subset known as DLP-Description logic
programs to be used in applications. Using
our results in [21] we can generalize DLP to
many valued logic with fuzzy aggregation op-
erators with semantics equivalent to f−ELGcr.

The realm of instance problem with aggrega-
tions changes dramatically if we allow non-
cyclic constructions. In this case we can even
get undecidable problem (using the [11] result
on non-continuity of the production operator
for restricted semantics of GAP programs, see
[12]).

In future we would like to apply these results
on projects from network security (see [10])
and job market system (see [14]).
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