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Abstract

Bruno de Finetti falsely conjectured
about conditions sufficient for a finite
propositional ordering to be
probability-agreeing. In that paper, he
also misstated his own key axiom for
the weaker distinction of being a
qualitative probability. Something
formally similar to his misstated axiom
suffices for probability agreement if its
essential constraint is applied to
ordered multisets of propositions rather
than to ordering assertions about pairs
of propositions. The results reported
here satisfy de Finetti’ s goal of stating
necessary and sufficient conditions for
probability agreement using only
ordinal primitives, and affirm the
fundamental soundness of de Finetti’s
original intuitions about finite-domain
probability agreement.
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1     Introduction

In a 1949 special issue of Dialectica, George
Polya [6] strenuously criticized numerical
calculi in general, and numerical subjective
probability in particular, as methods for
managing nondemonstrative inference. Polya
did not dispute with any subjective probabilist
by name, but left little doubt that he was
thinking of the theories of his friend, Bruno de
Finetti, who had also contributed an article to

the same special issue. In his article,
unsurprisingly, de Finetti favored numerical
subjective probability for nondemonstrative
reasoning.

Reacting to Polya’s provocative critique,
de Finetti revived some work from the 1930’s
[1] that he had put aside to concentrate on his
famous gambling semantics for subjective
probability. This earlier work had emphasized
orderings of propositions as sources from which
numerical probabilities might be derived. The
revival looked at the orderings as vehicles for
uncertain reasoning in their own rights, without
any reference to numbers.

De Finetti’s propositional orderings were
transitive, bounded (i.e. the tautology is strictly
more credible than the contradiction, and no
proposition is more credible than the tautology
nor less credible than the contradiction),
complete (any two propositions A and B in the
domain can be compared ordinally), and definite
(exactly one of A = B, A > B, or A < B obtains).

Throughout the current paper, any ordering of
propositions is assumed to display those
properties. Any propositional domain discussed
here is finite. Further, to avoid discussion of
some trivial cases, we assume throughout that
every proposition besides the contradiction is
ordered strictly superior to the contradiction.

De Finetti required a further property in the
1930’s, now often called quasi-additivity.



Definition. An ordering of propositions is quasi-
additive just when for all propositions X, Y, and
Z where XZ = YZ = ∅,

X ∨ Z  ≥ Y ∨ Z  ⇔ X  ≥  Y

//

De Finetti intended in 1949 to base his answer to
Polya on the claim that quasi-additive orderings
of propositions were always probability-
agreeing.

Definition. An ordering of propositions is
probability-agreeing just when there exists some
probability distribution p() on the propositional
domain, such that for all propositions X and Y,

X  ≥ Y   ⇔  p( X ) ≥ p( Y )

//

Quasi-additivity is clearly necessary for
probability agreement. If de Finetti’ s sufficiency
claim were correct, then he could devise
qualitative reasoning systems based on quasi-
additivity to draw inferences similar to those of
numerical probabilistic systems. Nevertheless,
the new systems would dispense with all
numerical aspects of probabil ity, and also
display other features Polya held desirable.

De Finetti was in a hurry to make his reply,
which he presented at an Italian conference [2]
before the end of 1949. He found that he was
unable to prove that quasi-additivity sufficed for
finite-domain probabili ty agreement, and so he
offered his claim as a conjecture.

In 1959, Kraft, Pratt, and Seidenberg [5]
presented a counterexample to de Finetti’ s
conjecture. They also offered and proved their
own necessary and sufficient conditions for
finite-domain probabili ty agreement.

Those conditions sometimes required that the
original domain be expanded to include a finite
number of auxiliary propositions. Scott [9]
presented a succinct restatement of the
conditions which used only the original
propositions.

Scott’s Theorem (1965). An ordering of
propositions is probability agreeing unless there
is some finite set of ordinal assertions of the

same weak sense, at least one of which is strict,
where every atomic proposition in the domain
appears the same number of times on the left
side of the inequalities as on the right side.

Example. The main Kraft, Pratt, and Seidenberg
counterexample illustrates the exceptional
condition mentioned in Scott’s Theorem. Any
ordering containing the following assertions is
not probability-agreeing:

a ∨ c ∨ d > b ∨ e a ∨ e ≥ c ∨ d

b ∨ e ≥ a ∨ d d ≥ a ∨ e

Among the four assertions, a appears twice on
the left and twice on the right; b appears once on
the left and once on the right, and so on.

//

Scott’s Theorem has some attractive normative
interpretations [10]. Nevertheless, its reliance on
counting atoms distances it from de Finetti’ s
original stated intention, to secure probability
agreement based only upon what is logically
implied by the ordinal axioms which define the
“≥” relation.

