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OLURT, BURREVEHROE - | CHERFHE KA

FEARTORBALEEZDLE ULEREMEEZ BRI T ERICES>TEUTH L EFER
BT LT,

FAXEBAD 47 FEBICTERBEZRITHME L E Uiz, TORZHIEEDNBRERN DEHEICT
NE L, DPLEBENTHMEENEERICIONE Lz, TR TEZANEDPZEANVWE LTz, BEA
BHOF%. EFTEZREEOMERE (I F—F[fEDLVERE) ITEX D, REEFEILMEOHK
S

Y. S. Chow and H. Robbins, Great Expectations: The Theory of Optimal Stopping, Houghton
Mifflin, 1971

AL E Uiz, BELEALEZEROIY—MTOEREAET L., HIZIEE 4ETIE§1-§3(F
), §4 — §6(BREF). §7 — SO(RM) LI F—DEEZZDBHMEEINTVE Lz, ALK
BLWZ e | RORE | FAOEEF )

DI F—TEIEN—IVOEFM (one-stage lookahead policy) DEEM & IGHMEDILE 2%
U, ThEHICLUTHEORIZEEX Ulz, BOALWEE | ZERIV—IV, H 5V BRI
BOZ NEUEIERIE (OR 2236 1980, 1982), [Z0D#% 10 E2#FTEDEKR (Dynamic Games,
1999) ZBEE L7, ]

T X O BLENEDOBEOHEIIFREDED LD, FAMIHFEIAFRICOWTEERAKERZ UX
Llzo Z0%., JENMNAZOEHEEED D> TDT 7 V—HZEOHFENF, & SICHRLAZD
FAESEED D - TO—IEZN D MDPs ORFAAZEATITE X Lz, TNHIEINTL
AfEZBEARICT X T2HEMZFET L,

DL > THRAMEDBVEIZ. AZNETNEBOMARELH., A A—VDED A, ETRE
DHF 7% EICHIDBD B NIERKNEDEVRHBEEDNH D, TNZEEVICIEAHLES T LICKD
HLOBEORRERFLWT A T4 THEENTL BT LT L, oo ATV TICE BV Tl
XNEL B RVRR EXFAROFH S DHICLAK LT,

S THANZEE LIz TEZOENRIFNIHNL L XA, FAICHEZRHL TTFE > 72DId%H
EAETY, BRSEEE | ZEAEDAZERICZIFVNSEARS. 5 TADAIITIIERIAENT
5L TATY, TNITHRET & B |

BERZICITR LN ERILFE S TWE 5 LNTT, BEE-ICL T, BLOBTEThAC LR
FoTVET,



DSBS 5 ZHIEH A
RBRIFSERZFAF BT « TR E %

ek

Wk, 2D 3 ARTITIRE., RVWKEHEEATE., BEIUVKTLE, RAORELZE
ITLEN, ZOLIRBE, HFIAR BHTEY | EBRVOSELTIEDT
TR, RFEEZNE, F2WMo THEIIHEINE=ZOT, KFELTUIAEAR LD
ZzonNET, (ZOBETERICEHODIZEN/EEKE L] LWHERT, BHW
ROTL X ID% L, BFETIE 65 RITEEHEDIL, 20 DR LS L T it
EEDNHHLHTETWVET, BEWZ, BEIZEELT (HOFEFY, WOETH
JTERT, LOoZWi) EEbNE L), RWZDOIIEVEL X I,

D, BEEE LD TEBEV LD, B 45 FF5O TS FHRES)
DEETLE, Thon, Hit~—% 17— - OR %% - HES - FHEHEYV VRY
7.« RIMS i R% 4 B LT, BAaRWBHEAEWVWERVE LT,

ZHEELEDOHFEERIL “HROLZA” L LT, ZOEOTunbEmiHMish, &
2%, BT I, RERER, RO BN LN MFTI0EKILEED
HLODOTTDOT, ZLEXIETCWEEXET,

ZHEEDBWVAETX, TIVWHIRERZHINRZEO L, bo b bESLT, A
WHELLS, ZEOEAR LN, TORBEL LWAWILEEERWEST, FLEV b
SHWETTTN, ENOEHBLTBYELE, TARRT, LA, BlLkENS, T
M XEDREREHENTRFIX, BIEFRZEHIE T E oW E BWE L7,
b, ZO3AK, 2EHOHBELE THLHERKFEEZEFEB LY, FEROHH
Nz, FRZEBOEET, L THH LWIFRRREZRXOFBICED DN DBREIZH Y
FH A, BIZMZ T, 1FEFNLRBRCEORASLCENEZK D X DI, FEEN
LTI EFESI Lo T LENVE L, £Z T, 2D 3 A, FROLEEN—BKE
L7ZEEZREHO - T, MENICEBEOREBLIEETEE LY., FEEZANLTLENE
L7,

FLIRD Y FEAN, THEBLEEBRELOSHEES CBHSITT, KEESETWE
EEET, £lo, RBFWXTTH, FRELGEHLTLEY, HEERFICELTOH
LWERZHEAIREIZH Y EFEADT, FHHEEF L IZEBDOH 5 5FOMEERD
BEEOAEZREHITOWEEEET,

Z ORI, FADSHIFEE & o THRANCEVMEAT “SEOMARS” (ZBT 5%
T, %&£, HDOIBPOLEXRFERXORPALHE TRRT AR BT Lz, TOHEEITE
I, HAERFIZET 5 Z20% 40 FORBEZRIE L L 2 A, HAERFNOEER
ERCE LT, —OERREE U TRE RPN BORET L, ZOYRFORE
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. ETRIRIEEOLIR CEmIIEBm L AIRIIED N TWE Lz, & 2T AR, IF,
FE A YETE 0 B S R0 FETE B M BE T DM AT R, IEBME A RE LRV A K D3
ROERLARD BNTNDZ L EM0 E LIz, IBER (UEE T, BIOERORS
L UCOMERNZMOTES &, w2 7HEEOBIRAT L LT, RETEX5 L
WCEBDEE LT, ZOEXZBD-ONTFREOEEFTT,

—R. BREBRESLITEBRE R DBATZONFICHERK LRIEN 2 HENH
5. XIREHTHENTHETCTORAL S ZHETLIHE. AR E RS LRV EE
ANOEBRINZENTHNE, ERBELZRONIEHSTHSH0, EEbhbhd
AR 2 BIARE TIX, Z2HOETHORFVPERIZEY BRI, —DODOEHEREEIC
BET D, TOXIBRHAOHMERS BB L7 LTiX, IELWERIAREHIIT X
RWEWRD, LZIAT, ZOX tR) OHEXRFZEBERCBELTALL L B
BREITBITB2H O EBAREBEUERH D Z LB,

WIZRFETDIHLT, BRICH T ARSI —T DX ) REFMORLE LT, Bl
M LRI Z RO CTHYI DN HFEREIRE L, BiCH & HE & ORDOERDOFRZTZ
FERIRE LT, FiRME KL R omM O BN OB GRERE, #BITHIE
AWTERHAT D, ZOHFERT, FEREZRFER, LR TEESHBEZ L, —K
ftEN =2 EHAERKFOHFRERIT, BREFFHBICBITHMOBEHFRERITELE D Z LI
Brxhsd,

— L SN2 EMERHNOELHEX

ZUHIZ SEE, FBRMEROBERICTHE, T E TOHEMEIROHL B R A%
AZBHRIC LE-BBHE B EONEERRD LN TS, LnLens, REAHE
DHBIIHROBBIOBEITR TH 0 | BHAREE & U THRIRDH S CBEE DL
B E SNTRERENR IR TWBIZBE R, RHE T, FROH LM
OB REEP, BICHEHE OBORROTZ T E2AHEL LT, Bl E K
S 2 B OE R O A KR OB BER 2 BT 2 FVTRELT 5, fBRMELIRER

FEPLEME RO - BREE FUEROARIEEZ BRI E T 5,

ETNEERE —DODOKEREEX D, ZOXFERIT, FIE—RRIEREREL
BoX o nAOEICEHAE L DEENTVWD LT 5, FE TIIAK LEKITREH X
NBDFERT B0, BIRESNDHbDET S, ZORNITHENEIND E, BELE
HIXEH TRET « Bl » WU E EIRICHE Y R L — 2D FHMREBIZELES 5, AR
ZERT BITIE, RO 2HODOFENEME 2D,
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b N EADYE
“FHERHROFHEBIZBNT, ZOEEDAFTHHEIT, ZOHHITRINEN
BDRELEZENDDANTEH (P E-ITFER) SNHHEEOFITE LV,

FAEKHRICBIT 52X KOEA
‘BEFRNOHLEBENPOREBINDAFRIL, TOHEBENLEBEEHIND K

Re, TOEBNDRZDFRNOMDES3 0O OMAERKFHZ LD HEROEMS, BX

WEDEFICHER L TL DHROFUZE LW,

I TRHETEHFALLREBSNDIREZERIEEORELZLRT S,
RN TORROBENZBLE LKD 2 EOBKEERT D,

ZERIR 72 E R X OE O KSR & @RI LD, i bR S NT-HEAL
HHRD D BHE j~AHENDINEE FG, ) LB LEEBEMREK L EL Lz 5,
T D

0<SFG, )<l for i,j=l—--—n ; Y FG,j)=1 for i=l———-n
Jj=1

RIS B
Fo, KRLFEB G imr b j ~DIEEMBIRAROBE B X, «(G,j) TRLE
NEBEE L S LI2T 5, ZOFREKICE LTI

0<7z(, <1 for i,j=l—--=n ; DG, )<l for i=l-——n
j=1

BDEFIND,

D, 1@, ) >0 BIEE I NOE NI DROEEPFZRTEEVNI & THD,
ZHUE, HICAR LEERZZ CHREMTERICERINTHEH j~BEIL., BUO
WEBINTHE PR BTHIHELED D, FilRGEAEELT

(i, 1) =0; X Hi TORHER

EBEWKRTHZELIIE I T THELY,
HERREID G & FBIE « WD IR L D% AR/ o7~ L S OHIITRBIT 5%

REBEE L. HARRLRIO® 21T 20N REBREL L, LB,
EERZODFEEMNDL,
[L,]=[L, 1+ [z NI [F G, NI L]

(—#fb SN 7= L EM A OERIGFEK)
75§5J‘Zilfj‘50
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2T, B EOTIIEBITIIEERT S, £ L] L, ]i3nx151_2 b
[2G, H] & [FG, )] IZnxnEFFTFITH S Z LITE S ETHAR,

RATZOEY CREMBIMREIIFELNL T, 2TOREIIEAERGEG L IRES N,
HFEBZOIEFZLY (Fhbb, TLHIRY) ITR2-TEY ., HREGE, THGK,
BEH SR AGREEE LRI 585852 VW TWnW5(1,2,3],

FREMEIRIZ A L Tid, FE~OESNBE» LI REHRELHE L T ERR
AL FEEEBEEIC X L CIdmE i 2 O il j ~DRROBEN & E KB B RN & %
MFRNEREREEZER L TFG,j) ZHELTRATHIZIV,

2 3k

[1]B LWEREA  — b, A — 2%t (1996)

IMATY: (BERFSKFHEE) (1978)

(81t 3, 5¢ M : 1THNC X AL EMAE RN OHE, REAZEEAEE 53 4,472-480 (1969)
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Exact fraction for the probability of run by A. de Moivre

using Fibonacci, Tribonacci sequence

EARH— ANE ZHIEE
Febuary, 2012

B=

BHRER, N R—F 21— T OERFIRKMEE(LDF v — MR, SETELEFTFICHBNT,
TR Ty FEFINISHENZ LR L<MBN TV, T TR, 1717 & (FIRR) i< Ade
Moivre ( RE€7 7)) [MBRD2HE (The doctrine of Chances) | BNV X —AFc 51> %8 (4
FERFEER) DOFRTRDIEANTHB e ERNS, ROFRERIICOT+RFyFH. b
URFwFE, EHET ST FEGEE-RIET s ATy FRICKIBHETRENSLDT
HB, TOHCTNEIGRELIE L ERT S, FHr0BEARTHMSONTWS T.Simpson(¥ >/
V) D 1740 FEOFER L DB BN T %, ThHDT &5, de Moivre Ic X 5 BDFHE,
Simpson IZ & BILEND I CERR T 32 HRERKXERT,

