Geometric Representations of Weak Orders

Sergei Ovchinnikov

Mathematics Department San Francisco State University San Francisco, CA 94132 sergei@sfsu.edu

Abstract

The paper presents geometric models of the set **WO** of weak orders on a finite set *X*. In particular, **WO** is modeled as a set of vertices of a cubical subdivision of a permutahedron. This approach is an alternative to the usual geometric representation of **WO** by means of a weak order polytope.

Keywords: Weak order, Cubical complex.

1 Introduction

Let \mathcal{B} be a family of binary relations on a finite set X. This set can be endowed with various structures which are important in applications. One particular way to represent \mathcal{B} is to embed it into a cube $\{0,1\}^N$ of sufficiently large dimension $(N = |X|^2 \text{ would al-}$ ways work) by using characteristic functions of relations in \mathcal{B} , and consider a convex hull of the set of corresponding points. Then \mathcal{B} is treated as a polytope with rich combinatorial and geometric structures. There are many studies of linear order polytopes, weak order polytopes, approval-voting polytopes, and partial order polytopes, and their applications. (See, for instance, [3, 6, 7] and references there.)

In this paper we study the set WO of all weak orders on X from a different point of view. Namely, we model the Hasse diagram

of **WO** as a 1–skeleton of a cubical subdivision of a permutahedron. Our motivation has its roots in media theory [4, 5, 10] where it is shown that the graph of a medium is a partial cube [10].

Section 2 presents some basic facts about weak orders and the Hasse diagram of **WO**. In Section 3 we describe various geometric models of **WO**. They are combinatorially equivalent under the usual connection between zonotopes, polar zonotopes, and hyperplane arrangements.

2 The Hasse diagram WO

In the paper, X denotes a finite set with n > 1 elements. A binary relation W on X is a weak order if it is transitive and strongly complete. Antisymmetric weak orders are linear orders. The set of all weak orders (resp. linear orders) on X will be denoted \mathbf{WO} (resp. \mathbf{LO}).

For a weak order W, the indifference relation $I = W \cap W^{-1}$ is an equivalence relation on X. Equivalence classes of I are called indifference classes of W. These classes are linearly ordered by the relation W/I. We will use the notation $W = (X_1, \ldots, X_k)$ where X_i 's are indifference classes of W and $(x, y) \in W$ if and only if $x \in X_i$, $y \in X_j$ for some $1 \le i \le j \le k$. Thus our notation reflects the linear order induced on indifference classes by W.

We distinguish weak orders on X by the number of their respective indifference classes: if $W = (X_1, X_k)$, we say that W is a weak k-order. The set of all weak k-orders will be denoted $\mathbf{WO}(k)$. In particular, weak n-

orders are linear orders and there is only one weak 1-order on X, namely, $W=(X)=X\times X$, which we will call a trivial weak order. Weak 2-orders play an important role in our constructions. They are in the form $W=(A,X\backslash A)$ where A is a nonempty proper subset of X. Clearly, there are 2^n-2 distinct weak 2-orders on a set of cardinality n.

The set **WO** is a partially ordered set with respect to the set inclusion relation \subseteq . We denote the Hasse diagram of this set by the same symbol **WO**. The following figure shows, as an example, **WO** for a 3-element set $X = \{a, b, c\}$.

Fig. 1. The Hasse diagram **WO**.

Fig. 2. Another form of **WO**.

In Figure 1 the maximal element corresponds to the trivial weak order, the six vertices in the layer below correspond to weak 2-orders, and the vertices in the lowest layer correspond to the linear orders on X.

We find it more intuitive to represent the Hasse diagram **WO** by a directed graph as shown in Figure 2. (Similar diagrams were introduced in [8, ch.2] and [2]).

Here the arrows indicate the partial order on **WO** and, for instance, the weak order $(\{ab\}, \{c\})$ is represented as c.

In the rest of this section we establish some properties of **WO**. The following proposition is Problem 19 on p.115 in [9].

Proposition 2.1. A weak order W' contains a weak order $W = (X_1, ..., X_k)$ if and only if

$$W' = \left(\bigcup_{j=1}^{i_1} X_j, \bigcup_{j=i_1+1}^{i_2} X_j, \dots, \bigcup_{j=i_m}^k X_j\right)$$

for some sequence $1 \le i_1 < i_2 \cdots < i_m \le k$.