In the sections to come, it turns out that
de Finetti came very close to achieving his goal
in 1949. De Finetti made an elementary mistake
in his paper, but one which suggests that his
intuition about the conditions for probabili ty
agreement was altogether sound.

Perhaps because of his haste in writing his 1949
paper, de Finetti misstated the condition for
quasi-additivity. The second section considers
the condition he actually wrote, something
weaker than quasi-additivity, but also of
arguably broader intuitive appeal.

The third section introduces multiset structures
which are naturally partially ordered whenever
the elements (of any kind, not just propositions)
within the structures are transitively ordered.
Thus, the existence of the structures’ ordering is
a necessary consequence of ordering the
elements.

The fourth section considers how the essential
intuitive content  of the weaker condition that de
Finetti mistakenly wrote in 1949 can be applied
to the partial orderings of structures whose



elements are ordered propositions. When it is,
probability agreement for the propositional
ordering is ensured.

2     De Finett i’s Faulty Statement of
Quasi-additivity

What de Finetti intended to require of his 1949
orderings was quasi-additivity. What he actually
wrote instead in the published version of his
paper imposed on his orderings only a
consequence of quasi-additivity, what is often
called monotonicity. It is also convenient to
define a second consequence (in complete and
definite orderings) of quasi-additivity at this
point.

Definitions. Let A, A’ , A”  and B, B’ , B”  be
propositions, where A ⇔ A’  ∨ A” , B ⇔
B’  ∨ B” , A’  excludes A” , and B’  excludes B” .
An ordering of propositions is monotonic just
when for all such A, A’ , A” , B, B’  and B” ,

A’ ≥ B’ and A” ≥ B” ⇒ A ≥ B

An ordering of propositions displays weak-
dominance just when for all such A, A’ , A” , B,
B’ , and B” ,

A’ > B’ and A” ≥ B” ⇒ A > B

//

It is easily seen that monotonicity is indeed
strictly weaker than quasi-additivity. For
example, the familiar possibility calculus is
well-known to be monotonic, and not to be
quasi-additive. It is obvious, therefore, that
monotonicity is not sufficient for probability
agreement.

The combination of both monotonicity and
weak-dominance implies quasi-additivity in a
complete, definite ordering. Monotonicity
implies one direction of the dual implication of
the quasi-additive definition, that for XZ = YZ =
∅,

X ≥ Y ⇒ X ∨ Z  ≥  Y ∨ Z

One simply makes the substitutions X for A’ , Y
for B’ , Z for A” and B” , X ∨ Z for A, and Y ∨ Z
for B, and notes that

X ≥ Y  ⇔  X  ≥ Y  and  Z  ≥  Z

Achieving the converse is straightforward from
the contrapositive of weak-dominance:

B ≥ A ⇒ B’ ≥  A’ or B” > A”

One makes the same substitutions as before, and
notes that Z > Z is necessaril y false.

Given the close resemblance of form between
monotonicity and weak-dominance, it is entirely
possible that de Finetti was thinking of both
when he wrote down only one.

Monotonicity is also an interesting normative
property in its own right. That may further help
to explain why his mistake did not set off mental
‘alarm bells’ when de Finetti prepared his
manuscript for publication.

For example, monotonicity implies another
normative property discussed at length by de
Finetti in 1949, that for all propositions A and B,

If A ⇒ B, then B ≥ A

In recent times, this property is sometimes taken
as the key part of the definition of a plausibility
ordering [8]. De Finetti’ s discussion of the
property and its normative significance, whether
or not it appears as part of a probability-agreeing
ordering, or even as part of a complete ordering,
is among the earliest expositions of its kind.

And, of course, monotonicity restates an axiom
of a now-popular class of generally non-
probability-agreeing belief-modeling calculi,
triangular co-norms and norms. This suggests
that there is widespread agreement about the
intuitive and normative appeal of monotonicity,
and not just among probabilists.

So, de Finetti would have spoke for many others
had he wrote in 1949 that monotonicity

...expresses, I think, a peculiar
requirement which a logic of probable
inference or of plausible inference needs
to have; it is difficult to be able to have
interest in a prospective theory which
lacks it.

Surely, more would agree with him about the
attractiveness of monotonicity than of quasi-
additivity, the intended subject of his praise in
the quoted passage.



In the remainder of the paper, we shall use the
following special case of monotonicity. Let
{ a, b, ...z } be any exhaustive set of plural
exclusive propositions, and let A and B be any
two propositions. Then

( Aa ≥ Ba ) ∧ ( Ab ≥ Bb ) ∧   ∧ ( Az ≥ Bz ) ⇒
A ≥ B

It is easily verified that this form is implied by
the version of monotonicity used by de Finetti.