1 Z4R8FyFEEMN)RFYFE
1.1 4R+ vF5

7 ¢4 R} v FE (Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1)
= 1) RIEBIKEZLDDHT, TEITFEFBICIBBERELTELHMONTVWS, TOFIE
{0,1,1,2,3,5,8,13,21,34,55,89,144, - - - } i& Lamé’s sequence & & Xidh M, &Ll Tk

F(n+2) = number of binary sequences of length n that have no consecutive 0’s.
F(n+2) = number of subsets of 1,2,...,n that contain no consecutive integers.
ER EF3, DED. T4 RFvFHIE. 0L 1 HEERBZTNTOXXFN DTN T, BrHl “117
EEERVEDOERE—BITEZTLPHNONTVS, Iz ZAE. 7o RF vy FEIIZANL TR
& T ¥ % The OEIS(On-Line Encyclopedia of Integer Sequences) Foundation WEB page I 7tih
Th, X<HmsnhTn3, 1963 EH B 7 1 RF v Fi2F4TD The Fibonacci Quarterly 11332
COREMREENT VS,
EadomEE LT,
The probability of not getting two heads in a row in n tosses of a coin is Fn +2)/2"
(Honsberger 1985, pp. 120-122). Fibonacci numbers are also related to the number
of ways in which n coin tosses can be made such that there are not three consecutive
heads or tails.
EBRENTV5,
ik [Hons]: Honsberger, R. ”A Second Look at the Fibonacci and Lucas Numbers.” Ch. 8 in
Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.
Xi#ik [ChWe]: Chandra, Pravin and Weisstein, Eric W. ”Fibonacci Number.” From MathWorld-
A Wolfram Web Resource. http://mathworld.wolfram.com/FibonacciNumber.html
S/
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Tetranacci numbers: a(n) = a(n-1) + a(n2) + a(n-3) + a(n-4) with
a(0)=a(1)=a(2)=0, a(3)=1. ITDWVT

a(n + 4) = number of 0 — 1 sequences of length n that avoid 1111.

- David Callan (callan(AT)stat.wisc.edu), Jul 19 2004. The On-Line Encyclopedia of

Integer Sequences!
STk [MiSe] : 17 ¢ R FHID O(1) BRIERIZ OV T =i i, il —EB. [An O(1) Time
Algorithm for Generating Fibonacci Strings] Kenji MIKAWA and Ichiro SEMBA, & FIE#iE
{S22EE Vol. J85-D-1, No. 2, pp. 116-121, Feb. 2002. Tld. TOYU X FEhER L { R
FTBHT7IVTY ALDBHRENT VD, TTeNAN—Fa—TOEHH]. NIV b+ R ADOHRBHIFE
B KIHRMZECICBET S5 F ¥ — FMERELICE T« Ry FRIOISHAMHIONTVS, ARE
FEICEZ AR 5N (2011 FERBREE AN, 2010 FTEKFH. 2008 FHAEENLARE).

—7. BGROMAE TIHEEEROEN TRV EOHFENZEIN, TOI>B, DEDRLEE
M. T4 RFTYFEIITORR. 0L 1 DBIIT 11" ZRNZVEEROBA EIFN T RF v F
Brizdl, OIEERLC TN, .

XHR [Ca06] : D.Callan: Permutations avoiding a Nonconsecutive Instance of a 2- or 3-Letters
Pattern, 2006. www.stat.wisc.edu/~callan/notes/nonconsec. ../nonconsec_pattern.ps
3R [Ca09] : D. Callan, Pattern avoidance in ”flattened” partitions, Discrete Math., 309 (2009),
4187-4191.

CCTRLEEOHERICEEL T, 17 HEKOHEE FEY 7V, X [deM]: Abraham de
Moivre(1667-1754) IC & % “IThe principle of Chance(fli#R ®*##)| D LXXIV(74) [ G#
OERFF)" (1 7 3 8FEFE 2. (7721 1756 4 Tid LXXXVIII(88) i) DM~V RF v F
BINCEB0BERHATEZAOND L EBNS, TOXHKIE doctrineof chanceOOmoiv.pdf (size
18M) TRERTHIAFTE S, IHICKORROBRBEGEGIR. 7 Ty FEIINOILK, &
5B, EEIOBLEIER TEREY V7Y . HK [Sim]: Thomas Simpson(1710-1761) i< &
% TEROMHE LiEH]] (The Nature and Laws of Chance) (1792 4£) TOHIGiHI R st DfGEmIC fk
N3, HEFCEZFEX TR, TEDzHIC, F-ET7TINVDOEI REREADHET, TDLS K
BEHZRHLE S LRTHDE. 575 LnEEbhahbahiaunh, ThTERREER] &
BTV 5,

Z!Snm@ﬁﬂ’]bi BETEEOER Th b iR L TV HE [BARIED 2006 4. 2007 4F etc]

NBUC R - BT TIVIC K B R E —FOLTICE B IHERG I, B o i B R
%hfu\é TERERLRV,

Abraham de Moivre(1718, 1738, 1756); The principle of Chance, 1738 55 8 8. 1756 55 7 4
ff (The probability of a run of given length),

Isac Todhunter(1865); A History of the Mathematical Theory of Probability from the ime of
Pacsal to that of Laplace, Macmillan, London. Reprinted by Chelsea, New York, 1949. [fif=R
AR CREEFESERD BIRBUERM. (1975) BBOERET T,

Thomas Simpson(1740); The Nature and Laws of Chance. The Whole after a new, general,
and conspicuous Manner, and illustrated with a great Variety of Examples. Cave, London.
Reprinted 1792.

Pierre-Simon de Laplace,(1812); Théorie Analytique des Probabilitiés. Paris. 2nd. ed. 1814;
3rd.ed.1820. Reprinted in Oeuvres, Vol.7,1886.

THECESE: THERGROAEVILE | BB, 1992,
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Anders Hald(1989): A History of Probability & Statistics and their Applications before 1750,
John Wiley & Sons, # 22 E de Moivre and the Doctorine of Chances,1718,1738, and 1756, 6
i The Theory of Runs.

Julian Havil; IMPOSSIBLE? Surprising Solutions to Counterintuitive Conundrums, Prince-
ton Univ Press, 2008.

S.Iwamoto; Inverse theorem in dynamic programming LILIII, J.Math.Anal.Appl. 58(1977),
113-134,247,439-448.

S.Iwamoto and A.Kira; On Golden inequalities, RIMS 1504 (2006), 168-176.

S.Iwamoto and Y.Kimura; Alternate Da Vinci Code, Journal of Political Economy, Kyushu
University, 76(4) 2010, 1-19.

S.Iwamoto and M.Yasuda; Golden Optimal value in discrete-time dynamic optimization pro-
cesses, RIMS 1559 (2007), 56-66.

S.Iwamoto and M.Yasuda; Golden Optimal path in Discrete-time Dynamic Optimization
Processes, Advanced Studies in Pure Math., Volume 53, 2009, Pages 99-108.

Theorem 1.1 n¥1D {0,1} 5% 5 FTXTDF| 2" D5 b, FHHFH 11 ZE LK VED (a sequence
of avoiding "11”) &, F(n+2)fl®% %, CTTTF(n)=F, 37« K"+ vy FE:

n |1 2 34567 8 9 10
F)=F, |1 1 2 3 5 8 13 21 34 5

LEOMEEENDDZ2DIC. 2DDHEET S,

Example 1 n = 3#i® {0,1} »5%3FXTDF| 23 =8 D3> L. #HHF 11 BEEHVEDIE,
22 =8fD>B, F(3+2)=F(5)=5HE5%,

Z1 T2 x3 | included/none Ty T2 T3 Ty | 3 TiTit1

0 0 0 | none 0000 (0 1 000(0
001 none 0001 0 100140
0 1 0 | none 0010 |0 10101(0
0 1 1 | included 0011 |1 10111}1
100 none 0100 {0 1100]1
101 none 0101 0 1101141
1 1 0 | included 0110 1 111012
111 included 0 1 1 1 2 1111 _3__

Example 2 n =4MiTld F(4+2) = F(6) = 8fdH %, TOHBICHITBHETI, included/none
DRDbYIC, Ei TiTi41 EEE LU, LM

711”7 are included < 7Y, zix;1 # 07

”11” are none” « "y ;x4 =07

MDD DE, TOFE Y, xixip KE>THRIZ TSI ENTES, DEDOEN 0N ES
M X > THZ ETFhE, DEDRERMES NS,
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Theorem 1.2 ([FEfEMEDEH) n @OMLEN)VX—AF], X; ~Binom (1,1),i=1,2,--- ,n
e 1ANEN

n—1
P (Z XiXip1 = 0) = f_(_T;:_Q) (1)

=1

MEDID, TTTF(n)=F,&nth 74 RFvFEET S,
(HER) REEHE LT, BV (XiA X)) =0 26B0TERL,

Lemma 1.1 83 {a,,bp}n=12,. . a1=b1 =1, L, £lcn>11DNT

Gny1 = ap +by
{7 ®
n+l = Qn

bl RPN

Fopo=an+b,, F,=0b, (3)
N RTASN
Lemma 1.2 n

1 1\" ([ Fu Fp B

EE 1.2 OFEH: n IO T 4 RF v FF=EXS, TDIHB,

(1) n K EDIEA 0 DIEE an & L.
(2) n MTEHOMED 1 DEEZ b, £ T 5,

FHDET 4 KT FHIORIE an + by, THB, DECHL n+ LHTHOBFZEZIS L. an &
LTEAIZEDIZO0 L 1 D2 EHADEMCMEDTENS, LML b, THRATZLEDIE0DHL
MIEDTENEV, TDTEND, (2) BEDILD,

Lo T
anp1 ) _ (11 an\ (1 1N\ ax\ [ Fapr Fp, 1\ _ [ Fupz2
b1 ) L1 0 b ) L1 0 by )\ F,  F, 1)\ Funa
nFHHTIX

an+bn: n+1+Fn:Fn+2a bn:Fn
(QED)
Corollary 1.1 7 ¢ K+ v F5| (FREROEKRT) IKBNT

(1) n HTHOED 0 DELIE ar, = F(n +1).
(2) n HTEHOMES 1 DMEEUL b, = F(n).

B DD,

ez n=37TWE. (1) & a3 = F(4) = 3 T. {000,010,100}, (2) & b3 = F(3) = 2
T. {001,101}. n =4 Ti&. (1) & ag = F(5) = 5 T. {0000,0010,0100,1000,1010}, (2) &
by = F(4) = 3 T. {0001,0101,1001}.
1.2 FURTYFES

HIEI TN T 2 KTy FHD 2HOMTESD T LICH LT, 3HOMELIZLDA, FUR
FyFelidnsg, THICAFENLHRLICBEZRETEZ 5,

17
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Definition 1.1 +V RF v FEFIDES:

To=T1=0,To=1, Tny3=Tn +Tny1 +Tny2, (n2>0)

TDERICEBVLDLDFEEFZELTHBZEDEDXSICHETE S,

n 0 1 2 3 4 5 6 7 8 9 10
T. O 0 1 1 2 4 7 13 24 44 81
11 12 13 14 15 16 - 20 21 22 23

149 274 504 924 1705 3136 --- 35890 66012 121415 223317

TARTyFRELERD &, 3BUCHEINT %, 74 KTy FHOEZTTHR (5EE) O THEF (D
Ak T7E] O2@ENMSERE N, B (OF) &F (OHD A,

HA (1) 0~»0&0. KA (2) O-0

DE, FHATOEE "F, = 0+ O Tholz, HBE XL A T7&H%® B L LIEXFH
D XA (StringReplace) & Z DO EEE X £1F (StringCount) 1< X 2 ¥ NEE L &S L.
StringReplace (1) "A" -> "AB", (2) "B" -> "A" AS1 & Z O REXSR . Input, Rule,
Initial, number-of-repeat: NestList[StringReplace[#,{"A"->"AB",6"B"->"A"}]&,"A",5]]
¥z B StringCount [%,"A"] TT 4RIV FF| Fy, Fa,--- ,Fg B 6 A THTL %,
COEEICE3EDRELE : O, A, OZEX, 3DDMHA|

HRA (1) O-O0&A.
HRA (20 A-0&O,
A (3) O-~0

ELTHEMRTOER "T, =0 + A + O £9%, TOHRELHLHE |
StringReplace (1) "A" -> "AB", (2) "B" -> "AC", (3) "C" -> "A"