Proof. Let $W \subset W'$. Then the indifference classes of W form a subpartition of the partition of X defined by the indifference classes of W'. Thus each indifference class of W' is a union of some indifference classes of W. Since $W \subset W'$, we can write $W' = (\bigcup_{1}^{i_1} X_j, \bigcup_{i_1+1}^{i_2} X_j, \ldots, \bigcup_{i_m}^k X_j)$ for some sequence of indeces $1 \leq i_1 < \cdots < i_m \leq k$.

One can say [9, ch.2] that $W \subset W'$ if and only if the indifference classes of W' are "enlargements of the adjacent indifference classes" of W

Corollary 2.1. A weak order W' covers a weak order $W = (X_1, ..., X_k)$ in the Hasse diagram **WO** if and only if $W' = (X_1, ..., X_i \cup X_{i+1}, ..., X_k)$ for some $1 \le i < k$.

Proposition 2.2. A weak order admits a unique representation as an intersection of weak 2-orders, i.e., for any $W \in \mathbf{WO}$ there is a uniquely defined set $J \subseteq \mathbf{WO}(2)$ such that

$$W = \bigcap_{U \in J} U. \tag{2.1}$$

Proof. Clearly, the trivial weak order has a unique representation in the form (2.1) with $J = \emptyset$.

Let $W = (X_1, ..., X_k)$ with k > 1 and let J_W be the set of all weak 2-orders containing W. By Proposition 2.1, each weak order in J_W is in the form

$$W_i = (\cup_{1}^i X_j, \cup_{i+1}^k X_j), \quad 1 \le i < k.$$

Let $(x,y) \in \bigcap_{i=1}^{k-1} W_i$. Suppose $(x,y) \notin W$. Then $x \in X_p$ and $y \in X_q$ for some p > q. It follows that $(x,y) \notin W_q$, a contradiction. This proves (2.1) with $J = J_W$.

Let $W = (X_1, ..., X_k)$ be a weak order in the form (2.1). Clearly, $J \subseteq J_W$. Suppose that $W_s = (\bigcup_{1}^{s} X_j, \bigcup_{s+1}^{k} X_j) \notin J$ for some s. Let $x \in X_{s+1}$ and $y \in X_s$. Then $(x, y) \in W_i$ for any $i \neq s$, but $(x, y) \notin W$, a contradiction. Hence, $J = J_W$ which proves uniqueness of representation (2.1).

Let J_W , as in the above proof, be the set of all weak 2-orders containing W, and let $\mathcal{J} = \{J_W\}_{W \in \mathbf{WO}}$ be the family of all such subsets of $\mathbf{WO}(2)$. The set \mathcal{J} is a poset with respect to the inclusion relation.

The following theorem is an immediate consequence of Proposition 2.2.

Theorem 2.1. The correspondence $W \mapsto J_W$ is a dual isomorphism of posets **WO** and \mathcal{J} .

Clearly, the trivial weak order on X corresponds to the empty subset of $\mathbf{WO}(2)$ and the set \mathbf{LO} of all linear orders on X is in one-to-one correspondence with maximal elements in \mathcal{J} . The Hasse diagram \mathbf{WO} is dually isomorphic to the Hasse diagram of \mathcal{J} .

Theorem 2.2. The set \mathcal{J} is a combinatorial simplicial complex, i.e., $J \in \mathcal{J}$ implies $J' \in \mathcal{J}$ for all $J' \subseteq J$.

Proof. Let $J' \subseteq J = J_W$ for some $W \in \mathbf{WO}$, i.e., $W = \bigcap_{U \in J_W} U$. Consider $W' = \bigcap_{U \in J'} U$. Clearly, W' is transitive. It is complete, since $W \subseteq W'$. By Proposition 2.2, $J' = J_{W'} \in \mathcal{J}$.

It follows that \mathcal{J} is a complete graded meet–semilattice. Therefore the Hasse diagram

WO is a complete join–semilattice with respect to the join operation $W \vee W' = \overline{W \cup W'}$, the transitive closure of $W \cup W'$.

3 Geometric models of WO

A weak order polytope \mathbf{P}_{WO}^n is defined as the convex hull in $\mathbb{R}^{n(n-1)}$ of the characteristic vectors of all weak orders on X (see, for instance, [7]). Here we suggest different geometric models for \mathbf{WO} . For basic definitions in the area of polytopes and complexes, the reader is referred to Ziegler's book [11].