One advantage of this form is that it can be
interpreted as a statement about conditional
beliefs determining unconditional ones, as might
be written

( A | a ≥ B | a ) ∧ ( A |  b ≥ B | b ) ∧ ...
∧ ( A | z ≥ B | z ) ⇒ A ≥ B

based upon the idea that, for s > ∅

( A  | s  ≥  B | s )  ⇔  As  ≥  Bs (1)

Like monotonicity, the idea expressed in (1)
enjoys some endorsement from outside the
probabilistic community [3]. Although
conditional belief is not much treated in his 1949
paper, de Finetti used a principle similar to (1) in
his qualitative work which the 1949 paper
revives [1].

So, the alternative form of monotonicity can be
explained and motivated based upon the various
interpretations of the conditional A | s. Those
interpretations include what we would believe
about A if we were to learn that s is true, or if we
were to add s to our other premises as we reflect
upon our beliefs about A.

We know that one and only one of
{ a, b, ..., z } is true, or that at most one can
consistently be included among our premises.
Regardless of which one element that is, we
might find that we would conclude that A is no
less credible than B if we were to learn the truth
or if we were to adopt any one of
{ a, b, ..., z } as a premise.

We could not learn the truth, nor strengthen our
premises using any element from the set of
alternatives, except that we would come to assert
that “A is no less credible than B.” In
contemplating that circumstance, we may feel a
sense of inevitability about asserting A ≥ B now,
or feel disquiet about asserting A < B now.

3     Par tially Ordered Bags of Elements

A multiset, also known as a bag, is a standard
data structure in which an element may appear
more than once within the structure, but like a
set, there is no ordering of the elements within
the structure.

Two bags are equal just when they contain the
same elements, each element being represented
the same number of times in each bag. The size
of a bag is the number of elements it contains.

Any transitive ordering of elements imposes a
partial order on same-sized bags of elements,
based on ordering assertions about pairs of
elements of the same weak sense. For example,
the ordering assertions

a = b,  c = d,  and e = f

may be said to order the bags [ a, c, e ] and
[ b, d, f ], so that [ a, c, e ] = [ b, d, f ]. If a > b
instead of a = b, then we may say [ a, c, e ] >
[ b, d, f ]. Formally,

Definition. For any finite transitively ordered
domain of objects D, the object-matching partial
order asserts, for same-size bags A and B of the
objects in D,

that A > B just when there is a bijection f()
from A to B in which for each element a in
A, a ≥ f( a ) in the ordering of D, and for
some pair of elements the ordering is strict,

and

that A = B just when there is a bijection f()
from A to B in which for each element a in
A, a = f( a ) in the ordering of D.

//

Note that the object-matching partial order is
definite whenever the domain of elements is
definitely ordered.

One might be concerned that there could be two
incompatible ways to pair up the elements of
two ordered bags. There is not. In [10], the
following proposition was proven.

Proposition. For bags A and B of the preceding
definition, at most one of A > B, B > A, or A = B
holds if the ordering of objects in D is definite.

//

With that proposition secure, it is
straightforward that the object-matching partial
order is transitive.



There may, of course, be several distinct
compatible ways to pair up the elements in two
bags. That does not concern us here.

Alternatively, there may be no way to pair up
the elements so as to produce any ordering
between two bags. The object-matching partial
order really is a partial order, that is, some bags
are ordinally incomparable with other bags. If
the ordering of elements is complete and
definite, however, then all bags of size one are
obviously completely and definitely ordered.

4     A Parallel of Monotonicity for Bags
of Propositions

Begin by defining an operation for bags that is
analogous to propositional conjunction.

Definition. The projection of a bag of
propositions X and a proposition a, denoted Xa,
is the bag which contains an element x ∧ a for
every proposition  x which is an element of X.

//

With that in hand, consider an assumption with
similar form to monotonicity, but applicable to
bags of propositions, rather than to pairs of
individual propositions.

Bag Monotonicity. Let A and B be same-sized
bags of propositions, and let { a, b, ..., z } be a
set of exclusive and exhaustive propositions, and
“≥” be the relational operator of the object-
matching partial order. Then bag monotonicity
requires that:

( Aa ≥ Ba ) ∧ ( Ab ≥ Bb ) ∧   ∧ ( Az ≥ Bz ) ⇒
¬ ( B > A )

//

The form of the consequent reflects that the bag
ordering is partial, so we should be mindful of
the possibility that A and B might be unordered.
However, if and A and B are ordered, then of
course ¬ ( B > A ) is equivalent to A ≥ B.