Tk %,
—RIADFRIIHALE (Mathematica) IC X DFETZH. ZOXXTRARTELFZMNZ

THhB, £9 3HROLEHITINC BT B EHAER

3 =1+az+2° (5)
ZRDB L,

CharacteristicPolynomial [{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]

Solve[l + x + x°2 - x°3 == 0, x]

{
a1l ={x ->1/3 (1 + (19 - 3 Sqrt[33]1)~(1/3) + (19 + 3 Sqrt[331)"(1/3))},
a_2={x->1/3 -1/6 (1 + I Sqrt[3]) (19 - 3 Sqrt[33]1)~(1/3)
-1/6 (1 - I Sqrt[3]) (19 + 3 Sqrt([33])~(1/3)},
a3 ={x-> 1/3 -1/6 (1 - I Sqrt[3]) (19 - 3 Sqrt[33])~(1/3)
- 1/6 (1 + I Sqrt[3]) (19 + 3 Sqrt[331)~(1/3)}}
Thb, TOE
a =1 L+Vw—3ﬁ§+vw+3%§)
az =} (1+w?/19-3V33 + /19 +3V33)
a3 =3 (1+5Y19-3V33 +w /19 +3V33)
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ezl w=_—1—:;—\/§i E9%, LT l+w+w=0%ELD, DERES,

a1 +az+az3 =1, ajaz+azaz+aza =-1, ajazaz =1 (6)
TNSEZHNT, RETHNCK D RT3, (B ! ja.wikipedia.org/wiki/ 7 1« RF v FH)
MatrixPower [mat, n] DFEEZORDPER:
11 1\" atiyy A2 ) Tohyz Tapr+Tn  Taga
1 0 O = a&l) a?2’2) 0?2)3) = Tn+1 Tn + Tn—l Tn
010 al31y G2 93 T Th1+Th2 Taa

n+2 n+2 n+2
ay Qo as

(a1 —az)(a1 —a3) (a1 —az)(az — a3) * (a1 — a3)(az — a3z)’

afy gy =Tos1 + Tn :

_ a1 (az + aa) ag*?(a1 +a3) (a1 +ag)azt?
(a1 —a2)(a1 —a3) (a1 —az)(az —a3) (a1 —a3)(az —a3)’

n — .
(1(1_3) = Tn+1 :
G,;l+20420,3 a1a3+2a3 alagag‘

(a1 —a2)(a1 —as) (a1 —a2)(a2 —a3) ' (a1 — a3)(az — a3)’

+2

Uz = Tntr:

n+1 n+1l n+1
ay aq as

(a1 —az)(a1 —az) (a1 — a2)(az — a) * (a1 —a3)(az — a3)’

0?2.2) =Tn+Th_1:

__aft(az + aa) agtl(ai +a3) (a1 +ag)ajt!
(a1 —az)(a1 —a3) (a1 —az)(az —a3) (a1 —a3)(az — az)’

a?2_3) =T,:
a{”“agag 3 alag“ag alagag‘“
(a1 —a2)(a1 —a3) (a1 —az2)(az —a3) (a1 —a3)(az — a3)’
ate =T, :
@y =1n

n n n
ay ) as

(01— a2)a1—a3) (a1 —a2)(as —as) | (a1 — a3)(az — a3)’

a?&g) =Th1+Th2:

___aj(az +a3) aj(ai +az)  af(a1 +a2)
(a1 —ag)(a1 —a3) (a1 —a2)(az —a3) (a1 —as)(az — (13)’

a?3_3) =Tn-1:

atazas B ai1a3a3 ayaxaf
(a1 —az)(ar —a3z) (a1 —az)(az —a3) (a1 — a3)(az — as3)

Zhooary¥a—2iEENS L

Tn+3 = Tn + Tn+1 + Tn+2, (n > O) (7)
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EV S BEFEMBREEE 1. FIED 5.

Ty = a?&l) + a?3,2)
at(azas —az —a3) a%(araz —ay —a3) = a%(ajas — a1 — az)
(a2 —a1)(az —a1) = (a1 —a2)(az —a2) (a1 —a3)(az —a3)
ElBoNS, 708 FvF. PUKRFvF T I F v FORIIKRICARBOERNTEET S,
LTz h¥ o TR

Fo/Fp g~ > +2‘/5 — 162 (H&L)

14+v5

2

n—6
aﬂméh\nzﬁfﬁﬁg~13x< > , (n>6) THY.

T, 1
im —ntL :a1=a1=§(1+§‘/19—3\/:§+ {/19+3\/?E)

n T

BEODT ENHEN TV,

2 FTESFYFEIIEER - €7 TIVOFER
O%L:;‘ }“3?“7?5@'] {ann = 0,1,2,"'} :
Qo=0Q1=0Q2=0,Q3 =1,

(8)
Qn+4:Qn+3+Qn+2+Qn+l +Qn
LTI
nlo 12345607 8 9 10 - 25
@ |0 0 0 1 1 2 4 8 15 20 5 --- 1055026

TCTT. %TRELES Qs = 1055026 ZEX D LIFTHL,

R ERBRICZ DX S BIFHONFFHREICINE, FHOFAFE I ¥ 2 — 2 X350
DL DR URFERMS (LinearRuccurensive) THHIC T %, StringReplace T® rule i
(1) "A" -> "AB", (2) "B" -> "AC", (3) "C" -> "AD", (4) "D" -> "A" ¥ NIEiTLHE
RICFIRTE %,

EHICDEEWD D,
1111 " Qn Qn—l + Qn—2 + Qn~3 Qn——l + Qn*2 Qn—l
1 000 — Qn—l Qn—Z + Qn-S + Qn—4 Qn—2 + Qn—B Qn—2 (9)
0100 Qn—2 Qn—3 + Qn—4 + Qn——S Qn—B + Qn-4 Qn—S
0010 Qn—3 Qn—4 + QnAS + Qn—ﬁ Qn—4 + Qn—5 Qn—4

X, THUCBEIBEUHERIZ R - £7 7 (A.de Moivre,1667-1754) D —FEOREE (NFHRE) O
“HELES” OFEREZLEBVTAHELTLOMHSN TV 3,
5 LXXIV(74) Bl 5% bhI-aTEMOBN T, RYINB T L7 < HiU T2 0O K 42K
ZENRT SHEREZRDB T L,
MR D22 | A.de Moivre, “The Doctrine of Chances” (1718, 1738, 1756)
(2% ; Impossible? Surprising Solutions to Counterintuitive Conundrums by Julian

Havil, Princeton Univ Press, 2008)
ZDFRRDO—DIE.
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(1) NV R—ABIFIC BT, 10 ERT LI & 2 ic 3EEEOHS T & 4% < R P(10,3)
i
BRELT.

Tfplp2 4,7, B, 24, 4y 6,
s\UTetats e T tea 1o8) " 128 T 0008 (10)

(2] TEREZL - LERICTZARERET LT, 24 BORTT. 4 B EXROHS T LH%E
SHER P(24,4) 137
ZEZLUT (CHEEMEOCHERINTOEN, BELTHS LEVTIRRV) TO
BOFEE LTHEWEER, P(24,4) = 0497 BMESN TV 3,

1< 1 2 4 7 13 24 44) 65

BROaAVE1—2FHVEVERICCOE S BEREDS LWETEICEREST 300 Lunbhnd,

Example 3 CORFE7 7TIVOMER IV Ea—2hbhiE, MDD TERFICHERIEELRS, Th
PRV —ARATIEBIBZ TRy F 0 bPIURFvF FrSFyFEIIEDED X S ICBRA
Fonhs,

708 P(n, k) DEH :

n—k+1
P(n,k) = P( Z XiXip1-  Xiyp—1 > 0)
=1

LB, LEN>TRET7TIVDOERIZ, ThEHAVTETE

65 63 T@0+3) . Tz 504 _
P(10,3) = oo =1- mo =1- =55 =1- 505 = 1 - 75 ~ 0.508
Tholzo 4 BROTEHEOBIUEN D, 25 =21 +4,n =21 £ LT ‘
2 2
P(25,4)=1— QRL+4) | @ _ ;105506 ., 03076 = 0.496024

221 221 T 2007152
LAV a—ATROLN, BRI RET TIVORL—KT 3,

HUEDOERMNS, DEOEHELTEEHENS,
Theorem 2.1 n AOMN )V X —AF], X; ~Binom (1,3),i=1,2,--- ,n iCHBVT,

(1)

n—2
) _T(n+3)
P (; XiXit1 Xip2 = 0) == (11)
MDD, TTTT(n) =T, & n-thR MY RF v FHE T3,
(2) \
S XX Xon X 0] = @24
P (; X X1 XiroXiys = 0) == (12)

MDD, TITQ(n) = Qyn & nth 7 57 v FHJ (quadruplet sequence) &9 %,

ZLDWRFMILT. TOXI BNV —AFKITTORINA G L TH S T & DTS
NTW3, 7z 2. Mark Schilling; The longest run of heads, College Mathematics Jour-
nal, 1990, pp.196-207. http://www.stat.wisc.edu/~callan/notes/nonconsec_pattern/
nonconsec_pattern.pdf

FLHBNTVBRAGHFERD S B, COTHIZHWS L TN ZTNOHINCEIL T, 74 KF
FF,=Fn1+F, o, NIRRTV F T, =Ty 1 +Th 2o+Th 37 b5V F Qn=Qn1+Qn 2+
Qn—3 + Qn_s EEDZIE LGN, (H Y o—=. YAV VOFER) F,_1F,pq — F2 = (-1)2
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1 1\" ([ Fo F,
10) "\ E F,

FADITHIRZRONE, (-1)" = Fy1Fa1 — F2 DB, DEORXBE LN S,

(

BEBWT. THIROFHET 1= T3 — 2T, 1 Tn Tyt + T2 T2y + T2 To2 — Tni2TnTn—2

R G
Fn+1 - Fo

1 " Tn+2 Tn+1 + Tn Tn+1
0 = Tn+1 Th+Th Tn
0

Tn Tn—l + Tn—2 Tn—l

(13)

ElRIC

[
= o -

1= T3 4+ 2T 1 Tn Ty — T2, Tns

— n
Tpi2 = T T (14)
Z18%,
& HICIRIBRIC
111 1\" Qniz Qni2+Qui1+Qn  Quiz+Qni1 Rniz
1000 _| @ne2. Qni1+Qn+Qn Qni1+Q@n  Qni1
0100 Qn+1 Qn + Qn—l + Qn72 Qn + anl Qn
0010 Qn Qn—l + Qn—2 + an3 Qn~1 + Qn72 anl

Z2HBH0T, THIROFET

(=) = Qn43(Q3_1 —2QnQn-1Qn—2+ Qn1Q% 5+ Q%2Qn—3 — Qn11Qn-1Qn-3)
—Qn +3Qn11Q%Qn—1 — Q7 11Qn 1 — 2Qn+2QnQ5 1
—2Q2 ,1QnQn—2 +2Qn12Q2Qn—2 + 2Qn+2Qn+1Qn-1Qn-2
~Q2,15Q% 5+ Q2 1Qn-3—2Qn12Qn11QnQn—3+ Q21 2Qn 1Qn-3

LizhioT
Quis = DAV (15)
where
ENUM = (-1)"+Qp —3Qn1Q3Qn-1+ Q% 1Qa_1 +2Qn+2QxQ% 1 +2Q7 1 1QnQn—2
—2Qn+2Q2Qn—2 — 2Qn+2Qn+1Qn—1Qn—2 + Q2,,Q% 5 — Q3 ,,Qn—3
+2Qn+2Qn+1QnQn—3 — Q%,5Qn-1Qn—3
DNUM = Q) -2QnQn-1Qn-2+ Qn1Q% 2 +Q2Qn 3 — Qni1Qn-1Qn_3

3 BEBIEEZS

T 4 Ry FEI {Fp; Fyo = Foga + Fo} IKBWT, B {F, — F, 1} BETT Xy F
Bk ixB, 9xbDb Fois—Fhio = (Fn+2 - Fn+1) + (Fn+1 - Fn), &oT
Foys =2F, 40— F, (16)
MDD,
RO FQ ik hiz
Howard, F. T.; Cooper, Curtis: Some identities for r-Fibonacci numbers. Fibonacci Quart. 49
(2011), no. 3, 231-242.
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KBV TIR, TOBREZBEELIIEXTICERRNTVS (Thm 2.2.,2.3,24), BEDEEIX. FQ
® main editor TH 5,

TT TR, COBBKZELB VDR L, ilE 2DREFTEH - T, IBERXEETT TN EDE
DEFRNMES NS LBl THL, ENEREF AH, = Hyy — Hy, ZAVS &

AFn = AFn_l + AFn_Q (n 2 2)
AT, =AT, 1+ AT, o+ AT, 35 (n>3) (17)
AQn = AQn—l + AQn—? + AQn—?» + AQn—4 (n > 4)
ZE CLICREET NS,
RWEZEBEVTHEUREOND, LIl TROEEIZAS M.

