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Abstract

The paper presents geometric mod-
els of the set WO of weak orders on
a finite set X . In particular, WO
is modeled as a set of vertices of a
cubical subdivision of a permutahe-
dron. This approach is an alterna-
tive to the usual geometric represen-
tation of WO by means of a weak
order polytope.
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1 Introduction

Let B be a family of binary relations on a fi-
nite set X . This set can be endowed with
various structures which are important in ap-
plications. One particular way to represent
B is to embed it into a cube {0, 1}N of suffi-
ciently large dimension (N = |X |2 would al-
ways work) by using characteristic functions
of relations in B, and consider a convex hull
of the set of corresponding points. Then B
is treated as a polytope with rich combinato-
rial and geometric structures. There are many
studies of linear order polytopes, weak order
polytopes, approval–voting polytopes, and par-
tial order polytopes, and their applications.
(See, for instance, [3, 6, 7] and references
there.)

In this paper we study the set WO of all
weak orders on X from a different point of
view. Namely, we model the Hasse diagram

of WO as a 1–skeleton of a cubical subdivi-
sion of a permutahedron. Our motivation has
its roots in media theory [4, 5, 10] where it is
shown that the graph of a medium is a partial
cube [10].

Section 2 presents some basic facts about
weak orders and the Hasse diagram of WO. In
Section 3 we describe various geometric mod-
els of WO. They are combinatorially equiva-
lent under the usual connection between zono-
topes, polar zonotopes, and hyperplane ar-
rangements.

2 The Hasse diagram WO

In the paper, X denotes a finite set with n > 1
elements. A binary relation W on X is a weak
order if it is transitive and strongly complete.
Antisymmetric weak orders are linear orders.
The set of all weak orders (resp. linear orders)
on X will be denoted WO (resp. LO).

For a weak order W , the indifference relation
I = W ∩W−1 is an equivalence relation on X .
Equivalence classes of I are called indifference
classes of W . These classes are linearly or-
dered by the relation W/I . We will use the
notation W = (X1, . . . , Xk) where Xi’s are in-
difference classes of W and (x, y) ∈ W if and
only if x ∈ Xi, y ∈ Xj for some 1 ≤ i ≤ j ≤ k.
Thus our notation reflects the linear order in-
duced on indifference classes by W .

We distinguish weak orders on X by the num-
ber of their respective indifference classes: if
W = (X1 . . . , Xk), we say that W is a weak
k–order. The set of all weak k–orders will
be denoted WO(k). In particular, weak n–



orders are linear orders and there is only one
weak 1–order on X , namely, W = (X) =
X × X , which we will call a trivial weak or-
der. Weak 2–orders play an important role
in our constructions. They are in the form
W = (A, X\A) where A is a nonempty proper
subset of X . Clearly, there are 2n − 2 distinct
weak 2–orders on a set of cardinality n.

The set WO is a partially ordered set with
respect to the set inclusion relation ⊆. We de-
note the Hasse diagram of this set by the same
symbol WO. The following figure shows, as
an example, WO for a 3–element set X =
{a, b, c}.
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Fig. 1. The Hasse diagram WO.
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Fig. 2. Another form of WO.

In Figure 1 the maximal element corresponds
to the trivial weak order, the six vertices in
the layer below correspond to weak 2–orders,
and the vertices in the lowest layer correspond
to the linear orders on X .

We find it more intuitive to represent the
Hasse diagram WO by a directed graph as
shown in Figure 2. (Similar diagrams were
introduced in [8, ch.2] and [2]).

Here the arrows indicate the partial order
on WO and, for instance, the weak order

({ab}, {c}) is represented as
ab
c .

In the rest of this section we establish some
properties of WO. The following proposition
is Problem 19 on p.115 in [9].

Proposition 2.1. A weak order W ′ contains
a weak order W = (X1, . . . , Xk) if and only if

W ′ =




i1⋃

j=1

Xj ,

i2⋃

j=i1+1

Xj , . . . ,

k⋃

j=im

Xj




for some sequence 1 ≤ i1 < i2 · · · < im ≤ k.

Proof. Let W ⊂ W ′. Then the indiffer-
ence classes of W form a subpartition of
the partition of X defined by the indiffer-
ence classes of W ′. Thus each indifference
class of W ′ is a union of some indifference
classes of W . Since W ⊂ W ′, we can write
W ′ = (∪i1

1 Xj ,∪i2
i1+1Xj , . . . ,∪k

im
Xj) for some

sequence of indeces 1 ≤ i1 < · · · < im ≤ k.

One can say [9, ch.2] that W ⊂ W ′ if and only
if the indifference classes of W ′ are “enlarge-
ments of the adjacent indifference classes” of
W .