Bag monotonicity is easily seen to imply
propositional monotonicity, since what the
assumption says about bags of size one
constrains propositional ordering assertions.
Bag monotonicity is incompatible with
possibility, however, which does exhibit
propositional monotonicity.

Incompatibility example. Let a > b in
possibility; a ∨ b = a, and b > ∅, so [ a ∨ b, ∅ ]
< [ a,  b ] in the object-matching partial order.

Note that [ a ∨ b, ∅ ]b = [ b, ∅ ] =
[ a, b ]b and [ a ∨ b, ∅ ]¬b = [ a, ∅ ] =
[ a, b ]¬b. Thus, if bag monotonicity obtained,
then it could not be the case that [ a, b ] >
[ a ∨ b, ∅ ], but it is.

//

Bag monotonicity is a necessary condition for
probability agreement. If p() is an agreeing
probability distribution for the ordering of the
propositions, then the sum of the probabilities
assigned to a bag’s elements equals the sum of
the sums of the probabilities of those elements
projected onto each proposition of { a, b, ... z } .

Σ x in bag p( x ) = Σ s in { a,..., z }  Σ x in bag p( x ∧ s )

A necessary condition for B > A in the object-
matching partial order is obviously that

Σ x in bag B p( x )  >  Σ y in bag A p( y )

If f or every proposition s in { a, b, ..., z } ,

Σ x in bag B p( x ∧ s ) ≤  Σ y in bag A p( y ∧ s )

then

Σ x in bag B p( x ) ≤  Σ y in bag A p( y )

which confli cts with a necessary condition for
B > A.

Bag monotonicity is also suff icient for
probability agreement. Choose the set of atoms
of the propositional domain for { a, b, ..., z } .
Suppose there are two same-sized bags, A and B,
in which every atom of the domain appears the
same number of times in bag B as it does in bag
A.

If so, then for every atom s in { a, b, ..., z }

As = Bs

because As and Bs are the same bag. If the
ordering displays bag monotonicity, then B > A
and A > B are excluded.

Scott’s Theorem says that a propositional
ordering is probability agreeing unless there is
an exceptional condition. An exceptional
condition in Scott’s sense would correspond
with a bag representation like the B and A as just
discussed, except that B > A or A > B. Since bag
monotonicity excludes the exceptional
conditions identified by Scott, any propositional
ordering which displays bag monotonicity must
be probabil ity-agreeing.

Although bag monotonicity expresses an idea
which is formally similar to propositional



monotonicity, we may be concerned about
whether there are normative parallels between
the two ideas.

One way of looking at bags that might have
appealed to de Finetti in 1949 is as portfolios of
bets. One can imagine the bag assertion B > A
arising from a series of choices, each between
two propositions, with the believer to be given
$1 for each of his or her choices that comes true.

Suppose bag B becomes the repository of the
propositions selected by the believer, while A
holds those rejected. Perhaps some of the
choices involved ties, and so the believer chose
arbitraril y in such cases. Assuming at least one
choice was strict, however, the believer would
seem to be committed to agreeing that B should
be more lucrative than A, and be strictly
preferred as an investment.

If a Scott-style violation of bag monotonicity
has occurred, then the two portfolios B and A
always pay identical amounts. How much they
pay depends on which atom comes true, but
regardless of which one that is, B pays the same
amount as A, whatever that amount happens to
be. B is not, cannot be, and can be seen in
advance not to be, more lucrative than A.

This kind of argument is likely what de Finetti
had in mind when he said in [2] that probability-
disagreeing orderings were subject to
“contradictions.” It is also a kind of argument
that could be made in favor of monotonicity or
quasi-additivity for propositional pairwise
ordering assertions.

On the other hand, de Finetti did not offer any
explicit gambling arguments in his 1949 rebuttal
paper. He hoped that quasi-additivity would
prove sufficient for finite probability agreement,
and that quasi-additivity would immediately
appeal to Polya’s intuition. Polya had not
indicated any particular interest in gambling
arguments.

So even without the dramatic element of money
changing hands through wagering, de Finetti
could well have imagined that Polya would find
violations of monotonicity interesting. Perhaps
de Finetti even rehearsed asking Polya to
explain how a reasonable person could assert a
distinction based on credibili ty between two
structures, knowing that the person would deny
that there is any distinction between them if a is
true, or if b is true, ..., or if z is true. One of
those, after all , is true.

If there was such a rehearsal, then the structures
in de Finetti’s mind would have been
disjunctions. Nevertheless, the same question
might be interesting in the case of bags as well.