Theorem 3.1 7 ¢ RF} v FEHITIE

Fri3 1 (F, F, F; F,
WREND, FRRIC MY RFvFEITE Typg = 2T 13 — T £D.

T+4 1 Tl T2 T3 Tr

2:+1:1—-2§(@+2—1+§5+--~+2r_2) (19)
¥leT by FEIITIE

Qris 1 (Q1, Q2 , Q3 Q

ot =1~ 57 —23+2—1+2—2+~~-+2T_’”3 (20)
x185,

T4 RFy FEIITE, BEEIIHLBONZMER | Fuys = 2F, 2 — F, ZAWVWZA, Y
RF v FEINOBEEOBGR ; Trig = 2Tnys — Tn « TBIET TF v FHFIOBEOBKR ;
Qnis =2Qnis — Qn MORBKICLTHELBNS, 74 KRy FEHIOBEFZN (18) kX {H5hTH
25DDVEDTHB,

BAER (r = 9) THEHL BB &

Fio 144 1 /R F, F Fy 1 880
— =]l =4+ =24 24 ... 4+ L) =1-=. =
29+1 1024 1 plptoatut - F 28) 4 256
Tis 504 1 (T, Ty Ty 1 520
= =] (=242 42 ) =1-2 == =04921 21
29+1 1024 A T 8 128 921875 (21)
Qua  _ 778 _ 1 (Q3 Q4 Qo _ 1 251
29+1 T 1024 1 24 \ 20 tor ot o) = 16 128
C OFUER (21) KDMEIX. RET THRSDI (10) ROFHELER
1 T2 Tg. Tg
P\ Tt ot
1/1 1 2 4 7 13 24 44

= 3@ I+§+z+§+ﬁ+3—z+a+@)

~ 0.5078125
IR 50, Lichd > TTh EFBREBIGRRAMN K D SROBEEICOVTRIZIY 5 T EAFRT N,
Thid2, 3. ARDB\PAT. B3 2 OREEICBIT 2HERZRDT (Fiid). KD LT Z@AT
EZCVRRENICEET 5,

4 BREADET

T. 3> 7V > ['The Nature and Laws of Chance ] (fliSRDMEE & ¥EHI, 1740 ) i (35 XXIV(24)
f) ORE : TEDS., RETTIVDOX I BRERKIZADEKRT. TOXIHEEHEZRIHL LS LRT
30, T595 LeBbhshdnixon, ZhTeREERZ] (FXED)
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NV —=AFITTOEDFEZIT> TV 5, REENICEROEZHERE p, RNOFEROHERE
= 1 - p 83—50

MHEREDFERZAS M TH B LLTEBIC—BAREEXTT,

oot (et (P Y (Dot (Pt

TV VOMESn=n—71, i=n—-2r, "=n—3r, --
p=2/3,q=1/3,r =3,n =10 % 5E,
a=(2/3)° =8/27,z = qp® = 8/81
8 8 8 [4\/8)\° 592
210_2_7(1_4x8_1>+7x8_1_<2) (s—1> =720
LTV,

COREREBRIET B I-DICEERTIEZZNE. Lo LBERETHD., BROELWT L EHERT
¥, XD —BAROEREIRDOENDG, ThHTETETH S, HE. DEOEE TS EFKN
ERHOVTCEHET S L.

n 1 2 3 4 5 6 7 8 9 10

Z 0 0 8 32 40 16 1448 4736 1688 592
27 81 81 27 2187 6521 2187 729

9 9 57 147 369 891 2217 5475 13473 33291

Wo 5 1 8 16 32 64 128 256 512 1024

REINC S YT Y ORER " Zho = % ~ 0.812071" &—B LT, AFRYHTRL | RHTD
BETRAHCEEZLELNHZD, 1 0BE TR IMITODOH0EICKED ., TTTHREZRLTVL
A0, RIIOFEDZEANDEND,

WEETORETTIVOHER, VYV 0ERIE. BRROFKETEERTSLDEDXIICE
XRTTELHTED, DEDMHRICHT S THHEIFHRI (recurresive relation) TH %,

Theorem 4.1 n FDOHIIENVRX—AF, X; ~ Binom(1,p),i =1,2,--- ,n %zEL (0<p<1)

IR LT,
1

n—k—
P(n,k)zP( >

LB &, DEDBBRAKD LD,

XiXiv1 - Xigk—1 > 0)

P(n,k)=P(n—1,k)+ {1 - P(n—k—1,k)}gp*, k<n (22)

S SR
P(0,k) = P(1,k)=---=P(k—1,k) =0, P(k,k)=qp*?

XBic k REELT. W, = #(1 _Z,), CCT FLubHRs

n—k+1
Zn =P ( Z XiXi+l v Xivk—1 > 0)
=1

LU, UOEBBHEND W, = ”%p(z;;k“ XiXipr - Xippo1 =0) THY.

Wn = 1vVn—l - an—k—l (23)
p p

AW, =

IR

(AW 1+ AWy + -+ + AW, ) (24)
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W, O EalizsERIE, “11---1" ZHEEV, FVH X5 LT3 (avoiding sequence) fER
THD. p=q=12 VI HFFREIFETTINVOHARTHD ., FEHITRT1 245, TOREES
FEADORI. 7o R8Py F. NIRFvF. TR FyFEIICMiE ST, ThERAVS L, 1
RIIHPTERHAEINS,
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Abstract

In this paper we discuss two discrete-time control (primal) processes from the
viewpoints of duality and Golden optimality. At first we derive an associated dual
process. We show that it has a Golden optimal path. Then we find the Golden
optimal solution for both primal and dual processes through three approaches —
(i) evaluation-optimization, (ii) dynamic programming, and (iii) variational method

1 Introduction

In a class of optimization problems there arises the question of whether an optimal solu-
tion is Golden or not. This question is partly resolved for a class of static optimization
problems [10-12,14]. Recently it has been shown that a Golden path/trajectory is opti-
mal in discrete/continuous-time control processes [13,18]. It is also obtained by solving a
corresponding Bellman equation for dynamic programming [1,2,9,17,22].

In this paper we discuss a typical dynamic optimization from the two veiwpoints of
duality and Golden optimality. The question is whether duality transmits Golden opti-
mality or not. We present two discrete-time control (primal) processes. Then we derive
associated dual processes. We show that the dual processes have also a Golden optimal
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path. Further we find the Golden optimal solution of both primal and dual processes
through three approaches — (i) evaluation-optimization, (ii) dynamic programming, and
(ili) variational method —. Here (i) evaluates the total cost and optimizes it among
the stationary policy class. The evaluation compresses an infinite-sequence problem into
one-variable one for primal process and two-variable for dual. This is possible under the
stationary reward-accumulation and state-dynamics. (ii) and (iii) solve Bellman equation
and Euler equation, respectively.

Let us consider a typical type of criterion — quadratic — in a deterministic optimiza-
tion. We minimize quadratic criteria

I(z) = Z [22 + (bzy — Tp41)?]

J(z) = Z [(bn = Tni1)? + 22,

where —oco < b < 00. There exists a difference between I and J:
J(z) = I(z) — 2.

This difference helps us to derive optimal solution of the primal problem. However how
does the difference affects the form of dual?

2 Golden Paths

A real number

=

1+
¢ = 2

is called Golden number [3,6,23]. It is the larger of the two solutions to quadratic equation

~ 1.618

2 —x—-1=0. (1)

Sometimes (1) is called Fibonacci. This has two real solutions: ¢ and its conjugate
¢ :=1— ¢. We note that

b+é=1, ¢9=-1

Further we have

¢t =91, ¢?P=2-9¢, ¢l4+¢?=1
$#=1+0, ¢ =2-9, &+ =3
A point ¢~2z splits an interval [0, z] into two intervals [0, ¢~22] and [¢~%z,x]. A point

¢~ splits the interval into [0,¢~'z] and [¢~'x,z]. In either case, the length constitutes
the Golden ratio ¢=2: ¢~! = 1: ¢. Thus both divisions are the Golden section [3,23].
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Definition 2.1 ( [18]) A sequence z : {0,1,...} — R! is called Golden if and only if

either
Ti4+1 _ ¢_1 or Ti+1 ¢_2

Tt Ty

Lemma 2.1 ( [18]) A Golden sequence x is either
Ty = TP ! or T = xodp 2.
We remark that

o =(¢-1), ¢*=02-9)=(1+¢)"

where
p—1=¢ ' = 0618 2-¢p=1+¢)""=0¢2~ 0382

Let us introduce a controlled linear dynamics with real parameter b as follows.
Tt4+1 =b1’t+ut t:0,1, (2)

where u : {0,1,...} — R!is called control. If u; = pz; (resp. pz; + q), the control u is
called proportional (resp. linear), where p, q are real constants. A sequence x satisfying
(2) is called path. We say that a quadratic function w(z) = ax? is Golden if a = ¢. It is
called inverse-Golden if a = ¢~ 1. '

Definition 2.2 ( [18]) A proportional control u on dynamics (2) is called Golden if and
only if it generates a Golden path x.

Lemma 2.2 ( [18]) A proportional control u; = px; on (2) is Golden if and only if
p=—-b+¢ ! or p=-b+¢2 (3)

Definition 2.3 A sequence z : {0,1,...} — R! is called alternately Golden if and only if

either
Tt+1 — _¢_1 or Tt4+1 _ _¢_2

Tt Tt

Lemma 2.3 An alternately Golden sequence x is either

Ty = zo(—=1)'0™"  or oz = xo(—1)'¢p%.
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TA

Fig. 2 Golden paths (c) z = cp™ c¢=1,2,3

3 Discrete Euler equation

Let b be any given real constant. Let a function k : R! — R! and a sequence of functions

fn:R?— R!' (n>0) be C'-class.
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3.1 Fixed initial cost

First we evaluate any sequence = = {x,}n>0 by

Jl(x) = k(xO) + an($n, Tnt1 — bxn)
=0

Let D! be the set of = such that J;(z) takes a finite value. We consider a discrete-type
extremal problem

EP, extremize Jy(x) subject to (i) z € D'.

This has not an initial condition zo = ¢ but an initial cost function k(zo).
Let g = g(xn,yn) be any two-variable C'-function. Then we define

_ Og _ Og
9= (T, Yn), G2 = 8—%($nayn) (4)

where y, = x,41 — bx,.

Lemma 3.1 Let ¢ = {x,}n>0 be an extremal. Then x satisfies a system of variational
equations — discrete type Euler equation and two transversality conditions —

(EE) fo1 = (bfna— fae12) =0 n2>1
(TC), k'(zo) + for — bfoz = 0 (5)

Proof.  Formally three equations are derived as follows (see [4,5,7,8,20]). Let n =
{nn}n>0 be any sequence. Then y := x + en is feasible for any ¢ € R!. Let us define

J(€) == k(yo) + D fnlyn: Ynt1 — byn).

n=0

Then J(-) must take a minimum value at ¢ = 0 for any such 7. This implies J’(0) = 0.
J(h) — J(0)

- . We note that

Let us now calculate J'(0) = ’llirr(l)

where

fn(xn + hnn, Tpgr — by + h("7n+1 - bnn) ) - fn(xn» Tpt1 — bxn)

9n = gn(h) = h
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From the mean value theorem, there exists 6y, 8 (0 < 6y, 6 < 1) satisfying

k(zo + hno) — k(xo)
h

= K'(zo + Bohno)no

gn = fnl'r]n + fn2(77n+1 - bnn)

where

fa1 = fai(zn + 0hny, T — by + Oh(Npy1 — b))
fn2 = an(LEn + ehnna Tnt1 — bxn + ah(nn—}-l - bnn) )
Then it holds that

N N
Zgn = Z [fnlnn + fn2(77n+1 - bnn) ]
n=0

n=0

N
= (for = bfo2)0 + > [ fa1 = (bfnz = fam12) ] + franns1.

n=1

Then we have

o N
> gn = (for — bfoz)mo + zx}l_r»nooz_; [f1r = (fnz = fro12) [0 + limfvomnsa.

n=0

Thus
J'(0) = ,llii%[k,(xo + Bohno) + (for — bfoz2) Ino

+ lim
h

N
m 1\}1_@00; [ fr1 — (bfn2 — fro12)]mn + ’lllir(l) IJI_I'HOO fNanN+1

H

kigz)[k’(xo + 0ohmo) + for — bfoz2 ]n0

N
+ A}l_rfloonz::l ,lllf(l] [fnl - (bfn2 - fn—12)]77n + 1\}1_1)1(1)o ’lll_% fN2"7N+1.
Consequently it holds that
J'(0) = (K'(zo) + for — bfoz )0

+ Z(fnl —bfn2 + frn-12)0n + nll_{lgo frn2Mnt1 (6)

n=1

where
f'nl = fnl(xna Tpt1 — bmn)
fn2 = fn2(xna Tnt+1 — bxn)

Since J'(0) must vanish for any D!-sequence 7, we have the desired system of variational
equations. O
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3.2 Fixed initial state

Second we evaluate any sequence x = {z,}n>0 by

J2(x) = an($n, Tn+1 — bxn)
n=0

Let D? be the set of z such that J,(z) takes a finite value. We consider a discrete-type
extremal problem

EP;(c) extremize Jo(z) subject to (i) zp =c¢, (ii) 2z € D%
This has not an initial cost function k(zy) but an initial condition zy = c.

