Neuro-Dynamic Programming
An Overview

Dimitri Bertsekas
Dept. of Electrical Engineering
and Computer Science
M.I.T.

May 2006
Dynamic Programming (DP) is very broadly applicable, but it suffers from:
- Curse of dimensionality
- Curse of modeling

We address “complexity” by using approximations (based loosely on parametric/neural architectures)

Unlimited applications in planning, resource allocation, stochastic control, discrete optimization

Application is an art … but guided by substantial theory
OUTLINE

• Main NDP framework
• Discussion of two classes of methods:
 – Actor-critic methods/LSPE
 – Rollout algorithms
• Connection between rollout and Model Predictive Control (MPC)
• Book references:
 – Neuro-Dynamic Programming (Bertsekas + Tsitsiklis)
 – Reinforcement Learning (Sutton + Barto)
 – Dynamic Programming: 3rd Edition (Bertsekas)
• Papers can be downloaded from http://web.mit.edu/dimitrib/www/home.html
Main ingredients:
- Dynamic system; state evolving in discrete time
- Decision/control applied at each time
- Cost is incurred at each time
- There may be noise & model uncertainty
- There is state feedback used to determine the control
ESSENTIAL TRADEOFF CAPTURED BY DP

- Decisions are made in stages
- The decision at each stage:
 - Determines the present stage cost
 - Affects the context within which future decisions are made
- At each stage we must trade:
 - Low present stage cost
 - Undesirability of high future costs
Optimal decision at the current state minimizes
the expected value of

Current stage cost + Future stages cost starting
from the next state (using opt. policy)

Extensive mathematical methodology
Applies to both discrete and continuous
systems (and hybrids)
Dual curses of dimensionality/modeling
KEY NDP IDEA

• Use one-step lookahead with an “approximate” cost
• At the current state select decision that minimizes the expected value of

Current stage cost + Approximate future stages cost starting from the next state

• Important issues:
 – How to construct the approximate cost of a state
 – How to understand and control the effects of approximation
METHODS TO COMPUTE AN APPROXIMATE COST

• Parametric approximation algorithms (off-line)
 – Use a functional approximation to the optimal cost function
 – Select the weights of the approximation - connection with “neural networks”
 – One possibility: Hand-tuning, and trial and error
 – Systematic DP-related policy and value iteration methods (TD-Lambda, Q-learning, LSPE, LSTD, etc) - simulation and “least squares fit”

• Rollout algorithms (on-line)
 – Simulate the system under some (good heuristic) policy starting from the state of interest.
 – Use the cost of the heuristic (or a lower bound) as cost approximation
Simulation (learning by experience): used to compute the (approximate) cost-to-go is a key distinctive aspect of NDP.

- **Important advantage:** A detailed model of the system not necessary - use a simulator instead.

- In case of parametric approximation: off-line learning.

- In case of a rollout algorithm: on-line learning is used (we learn only the cost values needed by on-line simulation).
PARAMETRIC APPROXIMATION: CHESS PARADIGM

• Chess playing computer programs
• State = board position
• Score of position: “Important features” appropriately weighted
TRAINING

- In chess: Weights are “hand-tuned”
- In more sophisticated methods: Weights are determined by using simulation-based training algorithms
- $\text{TD}(\lambda)$, Q-Learning, Least Squares Policy Evaluation (LSPE), Least Squares Temporal Differences (LSTD), extended Kalman filtering, etc
- All of these methods are based on DP ideas of policy iteration and value iteration
POLICY IMPROVEMENT PRINCIPLE

• Given a current policy, define a new policy as follows:

 At each state minimize
 \[\text{Current stage cost + cost-to-go of current policy (starting from the next state)}\]

• Policy improvement result: New policy has improved performance over current policy

• If the cost-to-go is approximate, the improvement is “approximate”

• Oscillation around the optimal; error bounds
ACTOR/CRITIC SYSTEMS

- Metaphor for policy improvement/evaluation
- **Actor implements** current policy
- **Critic evaluates** the performance; passes feedback to the actor
- **Actor changes policy**
POLICY EVALUATION BY VALUE ITERATION

- **Value iteration** to evaluate the cost of a fixed policy:
 \[J_{t+1} = T(J_t), \text{ where } T \text{ is the DP mapping} \]
- **Value iteration with linear function approximation**:
 \[\Phi_{r_{t+1}} = \Pi T(\Phi_{r_t}) \]
 where \(\Phi \) is a matrix of basis functions/features and \(\Pi \) is projection w/ respect to steady-state distribution norm
- **Remarkable Fact**: \(\Pi T \) is a contraction for discounted and other problems
LSPE: SIMULATION-BASED IMPLEMENTATION

- Simulation-based implementation of $\Phi_{r_{t+1}} = \Pi T(\Phi_{r_t})$ with an infinitely long trajectory, and least squares $\Phi_{r_{t+1}} = \Pi T(\Phi_{r_t}) + \text{Diminishing simulation noise}$
- Interesting convergence theory (see papers at www site)
- Use of the steady-state distribution norm is critical
- Optimal convergence rate; much better than TD(lambda)
SUMMARY OF ACTOR-CRITIC SYSTEMS