Definition 3.1. A cube is a polytope combinatorially equivalent to $[0,1]^m$. A cubical complex is a polytopal complex C such that every $P \in C$ is a cube. The graph G(C) of a cubical complex C is the 1-skeleton of C.

Thus the vertices and the edges of $G(\mathcal{C})$ are the vertices and the edges of cubes in \mathcal{C} , and $G(\mathcal{C})$ is a simple undirected graph.

Let $d = 2^n - 2$, where n = |X|, be the number of elements in WO(2). We represent each $W \in \mathbf{WO}$ by a characteristic function $\chi(J_W)$ of the set J_W . These characteristic functions are vertices of the cube $[0,1]^d$. Let $L \in \mathbf{LO}$ be a linear order on X. Then J_L is a maximal element in \mathcal{J} and, by Theorem 2.2, the convex hull of $\{\chi(J_W)\}_{W\supset L}$ is a subcube C_L of $[0,1]^d$. The dimension of C_L is n-1. The collection of all cubes C_L with $L \in \mathbf{LO}$ and all their subcubes form a cubical complex $\mathcal{C}(\mathbf{WO})$ which is a subcomplex of $[0,1]^d$. Clearly, $\mathcal{C}(\mathbf{WO})$ is a pure complex of dimension n-1 and the graph of this complex is isomorphic to the graph (that we denote by the same symbol, **WO**) of the Hasse diagram of **WO**.

The above construction yields an isometric embedding of the graph **WO** into the graph of $[0,1]^d$. Thus the graph **WO** is a partial cube.

The dimension $\dim \mathcal{C}(\mathbf{WO}) = n - 1$ is much smaller than the dimension $d = 2^n - 2$ of the space \mathbb{R}^d in which $\mathcal{C}(\mathbf{WO})$ was realized. Simple examples indicate that $\mathcal{C}(\mathbf{WO})$ can be realized in a space of a much smaller dimension.

For instance, for n=3 we have a realization

of $\mathcal{C}(\mathbf{WO})$ in \mathbb{R}^3 as shown in Figure 3. (This is a 'flat' analog of the popular smooth surface $z=x^3-3xy^2$.) One can compare this picture with the picture shown in Figure 2.

Fig. 3. "Monkey Saddle".

It turns out that there is a cubical complex, which is combinatorially equivalent to $C(\mathbf{WO})$, and such that its underlying set is a polytope in \mathbb{R}^{n-1} .

We begin with a simple example. Let $X = \{1, 2, 3\}$ and let Π_2 be the 2-dimensional permutahedron. Consider a subdivision of Π_2 shown in Figure 4.

Fig. 4. A cubical complex associated with Π_2 .

Clearly, this subdivision defines a cubical complex which is combinatorially isomorphic to the cubical complex shown in Figure 3. (Compare it also with the diagram in Figure 2.)

In general, let Π_{n-1} be a permutahedron of dimension n-1, where n=|X|. According to [11, p.18], "k-faces (of Π_{n-1}) correspond to ordered partitions of (the set X) into n-knonempty parts" (see also [1], p.54). In other words, each face of Π_{n-1} represents a weak order on X. Linear orders on X are represented by the vertices of Π_{n-1} and the trivial weak order on X is represented by Π_{n-1} itself. Weak 2-orders are in one-to-one correspondence with the facets of Π_{n-1} . Let L be a vertex of Π_{n-1} . Consider the set of barycenters of all faces of Π_{n-1} containing L. A direct computation shows that the convex hull C_L of these points is a (combinatorial) cube. This is actually true for any simple zonotope (Π_{n-1} is a simple zonotope). The following argument belongs to Günter Ziegler [12].

Let Z be a simple zonotope. By Corollary 7.18 in [11], C_L is the intersection of the vertex cone of L (which is a simplicial cone) with the dual facet cone of the dual of Z (which is again a simplicial cone). This intersection is an (n-1)-dimensional (combinatorial) cube.

Cubes in the form C_L form a subdivision of Π_{n-1} and, together with their subcubes, form a cubical complex isomorphic to $\mathcal{C}(\mathbf{WO})$.