Lemma 3.2 Let x be an extremal. Then x satisfies a system of variational equations —
discrete type Euler equation and a transversality condition -

(EE) fo1— (bfnz — fac12) =0 n>1

Proof.  Let n = {n,}n>0 be any sequence satisfying 7y = 0. Then the same way as in
proof of Lemma 3.1 leads

J,(O) = Z(fnl - bfn? + fn—l?)nn + nl}—{go fn27]n+1- (7)
n=1
This implies the desired system of variational equations. a

4 Primal Process I(P); quadratic in current state

This section minimizes a quadratic cost function

(o ¢]

Z (23 + (€n41 — bzp)?]
n=0
where b € R! is a given constant. This problem is also solved as a control process with
criterion
o0
> (ah+up)
n=0

under an additive dynamics

Tpt1 = bz, + Uy.
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4.1 Evaluation-optimization I(P)

Let R*™ be the set of all sequences of real values :
R® ={z = (20,71, ,Tn,...)|Tn € R n=0,1,...}.
First we evaluate any sequence z through the quadratic criterion
I(z) = Z [22 + (Zp41 — bzn)?] on R™.
n=0

Second we minimizes the evaluated value for any given initial value c :
MP;(c) minimize I(z) subject to (i) x € R, (ii) zo = c.
Then the case b = 0 gives
(e ¢] o0
I(z) = Z [xi+xi+1] = x%—l—ZZmi.
n=0 n=1

This attains a minimum c? at all but first nothing y = (¢, 0, 0, ..., 0, ...).
In the following we assume b # 0. Let us now evaluate a few special paths :

1. The y=(c, 0,0, ..., 0, ...) yields I(y) = (1 + b%)c%.

2. Always all z=(c, ¢, ..., ¢, ...) yields

oo c#0
I(z)—{o c=0

3. A proportional w =c¢(1, p, ..., p*, ...) yields

Iw) = {E+(p— b} (142 4o P )
1+(P_b)2 2

= ———It?;;——c (0‘<|p|<<U.

Let us now minimize only the ratio part of the above evaluated value

f(p) = 220" +1(f ;Qb)

under —1 < p < 1.
MP, minimize f(p) subjectto —1<p<1.

b2+ Vbt +4 ,

t
2

Lemma 4.1 MP; has the minimum value f(a) =

b +2— b1+ 4
2b

ﬁ = =
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Proof. We get
iy _ o P =01 —p?)+p{1+ (p—1)*}
f(p) = 2 (1 _p2)2
bp? — (b +2)p+b
(1-p?)?
(2= (P4 2)}(1 = ) + 4p(bp — (P +2)p b}
=Py
9 2bp® — 3(b + 2)p? + 6bp — (b + 2)
(1—p?)3 '

Letting the numerator of f’(p) vanish, we have a quadratic equation

= -2

bp? — (b +2)p+b=0. (8)
This equation has two solutions
b2 +2— Vbt +4 b +2+ Vbt +4
a = , B = .
2b 2b
Then
2b 3 2b 1
o = R = = —.
b2+ 2+ Vbt +4 b2 +2—bt+4 a

Eq.(8) is equivalent to
2
P41 = <b+g>p. (9)
Thus « is the smaller in absolute value of two cross points for a quadratic curve y = p?+1

2
and a line y = (b + E) p on p-y plane.

Let
B=b+% for b#0
Then
o = B-VB*-4 _ 2
2 B+VB2 -4
where

—00<B<-2v2, 2V2 <B< .
Hence o takes

(V2 -1)<a<0, 0O0<a<v2-1
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The sign of left equality holds iff b = —v/2. The sign of right equality holds iff b = v/2.

Hence MP; has a minimum at

>»
I
Q

Then, from
(a—=b)(1 =) +a{l+ (a—0b)?} =0,

we have

1+ (a—b)? 2_1
1—a? T«
¥ +2+ Vb +4

2

1.

Thus the minimum value turns out to be

1+ (a=b)? b+ Vb*+4

1— a2 - 2

O

Moreover let us investigate the behavior of function y = f(p) on the entire domain

b2 + Vb1 +4
—00 < p < 00, p# 0. This takes a local minimum f(a) = Li——i-——— at p=ca and a
2 b+ 4
local maximum f(3) = L2—+ at p = 3. We note that
b? bt + 4 b +2 b — Vbt + 4
R L 2

Let the numerator of f”(p) denote by p(p) :
p(p) = 2bp® — 3(b* + 2)p* + 6bp — (b? + 2)
= {2bp — (* + 2)}(1 = p*) + 4p{bp® — (b’ +2)p+ b}.
Then
P(p) = 6{p* = (¥’ +2)p +b}.

This has the two zero-points «, £, too. Hence p(p) has a local maximum at p = o and a
local minimum at p = . Further the local maximum value is

pla) = {2ba — (* +2)}(1 —a®) = —(1 = ®)Vb* + 4 < 0.

Hence p(p) has a zero-point at some point v (> 3) for b > 0 and a zero-point at some
point y (< ) for b < 0. Therefore f(p) has only one stationary point at + (for case b = 1,
see Fig.3 ).
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Therefore we have an optimal path # = ¢(1, o, o?, ..., ", ...} in this class. This

b + \/mc2
——

Z yields a minimum value

In case b = 1, we have o = ¢~2. Thus an optimal £ = c(1, ¢72, ¢7%, ..., 672", ...)
yields

I(#) = ¢c2.

The optimal path & is golden. The quadratic minimum value function I(Z) is golden.
Thus in the case a golden optimal path yields a golden value function.

On the other hand, case b = —1 leads @ = —¢2. Then an optimal & = ¢(1, -
¢72 974 —¢7C 678 ..., (=1)"¢~2", ...) yields

1(2) = ¢c.

The optimal path Z is alternately golden. The quadratic minimum value function I(%)
is golden. Thus in this case an alternately golden optimal path yields a golden value
function.

4.2 Dynamic programming I(P)

Let us now consider a control process with an additive transition T(xz,u) = bx + u. Here
b is a constant, which represents a characteristics of the process :

o0
minimize Z (xfl + ufl)
n=0
subject to (i) Tpy1 = bz, + u,
PCi(c) ) ) * " n>0
(i) —oo < u, <0
(i) zo=c
Then the value function v satisfies Bellman equation :
v(z) = min [2?+4® +v(br +u)], v(0)=0. (10)

—oo<u<oo

The initial condition is justified as follows. Let o = ¢ = 0. Then by selecting
u= (Uo, Uy, ..., Up, )Z(O, 0, ey 0, )

we get
z = (zg, T1, -y Tp, ...)=(0,0, ..., 0, ...).

The pair (z,u) yields a minimum value 0. Eq.(10) has a quadratic form v(z) = vz?, where
v € R.
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Theorem 4.1 The control process PCy(c) with characteristic value b (€ R') has a propor-
tional optimal policy f*, f(x) = pz, and a quadratic minimum value function v(x) = vx?,
where

_ P+ Vbi44 b 20— Vbt + 4
- 2 PT T T 2 ‘
The proportional optimal policy f* splits at any time an interval [0, z] into [0, (b +
b b
p)x] = [O, i an i , | . In particular, when b = 1, the quadratic coefficient
1+wv 1+v

v is reduced to the Golden number

14+5
2

Further the division of [0, z] into [0, ¢~2z] and [¢~2z, z] is Golden. That is, the ratio of
length of two intervals constitutes the Golden ratio:

1:¢ = ¢ 2: ¢ L

Corollary 4.1 The process PCi(c) with b = 1 has a Golden optimal policy >, f(x) =
—¢~ 'z, and the Golden value function v(z) = ¢

Corollary 4.2 The process PCy(c) with b= —1 has an alternately Golden optimal policy
=, f(z) = ¢~ 'z, and the Golden value function v(z) = ¢z?.

4.3 Euler equation I(P)

We solve
minimize Z [22 + (Tp41 — bxs)?]
n=0
PC] subject to (i) zo=rc
(i) z€ R®

through variational approach. Let us apply Lemma 3.2. We take

fn(xna Tnt+1 — bxn) = -/L',?q’ + (xn+1 - bl‘n)Q

Then

fnl = 2~Tn7 fn? = 2(.76‘”4_1 - bxn)

An extremal z satisfies

(EE) Ty — [B(@pt1 — bTy) — (T —bzp_1)] =0 n>1
(TC), lim (zp41 — bz,) = 0.

37



Thus (EE) is reduced to
bni1 — (B2 + 2)x, + by = 0.
Then the associated characteristic equation
bt> — (B +2)t+b =10

has two solutions

b2 +2— Vbt +4 b2 +2+Vbi+4

= % = %
As is shown in the proof of Lemma 4.1, we have
2b 2b 1
-(V2-1)<a = <V2-1, = L

b2 +2+ Vb +4 b2+2— b1+ 4 T o

From the initial condition oy = ¢, we choose an solution of (EE)
T, = ca”. (11)
Then

lim (zp41 — bx,) = lim c(a —b)a™ = 0

Thus (TC) is satisfied. Thus we have obtained an optimal path (11).

Now we consider two special cases.

Case b = 1 yields o = ¢~2. Then the optimal path z, z, = c¢=2", is golden.

Case b = —1 yields @ = —¢~2. Then the optimal path z,z, = c(—1)"¢"2", is
alternately golden.

5 Dual Process I(D)

This section maximizes a quadratic cost function

o0

A +2bcho — > [ A2+ (BAnst — M) ],

n=0

which is derived from the primal (minimization) problem at the end of section. This
maximization problem is also solved as a control process with criterion

c® + 2bchg — Z (A2 +02)

n=0

under an additive dynamics

b/\n+1 = /\n + Vp.
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5.1 Dynamic programming I(D)

Let us solve

Maximize x5 + 2bxoAg — Z (N2 +12)
n=0
bject to (i) bApp1 = A+ 1y
DC,(e) subject to (i) 1 + v w0
(il) —oo<y, <

(i) zo=c

through dynamic programming. The dual process DC;(c) generates a family of subpro-
cesses :

oo
minimize Z ()\i + 1/2)

n=0

bject to (i) bAni1 = Ap+vn
DC! () subject to (i) 11 v >0
(i) —o0o <y, < :
(i) Ao = A

Let v(c) be the maximum value of DC;(c) and w(A) be the minimum value of DC}()\).
Then the two value functions v, w satisfy the Bellman equation (BE):

w(A) = mg} [A2+u2+w</\:l/)] , w(0)=0
ve
A\, c€ R (12)

v(c) = 1;/% [¢® + 2bcA —w(N)], ©v(0)=0

This equation has a quadratic form w(\) = wA?, v(c) = vc?, where w,v € R!.