Corollary 2.1. A weak order W ′ covers a
weak order W = (X1, . . . , Xk) in the Hasse di-
agram WO if and only if W ′ = (X1, . . . , Xi∪
Xi+1, . . . , Xk) for some 1 ≤ i < k.

Proposition 2.2. A weak order admits a
unique representation as an intersection of
weak 2–orders, i.e., for any W ∈ WO there is
a uniquely defined set J ⊆ WO(2) such that

W =
⋂

U∈J

U. (2.1)

Proof. Clearly, the trivial weak order has a
unique representation in the form (2.1) with
J = ∅.



Let W = (X1, . . . , Xk) with k > 1 and let JW

be the set of all weak 2–orders containing W .
By Proposition 2.1, each weak order in JW is
in the form

Wi = (∪i
1Xj ,∪k

i+1Xj), 1 ≤ i < k.

Let (x, y) ∈
⋂k−1

i=1 Wi. Suppose (x, y) /∈ W .
Then x ∈ Xp and y ∈ Xq for some p > q.
It follows that (x, y) /∈ Wq, a contradiction.
This proves (2.1) with J = JW .

Let W = (X1, . . . , Xk) be a weak order in the
form (2.1). Clearly, J ⊆ JW . Suppose that
Ws = (∪s

1Xj,∪k
s+1Xj) /∈ J for some s. Let

x ∈ Xs+1 and y ∈ Xs. Then (x, y) ∈ Wi for
any i 6= s, but (x, y) /∈ W , a contradiction.
Hence, J = JW which proves uniqueness of
representation (2.1).

Let JW , as in the above proof, be the set of
all weak 2–orders containing W , and let J =
{JW }

W∈WO
be the family of all such subsets

of WO(2). The set J is a poset with respect
to the inclusion relation.

The following theorem is an immediate con-
sequence of Proposition 2.2.

Theorem 2.1. The correspondence W 7→ JW

is a dual isomorphism of posets WO and J .

Clearly, the trivial weak order on X corre-
sponds to the empty subset of WO(2) and the
set LO of all linear orders on X is in one–to–
one correspondence with maximal elements in
J . The Hasse diagram WO is dually isomor-
phic to the Hasse diagram of J .

Theorem 2.2. The set J is a combinatorial
simplicial complex, i.e., J ∈ J implies J ′ ∈ J
for all J ′ ⊆ J.

Proof. Let J ′ ⊆ J = JW for some W ∈ WO,
i.e., W =

⋂
U∈JW

U . Consider W ′ =
⋂

U∈J′ U .
Clearly, W ′ is transitive. It is complete, since
W ⊆ W ′. By Proposition 2.2, J ′ = JW ′ ∈ J .

It follows that J is a complete graded meet–
semilattice. Therefore the Hasse diagram

WO is a complete join–semilattice with re-
spect to the join operation W∨W ′ = W ∪ W ′,
the transitive closure of W ∪ W ′.

3 Geometric models of WO

A weak order polytope Pn
WO is defined as the

convex hull in Rn(n−1) of the characteristic
vectors of all weak orders on X (see, for in-
stance, [7]). Here we suggest different geo-
metric models for WO. For basic definitions
in the area of polytopes and complexes, the
reader is referred to Ziegler’s book [11].

Definition 3.1. A cube is a polytope com-
binatorially equivalent to [0, 1]m. A cubical
complex is a polytopal complex C such that
every P ∈ C is a cube. The graph G(C) of a
cubical complex C is the 1–skeleton of C.

Thus the vertices and the edges of G(C) are
the vertices and the edges of cubes in C, and
G(C) is a simple undirected graph.

Let d = 2n − 2, where n = |X |, be the num-
ber of elements in WO(2). We represent each
W ∈ WO by a characteristic function χ(JW )
of the set JW . These characteristic functions
are vertices of the cube [0, 1]d. Let L ∈ LO be
a linear order on X . Then JL is a maximal el-
ement in J and, by Theorem 2.2, the convex
hull of {χ(JW )}

W⊇L
is a subcube CL of [0, 1]d.

The dimension of CL is n − 1. The collection
of all cubes CL with L ∈ LO and all their sub-
cubes form a cubical complex C(WO) which
is a subcomplex of [0, 1]d. Clearly, C(WO) is
a pure complex of dimension n − 1 and the
graph of this complex is isomorphic to the
graph (that we denote by the same symbol,
WO) of the Hasse diagram of WO.

The above construction yields an isometric
embedding of the graph WO into the graph
of [0, 1]d. Thus the graph WO is a partial
cube.