Another geometric model for the set **WO** of all weak orders on X can be obtained using the polar polytope Π_{n-1}^{Δ} . Let $L(\Pi_{n-1})$ be the face lattice of the permutahedron Π_{n-1} . The joint–semilattice **WO** is isomorphic to the joint–semilattice $L(\Pi_{n-1})\setminus\{\emptyset\}$ (Figure 1). By duality, the Hasse diagram WO is dually isomorphic to the meet–semilattice $L(\Pi_{n-1}^{\Delta}) \setminus$ $\{\Pi_{n-1}^{\Delta}\}$ of all proper faces of Π_{n-1}^{Δ} . Under this isomorphism, the linear orders on X are in one-to-one correspondence with facets of Π_{n-1}^{Δ} , the weak 2-orders on X are in oneto-one correspondence with vertices of Π_{n-1}^{Δ} , and the trivial weak order on X corresponds to the empty face of Π_{n-1}^{Δ} . Note that Π_{n-1}^{Δ} is a simplicial polytope. The set of its proper faces is a simplicial complex which is a geometric realization of the combinatorial simplicial complex \mathcal{J} (cf. Theorem 2.2).

Other geometric and combinatorial models of \mathbf{WO} can be constructed by using the usual connections between zonotopes, hyperplane arrangements, and oriented matroids [11]. One particular model utilizes the following well known facts about weak orders on X.

Let f be a real-valued function on X and, as before, let n = |X|. Then W_f defined by

$$(x,y) \in W_f \quad \Leftrightarrow \quad f(x) \le f(y),$$

for all $x, y \in X$, is a weak order. On the other hand, for a given weak order W there exists a function f such that $W = W_f$. Two functions f and g are said to be equivalent if $W_f = W_q$. Clearly, equivalent functions form a cone C_W in \mathbb{R}^n and the union of these cones is \mathbb{R}^n . Thus there is a natural one-to-one correspondence between the set WO and the family $\{C_W\}_{W\in\mathbf{WO}}$. The cones in the form C_W arise from the braid arrangement \mathcal{B}_n defined by the hyperplanes $H_{ij} = \{x \in \mathbb{R}^n : x_i = x_j\}$ for i < j. The braid arrangement \mathcal{B}_n is the hyperplane arrangement associated with the zonotope Π_{n-1} . Following the standard steps [11], one can also construct an oriented matroid representing **WO**.

Geometric objects introduced in this section, the cubical complex $C(\mathbf{WO})$, the simplicial complex \mathcal{J} of proper faces of the polar zonotope Π_{n-1}^{Δ} , and the braid arrangement \mathcal{B}_n , all share the combinatorial structure of the Hasse diagram \mathbf{WO} .

Acknowledgments

The author wishes to thank Jean–Paul Doignon and Jean–Claude Falmagne for their careful reading of the original draft of the paper.

References

[1] M. Barbut and B. Monjardet, Ordre et Classification (Hachette Université, 1970).

- [2] K.P. Bogart, Preference structures I: distances between transitive preference relations, *J. Math. Sociology* **3** (1973) 49–67.
- [3] J.-P. Doignon and M. Regenwetter, On the combinatorial structure of the approval–voting polytope, *J. Math. Psych.* **46** (2002) 554–563.
- [4] J.-Cl. Falmagne, Stochastic token theory, J. Math. Psych. 41(2) (1997) 129–143.
- [5] J.-Cl. Falmagne and S. Ovchinnikov, Media theory, *Discrete Appl. Math.* 121 (2002) 103–118.
- [6] S. Fiorini, A combinatorial study of partial order polytopes, *European Journal of Combinatorics* **24** (2003) 149–159.
- [7] S. Fiorini and P.C. Fishburn, Weak order polytopes, *Discrete Math.* **275** (2004) 111–127.
- [8] J.G. Kemeny and J.L. Snell, Mathematical Models in the Social Sciences (The MIT Press, Cambridge, MA, 1972).
- [9] B.G. Mirkin, Group Choice (Winston, Washington, D.C., 1979).
- [10] S. Ovchinnikov and A. Dukhovny, Advances in media theory, *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems* 8(1) (2000) 45–71.
- [11] G. Ziegler, Lectures on Polytopes (Springer-Verlag, 1995).
- [12] G. Ziegler, personal communication.