Theorem 5.1 The control process DC(A) has a proportional optimal policy g*°, g(\) =
g\, and a quadratic minimum value function w(\) = wA?, where

2-0"+ Vb 44 PP —Vbi 44

2 17 2 '
The process DCy(c) has a proportional mazimizer \*, \*(c) = pc, and a quadratic maxi-
mum value function v(c) = vc?, where

b+ Vbt +4 b —2+ Vb +4
- ) P = .
2 2b
Now let us consider case b = 1. Then Eq.(12) is reduced to a functional equation on
an only v :

o N2 2
“(/\)_32}%} [N+ 12+ v(A+v)]

v(c) = Max [¢® + 2eX — v(N)]

Ac€ R, v(0)=0. (13)
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Corollary 5.1 The equation (13) has a proportional minimizer D(\) = —¢~ !\, a pro-
portional mazimizer \*(c) = ¢~'c, and a quadratic value function v(c) = ¢c.

On the other hand, case b = —1 leads the following equation.
v(A) = m}%n [N+ 02 +v(=X —v)]
veR!

v(e) = Max [¢? — 2eA — v()\)]

AER?

A\ c€ R, v(0)=0. (14)

Corollary 5.2 The equation (14) has a proportional minimizer D(\) = —¢~ '\, a pro-
portional mazimizer \*(c) = —¢~ ¢, and a quadratic value function v(c) = ¢c2.

5.2 Euler equation I(D)

Now let us solve

o0

Maximize ¢ + 2bchg — Z [)\i + (bAny1 — )\n)Q]
DC; . |
subject to (i) A€ R™

through variational approach. In order to apply Lemma 3.1, we set

k(Xo) = ¢+ 2bch

Fols A = FAe) = N = 82 (Am - %)\n)2.
| Then
E(Xo) = 2bc, fa1 = —2Xn,  foo = —2b (An+1 — %/\n>
Thus

(EE) fnl - (%fn? - fn—12> =0 n Z 1

(TC), k' (Xo) + for — %foz =0
(TC)  lim fry =0
are reduced to
(EE) An = [(PAns1 = An) =0 (bAn = Apet)] =0 m>1
(TC),  be— Ao+ (bA = Ao) = 0
Ji_'ngo(b/\nﬂ =) = 0.
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, respectively. An extremal z satisfies above three equations. Then (EE) is
bAnsr — (b2 +2)An + bApoy = 0.
The associated characteristic equation
o> — (b +2)t+b=0

has two solutions

¥ +2—- Vbt +4 b+ 2+ Vb +4
o = , B = . (15)
2b 2b
Then
o - 2b g = 2b 1
B24+2+ Vb +4] +2-vbi 4 a
From (TC), we have a boundary condition
(TC)IO bc — 2)\0 + b)\l = 0.
As a solution of (EE) we select
A, = Aa”
which should satisfy both transversality conditions. Then, (T'C)’, becomes
(TCY, bc —2A 4+ bAa = 0.
This yields
b
A = = b —
“2"ba lb=a)
Then
An = c(b— a)a™. (16)
This gives

bAps1 — M = c(b—a)(ba — 1)a™ = —ca™,
which implies that
lim (bA,11 — Ay) = 0.

Thus both the conditions are satisfied. Hence we obtain an optimal path (16).
We take two special cases.
Case b = 1 yields a = ¢~2. Then the optimal path A\, A, = c¢~1¢~2", is golden.

Case b = —1 yields a = —¢ 2. Then the optimal path A\, A\, = —co¢~}(=1)"¢~2", is
alternately golden.

41



5.3 Two-variable maximization I(D)

Now let us solve

o0

Maximize ¢+ 2bcho — 3 [A2+ (bAns1 — An)?]

DC, ‘ . n=0
subject to (i) A € R™

through two-variable optimization method. Let A = {\,},>0 take the form of A\, = Ap",

where A € R', —1 < p < 1 are constants. Let f(A, p) be the evaluated value of \ :

oo

f(A p) = ¢ + 2bchg — Z [,\i + (bAny1 — )\n)2]

n=0

It is easily shown that

12
f(A p) = c®+2bcA — }ﬂQ—l)—AQ.
I-p
Then
_1)2
fuf2 = o LEBO=12
l1—0p
1,2 = Cbp—1)(1—p*)+p{l+(bp—1)°} _ bp* = (B*+2)p+b
o (1-p?)? - 1-p2
From f4 = f, =0, we have
1—p?
A= Cb1+(bp—1)2

b — (B> +2)p+b=0.
This yields
A=cb-a) 2+2—bi+4

h =
b= a where « %

Thus we obtain an optimal path

A={An}nso 0 Ay = c(b—a)a"

5.4 A derivation of dual process I(D)

We show how a dual process is derived from the primal process

minimize Z (:z:i + ui)
n=0
subject to (1) zp41 = bz, + Uy
PCy(c) ] 0 T n>0

(i) —oo<wu,<oo

(i) zo=c.

'

42



Let x = {z,}, u = {u,} satisfy the above conditions and I(x,u) denote the value of
objective function :

I(z,u) = Z (22 +u2).
n=0
Then we have for any Lagrange multiplier sequence A = {\,}

o0

I(z,u) = Z [25 4 u — 2An (T4 — bTn — uy)] -

n=0
Here we take —2\, as a Lagrange multiplier for equalify condition (i) for brevity of
notation [15,16,19,21]. By rearranging terms, we have

I(z,u) = xf+2bzodo — Y [ A2 + (BAns1 — An)?]
n=0
+ ) [en — Qnot = DA+ D (un + An)?
n=1 n=0

> 22 + 2bzoNo — Z [AZ + (bAns1 — An)?].

n=0
Letting

J(A) = 23+ 2bzodo — O [ A2+ (BAns1 — M) ],

n=0

we have an inequality
I(xz,u) > J(N\)
for any feasible (z,u) and any X. The sign of equality holds iff
Tp = A1 — b, n2>1

U, = =\, n>0.

Thus we have derived a dual problem

Maximize c? + 2bc)g — Z [ A2 + (bAnt1 — An)?]
n=0
subject to (i) A € R™.
Introducing a control variable v, := bA,+1 — Ay, this problem is formulated as a control
process
o0
Maximize g + 2bzolg — Z (A2 +12)

n=0

subject to (1) bA\py1 = A + 1y
. n>0
(i) —oo<v, <o

(i) =z =rc.
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This is the desired dual process DC(c).
An optimal path z of primal process PC;(c) and an optimal path A of dual process
DC;(c) are transformed through

Ty = )\n—l_b/\n 77,21

A = bz, — T n > 0.

6 Primal Process II(P); quadratic in next state

This section minimizes the second quadratic cost function

o0

Z [(xn+1 - bxn)2 + .’E?H_l] .

n=0

This problem is also solved as a control process with criterion

o0
Z u + xn+1
n=0

under the additive dynamics

Tnt1 = bz, + up.

6.1 Evaluation-optimization II(P)

Second we take the following quadratic criterion

J(z) = Z (1 — bzn)? + 224] -

=0

S

We consider
MP5(c) minimize J(z) subject to (i) z € R*, (ii) zo = c.

Since

MP;(c) has the minimum value

at the path




where

b2 +2— b+ 4

2b
Hence we have an optimal path Z = ¢(1, a, o?, ..., ", ...} in this class. This &
: . ¥—-2+vbi+4 ,
yields a minimum value 5 c”.
In case b = 1, we have a = ¢~2. Thus an optimal & = c(1, ¢72, ¢4, ..., ¢72", ...)
yields
I(2) = ¢71c

The optimal path £ is golden. The quadratic minimum value function I(Z) is inverse-
golden. Thus in the case the golden optimal path yields an inverse-golden value function.

In fact, a proportional w = (¢, pc, ..., p™c, ...) yields

Jw) = {p’+1-p)*} (140" + - +p"+)
_ P2+(1_P)2C2

O0<p<l).
-7 (0<p<1)
Fig. 3 shows that
.22+ (1—z)?
mm ——
0<z<1 1 — a2

is attained at £ = ¢~? with the minimum value

(6722 +{1— (¢~}
1—(¢72)2

= ¢ L.
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6.2 An Illustrative Graph z = f(u)

Let us now describe a graph which has dual Golden extremum points.

X

u? + (1 —u)?
f(u) 1 — w2 The golden ratio
’ 2_3u+1 - ? ¢_1 ¢
fl(u) = (_Q)U(uz _ul)z 9 4 —-(qi—cp) - 5:2— 1
by 20t -4 6u—3 —(=¢) _ 1 _¢
f'(u) =2 (u2 — 1) 1 _F_T
X 1
AR
_1i 3/2 2 ¢ 3

Fig. 3 Curve z = f(u) has dual golden extremum points %

We have the inequality

f(u)
f(u)

¢! on (=1,1)

>
< —¢ on (—oo,—1)U(1,00).

The first equality attains iff & = ¢~2, and the second equality attains iff u* = ¢2.
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6.3 Dynamic programming II(P)

Here we consider the cost function r : XxU — R! which is quadratic in current control
and next state :

r(z,u) = u?+ (br + u)?.

Then a control process is represented by the following sequential minimization problem :

o0
minimize E (ufz + z2 +1)
0

n

subject to (1) xpy1 = bz, + Uy,

PC.(c) ) n20
(i) —oo<u, <oo
(iii) zg=c
The value function v satisfies Bellman equation :
v(z) = min  [u+ (bz +u)® + v(bz + u)] . (18)

—oo<u<0oo

Eq. (18) has a quadratic solution v(z) = v?, where v € R!.

Theorem 6.1 The control process PCy(c) with characteristic value b (€ R') has a propor-
tional optimal policy f*°, f(x) = pz, and a quadratic minimum value function v(z) = vx?,
where

b2 — 2+ Vbt + 4 __1+vb_2—b2—\/b4+4
- 2  PE TS0 T 2% '
The policy f°° splits an interval [0, 2] into |0, =2 d|t" When b = 1
policy plits an interval [0, z] into 1o an 2+U,x. enb=1,
the coefficient v is reduced to the inverse Golden number
-1
¢‘1=¢—1=——~——+‘/5z0.618

2
Further the division of [0, z] into [0, $~?z] and [¢~2x, z] is Golden :
p2 7t =1 ¢,

Corollary 6.1 The process PCy(c) with b = 1 has a Golden optimal policy f*, f(x) =
—¢~tz, and the inverse Golden value function v(z) = ¢~ 122

Corollary 6.2 The process PCy(c) with b= —1 has a Golden optimal policy f*, f(z) =
¢~'z, and the inverse Golden value function v(z) = ¢~ a2
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6.4 Euler equation II(P)

Now we solve

[o,0)
minimize Z [ (Tnp1 — bzn)® + 22, ]
n=0
PC,, subject to (i) zg=c
(ii) z € R*™.
It suffices to note that
Z [(an —bx,)? + xi+1] = -+ Z [:ci + (Tpy1 — bxn)Q] .
n=0 n=0

Both PC} and PCj, have essentially the same objective function with a constant difference
—c%. Hence Euler equation of I(P) gives the same optimal path

" b +2— bt +4

Ty, = ca”, a= 5%
7 Dual Process II(D)
This section maximizes a quadratic cost function
2bcho — Ay = Y [(BAnp1 — M) + X2y,
n=0

which will be derived from the primal (minimization) problem at the end of section. This
maximization problem is also solved as a control process with criterion

oo

Ao — Ny = Z (’421 + )‘i+1)

n=0

under the additive dynamics

b)\n+1 = )‘n + Up.

7.1 Dynamic programming II(D)

Let us solve

minimize 2bxgAg — )\(2) — Z (l/?1 + /\%H)
n=0
subject to (1) bApy1 = Ap + Up
DC;y(c) : ((ii; _;<V S 20

(i) zo=c
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through dynamic programming. The dual process DC;(c) generates a family of subpro-
cesses :

o0
minimize E )\2 +1/
n=

bject t bAnt1 = An + vy
D () subject to (1) +1 + v 0> 0

(i) —oo<wy,<o0 -

)
(iii) A=A

Let v(c) be the maximum value of DCy(c) and w(\) be the minimum value of DC)().
Then the two value functions v, w satisfy the Bellman equation (BE):

u2+(A:”)2+w(A:”>], w(0) = 0

\c€R!

A) = mi
v =

(19)
v(c) = 1;/5?1( [2bcA — X —w(N)], ©v(0)=0

This equation has a quadratic form w(\) = wA?, v(c) = vc?, where w,v € R.