• A lot of mathematical analysis, insight, and practical experience are now available

• There is solid theory for:
 – Methods w/ exact (lookup table) cost representations
 – Policy evaluation methods with linear function approximation
 [TD(\lambda), LSPE, LSTD]

• In approximate policy iteration, typically, improved policies are obtained early, then the method oscillates

• On-line computation is small

• Training is challenging and time-consuming

• Less suitable when problem data changes frequently
ROLLOUT POLICIES:
BACKGAMMON PARADIGM

• On-line (approximate) cost-to-go calculation by simulation of some base policy (heuristic)
• Rollout: action w/ best simulation results
• Rollout is one-step policy iteration
COST IMPROVEMENT PROPERTY

- Generic result: **Rollout improves on Base**
- A special case of **policy iteration/policy improvement**
- Extension to multiple base heuristics:
 - From each next state, run multiple heuristics
 - Use as value of the next state the best heuristic value
 - Cost improvement: The rollout algorithm performs at least as well as each of the base heuristics
- Interesting fact: The classical **open-loop feedback control** policy is a special case of rollout (base heuristic is the optimal open-loop policy)
- In practice, **substantial improvements** over the base heuristic(s) have been observed
- **Major drawback:** Extensive Monte-Carlo simulation
STOCHASTIC PROBLEMS

- Major issue: Computational burden of Monte-Carlo simulation
- Motivation to use “approximate” Monte-Carlo
- Approximate Monte-Carlo by certainty equivalence: Assume future unknown quantities are fixed at some typical values
- Advantage: Single simulation run per next state, but some loss of optimality
- Extension to multiple scenarios (see Bertsekas and Castanon, 1997)
ROLLOUT ALGORITHM PROPERTIES

• **Forward looking** (the heuristic runs to the end)
• **Self-correcting** (the heuristic is reapplied at each time step)
• Suitable for **on-line use**
• Suitable for **replanning**
• Suitable for situations where the problem data are a priori unknown
• Substantial positive experience with many types of optimization problems, including combinatorial (e.g., scheduling)
DETERMINISTIC PROBLEMS

• **ONLY ONE** simulation trajectory needed
• Use heuristic(s) for approximate cost-to-go calculation
 – At each state, consider all possible next states, and run the heuristic(s) from each
 – Select the next state with best heuristic cost
• Straightforward to implement
• Cost improvement results are sharper (Bertsekas, Tsitsiklis, Wu, 1997, Bertsekas 2005)
• Extension to constrained problems
MODEL PREDICTIVE CONTROL

- **Motivation**: Deal with state/control constraints
- **Basic MPC framework**
 - Deterministic discrete time system $x_{k+1} = f(x_k, u_k)$
 - Control constraint U, state constraint X
 - Quadratic cost per stage: $x'Qx + u'Ru$
- **MPC operation**: At the typical state x
 - Drive the state to 0 in m stages with minimum quadratic cost, while observing the constraints
 - Use the 1st component of the m-stage optimal control sequence, discard the rest
 - Repeat at the next state
ADVANTAGES OF MPC

- It can deal explicitly with state and control constraints
- It can be implemented using standard deterministic optimal control methodology
- Key result: The resulting (suboptimal) closed-loop system is stable (under a “constrained controllability assumption” - Keerthi/Gilbert, 1988)
- Connection with infinite-time reachability
- Extension to problems with set-membership description of uncertainty
CONNECTION OF MPC AND ROLLOUT

• MPC \iff Rollout with suitable base heuristic

• Heuristic: Apply the (m-1)-stage policy that drives the state to 0 with minimum cost

• Stability of MPC \iff Cost improvement of rollout

• Base heuristic stable \implies Rollout policy is also stable
EXTENSIONS

- The relation with rollout suggests more general MPC schemes:
 - Nontraditional control and/or state constraints
 - Set-membership disturbances

- The success of MPC should encourage the use of rollout
RESTRICTED STRUCTURE POLICIES

- General suboptimal control scheme
- At each time step: Impose restrictions on future information or control
- Optimize the future under these restrictions
- Use 1st component of the restricted policy
- Recompute at the next step

- Special cases:
 - Rollout, MPC: Restrictions on future control
 - Open-loop feedback control: Restrictions on future information

- Main result for the suboptimal policy so obtained:

 It has better performance than the restricted policy
CONCLUDING REMARKS

• NDP is a broadly applicable methodology; addresses optimization problems that are intractable in other ways
• Many off-line and on-line methods to choose from
• Interesting theory
• No need for a detailed model; a simulator suffices
• Computational requirements are substantial
• Successful application is an art
• Rollout has been the most consistently successful methodology
• Rollout has interesting connections with other successful methodologies such as MPC and open-loop feedback control