
Neuro-Dynamic Programming: An Overview

1

Dimitri Bertsekas
Dept. of Electrical Engineering

and Computer Science
M.I.T.

May 2006

Neuro-Dynamic Programming
An Overview

Neuro-Dynamic Programming: An Overview

2

BELLMAN AND THE DUAL
CURSES

• Dynamic Programming (DP) is very broadly
applicable, but it suffers from:

– Curse of dimensionality
– Curse of modeling

• We address “complexity” by using
approximations (based loosely on
parametric/neural architectures)

• Unlimited applications in planning, resource
allocation, stochastic control, discrete
optimization

• Application is an art … but guided by
substantial theory

Neuro-Dynamic Programming: An Overview

3

OUTLINE

• Main NDP framework
• Discussion of two classes of methods:

– Actor-critic methods/LSPE
– Rollout algorithms

• Connection between rollout and Model
Predictive Control (MPC)

• Book references:
– Neuro-Dynamic Programming (Bertsekas + Tsitsiklis)
– Reinforcement Learning (Sutton + Barto)
– Dynamic Programming: 3rd Edition (Bertsekas)

• Papers can be downloaded from
http://web.mit.edu/dimitrib/www/home.html

Neuro-Dynamic Programming: An Overview

4

DYNAMIC PROGRAMMING /
DECISION AND CONTROL

• Main ingredients:
– Dynamic system; state evolving in discrete time
– Decision/control applied at each time
– Cost is incurred at each time
– There may be noise & model uncertainty
– There is state feedback used to determine the control

System
State

Decision/
Control

Feedback
Loop

Neuro-Dynamic Programming: An Overview

5

ESSENTIAL TRADEOFF
CAPTURED BY DP

• Decisions are made in stages
• The decision at each stage:

– Determines the present stage cost
– Affects the context within which future decisions are

made
• At each stage we must trade:

– Low present stage cost
– Undesirability of high future costs

Neuro-Dynamic Programming: An Overview

6

• Optimal decision at the current state minimizes
the expected value of

Current stage cost + Future stages cost starting
from the next state (using opt. policy)

• Extensive mathematical methodology
• Applies to both discrete and continuous

systems (and hybrids)
• Dual curses of dimensionality/modeling

KEY DP RESULT:
BELLMAN’S EQUATION

Neuro-Dynamic Programming: An Overview

7

• Use one-step lookahead with an “approximate”
cost

• At the current state select decision that
minimizes the expected value of

Current stage cost + Approximate future stages
cost starting from the next state

• Important issues:
– How to construct the approximate cost of a state
– How to understand and control the effects of approximation

KEY NDP IDEA

Neuro-Dynamic Programming: An Overview

8

METHODS TO COMPUTE AN
APPROXIMATE COST

• Parametric approximation algorithms (off-line)
– Use a functional approximation to the optimal cost

function
– Select the weights of the approximation - connection with

“neural networks”
– One possibility: Hand-tuning, and trial and error
– Systematic DP-related policy and value iteration methods

(TD-Lambda, Q-learning, LSPE, LSTD, etc) - simulation and
“least squares fit”

• Rollout algorithms (on-line)
– Simulate the system under some (good heuristic) policy

starting from the state of interest.
– Use the cost of the heuristic (or a lower bound) as cost

approximation

Neuro-Dynamic Programming: An Overview

9

SIMULATION AND LEARNING

• Simulation (learning by experience): used to
compute the (approximate) cost-to-go is a key
distinctive aspect of NDP

• Important advantage: A detailed model of the
system not necessary - use a simulator
instead

• In case of parametric approximation: off-line
learning

• In case of a rollout algorithm: on-line learning
is used (we learn only the cost values needed
by on-line simulation)