Theorem 7.1 The control process DC4(A) has a proportional optimal policy ¢g*°, g(\) =
g\, and a quadratic minimum value function w(\) = wA?, where

—b02 + Vb +4 PV 4
2 A 2 '
The process DCy(c) has a proportional mazimizer \*, \*(c) = pc, and a quadratic mazi-
mum value function v(c) = vc?, where

-2+ Vbt 44 b2 — 2+ Vbt +
) p =
2 2b
Now let us consider case b = 1. Then Eq.(19) is reduced to a functional equation on

an only v :

v(A) = min [®+ (A +v)? +v(A +v)]

v(c) = 1;2%)1( [2cA = X = v(N)]

MceRY, v(0)=0 (20)

Corollary 7.1 The equation (20) has a proportional minimizer 0(\) = —¢~'\, a pro-
portional mazimizer \*(c) = ¢~'c, and a quadratic value function v(c) = ¢~1c?
On the other hand, case b = —1 leads the following equation.
v(d) = min [1* + (A +v)* + v(=A = V)]
, MNc€eRY, v(0)=0 (21)
v(c) = 1}1%}5 [2eX — A2 — v(N)]

Corollary 7.2 The equation (21) has a proportional minimizer D(\) = —¢~), a pro-
portional mazimizer \*(c) = —¢~1c, and a quadratic value function v(c) = ¢~'c?
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7.2 Euler equation II(D)

Now let us solve
Maximize 2bcho — A§ = D [(bAns1 — An)? + A2, ]
DC, "=
subject to (i) A € R

through variational approach.
We note that DC} has the objective function

FO) = +2bedo— Y [ A2+ (bhars — Ma)?].
n=0
DC, has the objective function
g(\) = 2bcho — A = Y [(BAns1 — )2+ A2, ]
n=0

The difference is an only constant —c? :

gn) = =+ f(N).

Thus the optimal solution of Euler equation I(D) is an optimal solution of Euler equation
II(D) except for the constant —c? in optimal (maximum) value function.
Hence we have an optimal path

An = c(b—a)a™ (22)

where

24+2—Vb+4 2b

2b - B+2+vbT+4

This is a solution of characteristic equation

bt — (B*+2)t+b =0
of Euler equation
bAnsr — (B2 +2)A + Ay = 0.
This optimal path is also obtained by solving the system of variational equations.
(EE) An = [(DAng1 — An) =0 (A, = A1) =0 n2>1
(TC), bc— Ao+ (A1 — X)) =0
Tim (BAngs = An) = 0.
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7.3 A derivation of dual process II(D)

We show how a dual process is derived from the primal process

o0
minimize Z (ui + 22 +1)
n=0
subject to (i) zp41 =bx,+u
PCQ(C) J () n+1 n n n>0
(i) —oo0<u, <o

(i) o =rc.

Let z = {z,}, u = {u,} satisfy the above conditions and I(x,u) denote the value of
objective function :

M2

I(z,u) = (w2 +22.4).

Il
o

n

Then we have for any Lagrange multiplier sequence A = {\,}

Z U2+ 25y = 2, (Tpg1 — bTy — un)]
n=0

Here we take —2), as a Lagrange multiplier for equality condition (i). By rearranging
terms, we have

I(z,u) = 2bzoho — A5 — D [(BAng1 — An)? + A2, ]
n=0
+ 3 [2n = et = DA+ D (i + An)?
n=1 n=0
Z bevo — )\(2) - Z [(b)‘n—i-l - A ) + )‘n+l]
n=0
Letting
J(A) = 2bzodo = AF — > [(BAnsr — M) + 22,1 ],
n=0

we have an inequality
I(z,u) > J(N)
for any feasible (z,u) and any A. The sign of equality holds iff
Tp = Apo1— 0N, n2>1

Up, = —Ap, n>0.
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Thus we have derived a dual problem

o0

Maximize 2bcho — Ay — Y [ (BAns1 — An)® + A2, ]
subject to (i) A € R*® "

Introducing a control variable v, := bA,41 — A, this problem is formulated as a control
process

Maximize 2bzglg — )\(2, - Z (I/,% + )‘i+1)
n=0
subject to (1) bApt1 = A\ + vy
J ( ) +1 n>0

(il) —oco<y, <o -

(iii) zo=c.

This is the desired dual process DCy(c).
An optimal path x of primal process PCs(c) and an optimal path X of dual process
DCy(c) are transformed through

Ty = )‘n—l_b)\n n>1

Ap = by, — 21 n>0.

References

[1] R.E. Bellman, Dynamic Programming, Princeton Univ. Press, NJ, 1957.

[2] List of Publications: Richard Bellman, IEEE Transactions on Automatic Control,
AC-26(1981), No.5(Oct.), 1213-1223.

[3] A. Beutelspacher and B. Petri, Der Goldene Schnitt 2., tiberarbeitete und erweiterte
Auflange, ELSEVIER GmbH, Spectrum Akademischer Verlag, Heidelberg, 1996.

[4] G.A. Bliss, Calculus of Variations,, Univ. of Chicago Press, Chicago, 1925.
[5] O. Bolza, Vorlesungen tber Variationsrechnung, Teubner, Leipzig/Berlin, 1909.

[6] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing
Co.Pte.Ltd., 1977.

[7) IM. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, New Jersey,
1963.

[8] S. Iwamoto, A dynamic inversion of the classical variational problems, J. Math. Anal.
Appl. 100 (1984), no. 2, 354-374.

52



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Iwamoto, Theory of Dynamic Program (Japanese), Kyushu Univ. Press, Fukuoka,
1987.

S. Iwamoto, Cross dual on the Golden optimum solutions, Proceedings of the Work-
shop in Mathematical Economics, Research Institute for Mathematical Sciences, Ky-
oto University, Suri Kagaku Kokyu Roku No. 1443, pp. 27-43. Kyoto: Suri Kagaku
Kokyu Roku Kanko Kai, July 2005.

S. Iwamoto, The Golden optimum solution in quadratic programming, Ed. W. Taka-
hashi and T. Tanaka, Proceedings of the International Conference on Nonlinear Anal-
ysis and Convex Analysis (Okinawa, 2005), Yokohama Publishers, Yokohama, 2007,
pp-109-115.

S. Iwamoto, The Golden trinity — optimility, inequality, identity —, Proceedings
of the Workshop in Mathematical Economics, Research Institute for Mathematical
Sciences, Kyoto University, Suri Kagaku Kokyu Roku No. 1488, pp. 1-14. Kyoto:
Suri Kagaku Kokyu Roku Kanko Kai, May 2006.

S. Iwamoto, Golden optimal policy in calculus of variation and dynamic program-
ming, Advances in Mathematical Economics 10 (2007), pp.65-89.

S. Iwamoto, Golden quadruplet : optimization - inequality - identity - operator,
Modeling Decisions for Artificial Intelligence, Proceedings of the Fourth International
Confernece (MDAI 2007), Kitakyushu, Japan, August 16-18, 2007, Eds. V. Torra, Y.
Narukawa, and Y. Yoshida, Springer-Verlag Lecture Notes in Artificial Intelligence,
Vol.4617, 2007, pp.14-23.

A. Kira and S. Iwamoto, Golden complementary dual in quadratic optimization,
Modeling Decisions for Artificial Intelligence, Proceedings of the Fifth International
Confernece (MDAI 2008), Sabadell (Barcelona), Catalonia, Spain, October 30-31,
2008, Eds. V. Torra and Y. Narukawa, Springer-Verlag Lecture Notes in Artificial
Intelligence, Vol.5285, 2008, pp.191-202.

S. Iwamoto and A. Kira, The Fibonacci complementary duality in quadratic pro-
gramming, Ed. W. Takahashi and T. Tanaka, Proceedings of the International Con-
ference on Nonlinear Analysis and Convex Analysis (NACA2007 Taiwan), Yokohama
Publishers, Yokohama, March 2009, pp.63-73.

S. Iwamoto and M. Yasuda, “Dynamic programming creates the Golden Ratio, too,”
Proc. of the Sizth Intl Conference on Optimization: Techniques and Applications
(ICOTA 2004), Ballarat, Australia, December 2004.

S. Iwamoto and M. Yasuda, Golden optimal path in discrete-time dynamic optimiza-
tion processes, Ed. S. Elaydi, K. Nishimura, M. Shishikura and N. Tose, Advanced
Studies in Pure Mathematics 53, June 2009, Advances in Discrete Dynamic Systems,
pp.77-86. Proceedings of The International Conference on Differential Equations and
Applications (ICDEA2006), Kyoto University, Kyoto, Japan, July, 2006.

53



[19] B. Mond and M.A. Hanson, Duality for variational problems, J. Math. Anal. Appl.
18 (1967), 355-364.

[20] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mischenko, The Math-
ematical Theory of Optimal Processes, Wiley, New York, 1962 ; BItRE AR, &
BROKFHER, BAENE, 1967.

[21] A.V. Ringlee, Bounds for convex variational programming problems arising in power

system scheduling and control, IEEE Trans. Autmat. Control, 1965, 28-35.

[22] M. Sniedovich, Dynamic Programming: foundations and principles, 2nd ed., CRC
Press 2010.

[23] H. Walser, DER GOLDENE SCHNITT, B.G. Teubner, Leibzig, 1996.

54




A tuzzy CUSUM control chart for L R-fuzzy data under

improved Kruse-Meyer approach

Dabuxilatu Wang!,*Masami Yasuda?
! Department of probability and statistics,
Guangzhou University, No. 230 Waihuan Xilu ,
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Abstract

Quality characteristic data is often imperfect (incomplete, censored, vague or partially un-
known) in standing for the quality information of the products or services, such imperfectness
sometimes may be well complemented by vague, imprecise or linguistic way of expression. In
practice the LR-fuzzy number data is frequently recommended to be applied in above cases.
L R-fuzzy number itself can be generated with method of Cheng based on expert’s evaluations
on products or services quality. On the set of LR-fuzzy data used for modelling the subjective
human feeling on quality, we propose a fuzzy Cumulative Sum (CUSUM) control chart, in which
the possibility distribution determined by the membership function of the fuzzy test statistic is
employed, LR-fuzzy data is viewed as a fuzzy random variable with normally distributed center
and two x? distributed spreads. Under the distance between two fuzzy numbers proposed by
Feng and an improved Kruse-Meyer hypothesis testing methods, a fuzzy decision rule as well
as a level-wise average run length (ARL) for the chart are proposed. The simulation results
shows that the proposed CUSUM chart has a better performance than fuzzy Shewhart chart
under the proposed rule in term of ARL.
keywords: statistical process control; Cumulative sum chart; fuzzy sets; possibility distribution.

1 Introduction

Statistical process control is very important in that it is proven to bring processes into control
and maintain it, in which the control charts is the principle measure to be designed and applied.
Cumulative Sum (CUSUM) control chart proposed by Page [13] is widely used for monitoring and
examining modern production processes. The power of CUSUM control chart lies in its ability
to detect small shifts in processes as soon as it occurs and to identify abnormal conditions in a
production process.

Control chart in many application is used to monitor real life data given as real numbers (real
random variables) or real vectors (random vectors) sampling from production line. However, data
collected from production lines with evaluation in some situation are considerably difficult to be
exactly denoted by real numbers, e.g., the food taste data from the foods production line. Such
data are often easily expressed by linguistic way and said to be linguistic data or vague (fuzzy)
data, in the same way, data from human perception can be recorded by fuzzy data. Motivated
by applying quality control charts to environment involving vague data, there have been some lit-
eratures dedicating for the design of control charts with linguistic data or fuzzy data. Wang and

*Corresponding author. E-mail:dbx1t0Qyahoo . com
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Raz [17] proposed the representative values control charts with both probability rule and member-
ship function rule, for which the linguistic data (fuzzy data) is transformed into scalars referred as
representative values of the fuzzy data, four kinds of transformation formula have been proposed,
they are fuzzy mode, fuzzy midrange, fuzzy median and fuzzy average. Kanagawa and Tamaki and
Ohta[9] proposed another representative values chart by using the barycenter of the fuzzy data, in
which the required probability density function needs to be estimated using the Grame-Charlier
series method. Hoppner (7] proposed a kind of Shewhart chart, EWMA (Exponential Weighted
Moving Average) chart with fuzzy data under Kruse and Meyer’s hypothesis testing method [11],
where the fuzzy data are directly used but mainly using the end-points of the a-cuts. Cen [1]
proposed the suitability quality by using fuzzy sets method from an opinion of end-users. Taleb
and Limam [15] discussed different precedures of construction control charts for linguistic data,
based on fuzzy set and probability theories. A comparison between the fuzzy and probabilistic
approaches, based on the average run length and the samples under control, is made by using real
data. Cheng [2] proposed a method for generating fuzzy data based on the experts’ score from
evaluating the products quality, and constructed a control chart using membership method. Yu et
al. [21] proposed a sequential probability ratio test (SPRT) control scheme for linguistic data based
on Kanagawa et al.’s estimated probability density function, which lays a base for constructing
CUSUM chart with linguistic data, however, in which the fuzzy data have to be transformed into
its one of the representative value. Wang [18] presented a CUSUM control chart with fuzzy data by
using a novel representative values that is a sum of central value of the fuzzy data with its fuzziness
value. Hryniewicz [8] presented a general outlook for control charts with fuzzy data. Taleb [16]
presented an application of the representative values control charts proposed by Wang and Raze
[17] to multivariate attribute process. Giilbay [6] presents a direct fuzzy approach to construct a
c-chart with fuzzy data. Faraz [4] presents a Shewhart chart with trapezoidal fuzzy data by using
the concept of fuzzy random variables. Ming-Hung Shu and Hsien-Chung Wu [14] presented a fuzzy
Shewhart chart and R chart using an expanded fuzzy dominance approach.