It is, of course, possible to motivate
propositional monotonicity in ways that do not
generalize to justify bag monotonicity. One
approach is to pay attention to the precise kind
or aspect of “credibility” in question, to what
one means when saying that one proposition is
“more plausible” than another.

An example of this careful attention to meaning
can be found in Hamblin [4], in an early
discussion of the possibility calculus (which
obeys propositional, but not bag, monotonicity).
He contrasted some meanings of possibilistic
ordering assertions (e.g. relative surprise
depending on which proposition were true) with
the meanings of assertions in an ordinal
probabilistic system he devised.

Both orderings could be described as
‘plausibility’ orderings. However, both might
not be expected to exhibit bag monotonicity.

Is the falsehood of a ∨ b strictly more surprising
than the falsehood of a alone? Someone
confident of a and skeptical of b might be
equally surprised at either one. The respondent
does not deny that a ∨ b can be true when a is
false, nor disparage other senses of plausibility
which place a ∨ b strictly ahead of a. Those
were not the questions asked.

If what one meant by more plausible had this
character, then no more explanation is needed
for why bag monotonicity is lacking. What a
speaker means by affective words like plausible
and surprise, and that a speaker might choose to
speak about some aspects of his or her
experience of uncertainty rather than others,
would seem to be the speaker’s prerogative.

Thus, there is no necessary “ irrationality” or
“ inconsistency” in embracing propositional
monotonicity while rejecting bag monotonicity.
The two monotonicities may sometimes have
similar normative motivation, but other times
they simply may not.

5     The Aftermath

Polya [7, volume 2, pages 138-139] made a
different kind of answer to de Finetti while the
status of the conjecture remained unresolved.
Polya considered the potential for an uncertainty
calculus based on infinitesimals, which avoided



some problems he saw in standard numerical
probabilistic models of belief.

Polya’s reply shifted the terms of the discussion
away from anything in de Finetti’ s rebuttal. In
particular, Polya could concede the attractions of
probability agreement in finite domains, while
still enjoying what he saw as the advantages of a
non-probabilistic schema for belief change in
transfinite or open-ended domains (e.g. a
domain comprising a mathematical conjecture
and whichever of its consequences that might be
verified at any particular time).

Thinking back today, we benefit from a half-
century’s hindsight. We can now see that if
Polya had pursued his proposal for infinitesimals
a bit further, then he would have arrived at a
belief representation similar to Hamblin’s
possibility calculus.

Moreover, it is by now well-known that some
probability orderings (denote them using “≥” )
exist which are syntactically related to
atomically-agreeing possibili ty orderings
(denote them using “≥*” ) in the following way.

A ≥ B ⇔ A¬B ≥* B¬A

C ≥* D ⇔ C ≥ D¬C

That is, some orderings which feature bag
monotonicity exactly describe, and are exactly
described by, other orderings which lack bag
monotonicity. Bag monotonicity itself, then,
cannot be a necessary feature of “ rational” belief
orderings, however useful the property is as a
guide to deliberation in many situations.

By the same reasoning, no set of properties
which is necessary and sufficient for probability
agreement can be necessary for “ rationality” in
ordered belief. However provocatively
expressed, Polya’s chief point in 1949 was
essentially irrebuttable.

6     Conclusions

Polya championed the view that some aspects of
human plausible reasoning were best modeled
without any recourse to numbers whatsoever.
This posed a challenge for his friend, de Finetti,
who was more comfortable with numerical
representations of belief.

In rising to this challenge, de Finetti felt that he
could craft a fully non-numeric motivation of a
truly number-free counterpart of probability
suitable for modeling plausible reasoning in

finite propositional domains. In some haste, he
set out to do that, and fell short.

On any fair reading, de Finetti came close to
specifying what the axioms of one such
motivation might be. He was correct that
attention specifically to ordinal principles would
suffice for the purpose. He was correct that one
could take the domain as it was given, and not
need to introduce new propositions. He was
ironically correct that a very mild and widely
attractive condition, monotonicity, could be the
key principle in his motivation.

Where he went wrong is that monotonicity is
obviously too weak to impose probability
agreement when applied to pairs of propositions.
De Finetti was, after all, thinking of a stronger
principle when he wrote what he did.

As it happens, however, all transitive orderings
imply partially ordered structures for which an
analog of monotonicity might make sense,
depending on the notion of credibility or
plausibility being modeled. When the analog of
monotonicity is imposed on the partiall y ordered
structures, the underlying propositional ordering
is indeed constrained to be probability-agreeing.
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