Neuro-Dynamic Programming: An Overview

10

PARAMETRIC
APPROXIMATION:
CHESS PARADIGM

• Chess playing computer programs
• State = board position
• Score of position: “Important features”

appropriately weighted

Feature
Extraction

Scoring
Function

Score of position

Features:
Material balance
Mobility
Safety
etc

Position Evaluator

Neuro-Dynamic Programming: An Overview

11

TRAINING

• In chess: Weights are “hand-tuned”
• In more sophisticated methods: Weights are

determined by using simulation-based training
algorithms

• TD(λ), Q-Learning, Least Squares Policy
Evaluation (LSPE), Least Squares Temporal
Differences (LSTD), extended Kalman filtering,
etc

• All of these methods are based on DP ideas of
policy iteration and value iteration

Neuro-Dynamic Programming: An Overview

12

POLICY IMPROVEMENT
PRINCIPLE

• Given a current policy, define a new policy as
follows:

At each state minimize
Current stage cost + cost-to-go of current
policy (starting from the next state)

• Policy improvement result: New policy has
improved performance over current policy

• If the cost-to-go is approximate, the
improvement is “approximate”

• Oscillation around the optimal; error bounds

Neuro-Dynamic Programming: An Overview

13

ACTOR/CRITIC SYSTEMS

• Metaphor for policy improvement/evaluation
• Actor implements current policy
• Critic evaluates the performance; passes

feedback to the actor
• Actor changes policy

System Simulator

Decision Generator

Performance
Simulation
Data

Decision State

Performance
Evaluation

Approximate Scoring Function

Scoring Function

Critic

Actor

Feedback
from critic

Neuro-Dynamic Programming: An Overview

14

POLICY EVALUATION BY
VALUE ITERATION

• Value iteration to evaluate the cost of a fixed policy:
Jt+1 = T(Jt), where T is the DP mapping

• Value iteration with linear function approximation:
Φrt+1 = ΠT(Φrt)
where Φ is a matrix of basis functions/features and Π is
projection w/ respect to steady-state distribution norm

• Remarkable Fact: ΠT is a contraction for discounted and
other problems

Neuro-Dynamic Programming: An Overview

15

LSPE: SIMULATION-BASED
IMPLEMENTATION

• Simulation-based implementation of Φrt+1 = ΠT(Φrt)
with an infinitely long trajectory, and least squares
Φrt+1 = ΠT(Φrt) + Diminishing simulation noise

• Interesting convergence theory (see papers at www site)
• Use of the steady-state distribution norm is critical
• Optimal convergence rate; much better than TD(lambda)

Neuro-Dynamic Programming: An Overview

16

SUMMARY OF ACTOR-CRITIC
SYSTEMS

• A lot of mathematical analysis, insight, and practical
experience are now available

• There is solid theory for:
– Methods w/ exact (lookup table) cost representations
– Policy evaluation methods with linear function aprpoximation

[TD(lambda), LSPE, LSTD]

• In approximate policy iteration, typically, improved
policies are obtained early, then the method oscillates

• On-line computation is small
• Training is challenging and time-consuming
• Less suitable when problem data changes frequently

Neuro-Dynamic Programming: An Overview

17

ROLLOUT POLICIES:
BACKGAMMON PARADIGM

• On-line (approximate) cost-to-go calculation
by simulation of some base policy (heuristic)

• Rollout: action w/ best simulation results
• Rollout is one-step policy iteration

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Possible Moves

Neuro-Dynamic Programming: An Overview

18

COST IMPROVEMENT
PROPERTY

• Generic result: Rollout improves on Base
• A special case of policy iteration/policy improvement
• Extension to multiple base heuristics:

– From each next state, run multiple heuristics
– Use as value of the next state the best heuristic value
– Cost improvement: The rollout algorithm performs at least as well

as each of the base heuristics
• Interesting fact: The classical open-loop feedback

control policy is a special case of rollout (base heuristic
is the optimal open-loop policy)

• In practice, substantial improvements over the base
heuristic(s) have been observed