The dimension dimC(WO) = n − 1 is much
smaller than the dimension d = 2n − 2 of the
space Rd in which C(WO) was realized. Sim-
ple examples indicate that C(WO) can be re-
alized in a space of a much smaller dimension.

For instance, for n = 3 we have a realization



of C(WO) in R3 as shown in Figure 3. (This
is a ‘flat’ analog of the popular smooth surface
z = x3−3xy2.) One can compare this picture
with the picture shown in Figure 2.
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Fig. 3. “Monkey Saddle”.

It turns out that there is a cubical com-
plex, which is combinatorially equivalent to
C(WO), and such that its underlying set is a
polytope in Rn−1.

We begin with a simple example. Let X =
{1, 2, 3} and let Π2 be the 2–dimensional per-
mutahedron. Consider a subdivision of Π2

shown in Figure 4.
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Fig. 4. A cubical complex associated with Π2.

Clearly, this subdivision defines a cubical
complex which is combinatorially isomorphic

to the cubical complex shown in Figure 3.
(Compare it also with the diagram in Fig-
ure 2.)

In general, let Πn−1 be a permutahedron of
dimension n − 1, where n = |X |. According
to [11, p.18], “k–faces (of Πn−1) correspond
to ordered partitions of (the set X) into n−k

nonempty parts” (see also [1], p.54). In other
words, each face of Πn−1 represents a weak
order on X . Linear orders on X are repre-
sented by the vertices of Πn−1 and the trivial
weak order on X is represented by Πn−1 itself.
Weak 2–orders are in one–to–one correspon-
dence with the facets of Πn−1. Let L be a
vertex of Πn−1. Consider the set of barycen-
ters of all faces of Πn−1 containing L. A direct
computation shows that the convex hull CL of
these points is a (combinatorial) cube. This is
actually true for any simple zonotope (Πn−1 is
a simple zonotope). The following argument
belongs to Günter Ziegler [12].

Let Z be a simple zonotope. By Corol-
lary 7.18 in [11], CL is the intersection of the
vertex cone of L (which is a simplicial cone)
with the dual facet cone of the dual of Z

(which is again a simplicial cone). This in-
tersection is an (n − 1)–dimensional (combi-
natorial) cube.

Cubes in the form CL form a subdivision of
Πn−1 and, together with their subcubes, form
a cubical complex isomorphic to C(WO).

Another geometric model for the set WO of
all weak orders on X can be obtained using
the polar polytope Π∆

n−1. Let L(Πn−1) be
the face lattice of the permutahedron Πn−1.
The joint–semilattice WO is isomorphic to
the joint–semilattice L(Πn−1)\{∅} (Figure 1).
By duality, the Hasse diagram WO is dually
isomorphic to the meet–semilattice L(Π∆

n−1)\
{Π∆

n−1} of all proper faces of Π∆
n−1. Under

this isomorphism, the linear orders on X are
in one–to–one correspondence with facets of
Π∆

n−1, the weak 2–orders on X are in one–
to–one correspondence with vertices of Π∆

n−1,
and the trivial weak order on X corresponds
to the empty face of Π∆

n−1. Note that Π∆
n−1

is a simplicial polytope. The set of its proper
faces is a simplicial complex which is a geo-



metric realization of the combinatorial simpli-
cial complex J (cf. Theorem 2.2).

Other geometric and combinatorial models of
WO can be constructed by using the usual
connections between zonotopes, hyperplane
arrangements, and oriented matroids [11].
One particular model utilizes the following
well known facts about weak orders on X .

Let f be a real–valued function on X and, as
before, let n = |X |. Then Wf defined by

(x, y) ∈ Wf ⇔ f(x) ≤ f(y),

for all x, y ∈ X , is a weak order. On the other
hand, for a given weak order W there exists a
function f such that W = Wf . Two functions
f and g are said to be equivalent if Wf = Wg.
Clearly, equivalent functions form a cone CW

in Rn and the union of these cones is Rn.
Thus there is a natural one–to-one correspon-
dence between the set WO and the family
{CW }

W∈WO
. The cones in the form CW arise

from the braid arrangement Bn defined by the
hyperplanes Hij = {x ∈ Rn : xi = xj} for
i < j. The braid arrangement Bn is the hyper-
plane arrangement associated with the zono-
tope Πn−1. Following the standard steps [11],
one can also construct an oriented matroid
representing WO.

Geometric objects introduced in this section,
the cubical complex C(WO), the simplicial
complex J of proper faces of the polar zono-
tope Π∆

n−1, and the braid arrangement Bn, all
share the combinatorial structure of the Hasse
diagram WO.
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