• Major drawback: Extensive Monte-Carlo simulation

Neuro-Dynamic Programming: An Overview

19

STOCHASTIC PROBLEMS

• Major issue: Computational burden of Monte-
Carlo simulation

• Motivation to use “approximate” Monte-Carlo
• Approximate Monte-Carlo by certainty

equivalence: Assume future unknown
quantities are fixed at some typical values

• Advantage : Single simulation run per next
state, but some loss of optimality

• Extension to multiple scenarios (see
Bertsekas and Castanon, 1997)

Neuro-Dynamic Programming: An Overview

20

ROLLOUT ALGORITHM
PROPERTIES

• Forward looking (the heuristic runs to the end)
• Self-correcting (the heuristic is reapplied at

each time step)
• Suitable for on-line use
• Suitable for replanning
• Suitable for situations where the problem data

are a priori unknown
• Substantial positive experience with many

types of optimization problems, including
combinatorial (e.g., scheduling)

Neuro-Dynamic Programming: An Overview

21

DETERMINISTIC PROBLEMS

• ONLY ONE simulation trajectory needed
• Use heuristic(s) for approximate cost-to-go

calculation
– At each state, consider all possible next states, and run

the heuristic(s) from each
– Select the next state with best heuristic cost

• Straightforward to implement
• Cost improvement results are sharper

(Bertsekas, Tsitsiklis, Wu, 1997, Bertsekas
2005)

• Extension to constrained problems

Neuro-Dynamic Programming: An Overview

22

MODEL PREDICTIVE CONTROL

• Motivation: Deal with state/control constraints
• Basic MPC framework

– Deterministic discrete time system xk+1 = f(xk,uk)
– Control contraint U, state constraint X
– Quadratic cost per stage: x’Qx+u’Ru

• MPC operation: At the typical state x
– Drive the state to 0 in m stages with minimum

quadratic cost, while observing the constraints
– Use the 1st component of the m-stage optimal

control sequence, discard the rest
– Repeat at the next state

Neuro-Dynamic Programming: An Overview

23

ADVANTAGES OF MPC

• It can deal explicitly with state and control
constraints

• It can be implemented using standard
deterministic optimal control methodology

• Key result: The resulting (suboptimal) closed-
loop system is stable (under a “constrained
controllability assumption” - Keerthi/Gilbert,
1988)

• Connection with infinite-time reachability
• Extension to problems with set-membership

description of uncertainty

Neuro-Dynamic Programming: An Overview

24

CONNECTION OF MPC AND
ROLLOUT

• MPC <==> Rollout with suitable base heuristic

• Heuristic: Apply the (m-1)-stage policy that
drives the state to 0 with minimum cost

• Stability of MPC <==> Cost improvement of
rollout

• Base heuristic stable ==> Rollout policy is also
stable

Neuro-Dynamic Programming: An Overview

25

EXTENSIONS

• The relation with rollout suggests more
general MPC schemes:

– Nontraditional control and/or state constraints
– Set-membership disturbances

• The success of MPC should encourage the use
of rollout

Neuro-Dynamic Programming: An Overview

26

RESTRICTED STRUCTURE
POLICIES

• General suboptimal control scheme
• At each time step: Impose restrictions on future

information or control
• Optimize the future under these restrictions
• Use 1st component of the restricted policy
• Recompute at the next step

• Special cases:
– Rollout, MPC: Restrictions on future control
– Open-loop feedback control: Restrictions on future information

• Main result for the suboptimal policy so obtained:

It has better performance than the restricted policy

Neuro-Dynamic Programming: An Overview

27

CONCLUDING REMARKS

• NDP is a broadly applicable methodology; addresses
optimization problems that are intractable in other ways

• Many off-line and on-line methods to choose from
• Interesting theory
• No need for a detailed model; a simulator suffices
• Computational requirements are substantial
• Successful application is an art
• Rollout has been the most consistently successful

methodology
• Rollout has interesting connections with other

successful methodologies such as MPC and open-loop
feedback control