Most of the works mentioned above considered the Shewhart chart with representative values of
fuzzy data, only a few works considered Shewhart chart, c-chart and EWMA chart with fuzzy data
without using representative values methods. Since the representative value of a fuzzy data may
result in losing important information included in original data, it is desirable to develop a suitable
direct fuzzy way in establishing control charts with fuzzy data without using representative values.
There are no constructions of CUSUM chart with fuzzy data in some direct fuzzy way reported in
literatures. A sort of CUSUM chart with LR-fuzzy data in a direct fuzzy way will be established
in this paper.

The rest of the article is organized as follows. In Section 2, some preliminary knowledge on fuzzy
number and related concepts such as distance between two fuzzy numbers proposed by Feng, fuzzy
max-order, fuzzy statistic, L R-fuzzy random variable are mentioned. In Section 3, we propose a
CUSUM control chart with L R-fuzzy data based on fuzzy statistic. In Section 4, a level wise average
run length for the proposed chart is considered. Finally, a detail conclusion and some related future
research topic are presented.

2 Some statistics based on fuzzy data

Let R be the set of all real numbers. A fuzzy set on R is defined to be a mapping u : R — [0, 1]
satisfying following conditions:

(1) uq = {z|u(x) > a} is a closed bounded interval for each o € (0,1], i.e. uq = [ug,ul].
(2) uo = suppu is a closed bounded interval.

(3) u1 = {z|u(x) = 1} is nonempty.
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where suppu = cl{z|u(z) > 0}, cl denotes the closure of a set. Such a fuzzy set is also called a
fuzzy number. By F(R) we denote the set of all fuzzy numbers, with Zadeh’s extension principle
[22] the arithmetic operation * on F(R) can be defined by

(uxv)(t) = sup {min(u(t),v(t2))},u,v € F(R),t,t1,t1 € R, x € {®,0,0}.
{tl*t2=t}

Where ®,6,® denote the addition, subtraction and scalar multiplication among fuzzy numbers,
respectively. The fuzzy max-order < on F(R) is defined by

uxv & VYae0,1],u} <vl uy <vy,u,ve FR).

This order can be viewed as an extension of the interval order, in comparison of fuzzy numbers it
has some advantages of simplicity in computation. The following parametric class of fuzzy numbers,
the so-called LR-fuzzy numbers, are often used in applications:

) L(®FE), z<m
@) = { R(’”-‘IT—@), r>m

Here L : Rt — [0,1] and R : RT — [0,1] are given left- continuous and non-increasing function
with L(0) = R(0) = 1. L and R are called left and right shape functions, m the central point of
wand [ > 0, > 0 are the left and right spread of u. An LR-fuzzy number is abbreviated by
u = (m,l,7) LR, especially (m,0,0)Lg := m. It has been proven that LR-fuzzy numbers possesses
some nice properties for operations:

(my+mo,ly + 2,71 +72) LR

fl

(ma,li, r)Lr ® (M2, l2,m2) LR

(am,al,ar)Lr, a>0

a® (m,l,r)Lr = (am, —ar,—al)gr, a <0
0, a=0
(m1,l,1)Lr©m2 = (my —ma,li,r1)LR

The last equality can be understood as that the fuzzy number (m;, {1, 1) Lg has a shift from m; to
ma.

Let L(-Y(a) := sup{z € R|L(z) > a},R"Y(a) := sup{z € R|R(z) > a}. Then for u =
(myl,7) LR, Ue = [m — 1LY (a),m + rRED ()], a € [0,1].

Korner [10] defined the LR-fuzzy random variable on the probability space (Q2, .4, P) as a mea-
surable mapping X : @ — Frr(R), X(w) = (m(w),l(w),r(w))Lr, w € Q, in brief we denote
X as X = (m,l,r)Lg, where m,l,r are three independent real-valued random variables with
P{l > 0} = P{r > 0} = 1. In a fuzzy observation on objects of interest, the outcomes can be
viewed as L R-fuzzy data under a proper assumption, i.e., the data are viewed as the realizations of
a LR-fuzzy random variable.

There are several metrics defined on fuzzy number space F(R). Among them a metric d,
proposed by Feng [3] seems to be more simple than other metrics in computation, which is defined
as follows,

di(u,v) = (< u,u>-2<u,v>+<wv,v >)1/2,

where < u,v >:= fol(u;v; +udv})da, and < u,u >, < v,v >< 00, Uy = [ug,ut], vo = [vg,vT].
Feng’s metric d. can be employed to calculate the distance between two fuzzy number data of
quality characteristics . For LR-fuzzy random variable X = (m,[,r)rr, Feng [3] also define the

expectation and variance as follows,

E(X) = (E(m), E(1), E()) Lr;

Var(X) = % /Ol(Var(m —1LY(a)) + Var(m + rREY(a)))da.
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Let X1,---, X, be a sample of size n from X = (m,l,7)Lr, then the sample mean X and the
sample variance S? maybe defined by

1 -
E:X 2= ) d(X;
(m,1,7) LR, S =1 2 d. (X, X),

8= z(n_l)Z/ [((ms =) + (I = L)LV (@) 4+ ((ms =) + (ri = )R (@))*]da

and the sample range statistic maybe defined by R := d, (X(1), X(n)), where X(;y denotes the jth
order statistic with respect to the fuzzy-max order, and

m =

S|
NE
3
—~I
Il
S|
S
I
S
3
3

3 CUSUM chart with LR-fuzzy data

The conventional CUSUM chart is usually used for monitoring real valued quality characteristics
data. For a given sequence of crisp observations {X,,n = 1,2,...} on normal population, the
monitored parameter of interest is typically the process mean, u, = FE(X,), the purpose is to
detect a small change in the process mean, one might specifies the levels po and pu; > po (or
p1 < po) such that under normal conditions the values of u; should fall below (or above) po and
the values of u, above (or below) u; are considered undesirable and should be detected as soon
as possible. The CUSUM chart can be used to monitor above process with the test-statistics
Sn = max{0,Sp—1 + X, — K} (or T, = min{0, 7,1 + X,, + K}) and signal if S,, > b (or T}, < —b),
where b is the control limit derived from a confidence interval assuming a Gaussian distributed
observation, b usually equals four or five times the standard deviation of sample, X, (n > 1) are
the sample means at time t,, and So = Top = 0, and K is the reference value.

We are aware of that the concept of quality has been extended to so called suitability quality
by considering comprehensively the opinion of the end-users on products, as a tool the fuzzy sets
has been applied to express the suitability quality of products [1], and the suitability quality char-
acteristics of a product sampled from the production line are expressed by some appropriate way
such as linguistic or some interval score in order to record the experts perception on the product
quality. Fortunately, a sort of methods for generating a L R-fuzzy number from the expert’s score
(an evaluation) on quality characteristics had been proposed by Cheng [2], where the number of
on-line experts is around 5.

We in the sequel assume that the observational process {X;} is consists of a finite sequence of
ii.d. LR-fuzzy random variables generated by method mentioned above, where X; is the mean of
group sample of size e at time t;, i.e. X; = (z;,l;,7;) LR, Where z; = %25:1 Tij, Ui = %E;zl Lij,
Ty = % Zle 7ij, (e > 25, here we apply the Bootstrape approach for the group sample of size 5), z;
is a Gaussian variables approximately by the central limit theorem, and {;; > 0,7;; > 0 and [;, r;
are approximately modelled by distributions x?(e;), x2(e2) (i =1,---,n,5 = 1,---,e.) respectively.
Assume that E(z;;) = p, Var(zi;) = 0. The test statistics Sy, 7}, of a two-sided CUSUM chart
then will be expanded to fuzzy statistics (fuzzy quantities) since they totally depend upon the
samples X, i = 1,---,n. By Zadeh’s extension principle [22], the fuzzy statistics in this situation
can be defined as

Sp(s)= max {0(a),(Sn_1® X, 0 K)(¥)},s€R

s=maz{a,y}

To(t) = max {0(a),(Th_1 ® X, ® K)(2)},t € R

t=min{a,z}
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where 0 denotes a fuzzy number with membership value 1 at 0, and 0 otherwise. K is the reference
value defined as follow in three different ways.
In the case (1): using Feng’s variance,

5 6§ [o2 1 [P
K= Ky = 3ox = 51 T+ 1 [ (@L0@)2 +ea(RD())2)de,
where X = % E?zl(:ci,li,ri)LR, and X; — K1 = (z; — K1,1;,7) LR, ¢ is a multiple that allows us to
measure shift size in term of the deviation o being sampled.
In the case (2): We assume that the reference value is concerned only with the central value z;

of X;, where some of X; (: =1,---,n.) maybe degenerated to crisp value, thus,
) o
K=Ky =cog=
2T 9%% 2v/ne’

and Xi e Kg = (l’l — Kg,li,ri)LR.
In the case (3): We measure the shift size of the process mean by using the metric d, based on

the state of in-control, i.e.,

1
K :=Kj3 = ‘2‘d*[(ﬂ07alO’ar0)LR,(Nl»al,ar)LR]’

and Xi — K3 = (:I:z — K3,li,ri)LR.

Remark: The properties of the operations &, 6 for L R-fuzzy numbers ensure that the definitions
of the fuzzy CUSUM statistic Sy, (s), Ty (t) are reasonable if the reference value K is taken to be a
real number value. However, in a general case where the sample X,, € F(R) and so is the reference
value K, then the above fuzzy statistic Sy, (s), Ty (t) will lost reasonability since they are not able to
measure the shift size of fuzzy data. It maybe an available way to employ the metric d, to redefine
the above fuzzy CUSUM statistic.

Set "
57 () := max{0, (Sp_1 + T — K)} — L (a) Y 1}
j=1
s¥(a) == max{0, (Su-1 +zn — K)} + RV (a) Y15
=1
t~(a) := min{0, (Th_1 + 2, + K)} — L1 (a) le;
=1
n
t*(a) := min{0, (Th_1 + z, + K)} + R-Y(a) Z T
Jj=1
where S,,, T, are CUSUM statistic w.r.t. the crisp sample x;,7i = 1,---,n mentioned above.

Using Nguyen’s theorem [12], we can obtain
Corollary 2.1 The a-cut of gn,f’n are

3 [s7(@),sT(a)], ifs™(a)>0,
(Sn)a = [0, st (oz)]7 if S+(a) >0,
0, if s*(a) <0,

i [t=(a),t*(a)], iftt(a) <0,
(Th)a =1 [t (),0], ift(a) <0,
Oa Zf t_(a) > 07

for a € [0,1].
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Theorem 3.1 For one-sided fuzzy CUSUM chart Sy, if the reference value is taken to be Ky (o is
unknown), then the test statistics mentioned above on each a-level is s*(a), and the control limit

is 54/ %—%— + 3R (a)y /22 where s2 is the sample variance w.r.t. z;.

e

Proof By the definition of fuzzy statistic S, and the Corollary 1, it is obvious that st(a) is the
test statistics, and it is a sum of a crisp CUSUM statistics max{0, (S,_1 +z, — K>)} and a normally
distributed statistics R(—1)(a) E?:l 7, then by the control limits of a crisp one-sided CUSUM S,

and the Shewhart chart, the former control limit is obtained as 54/ % and the later control limit

can be carried out as 30,, = 3R(~1)(a) 3%92, where s2 is the sample variance w.r.t. z;, thus, the
control limit is obtained. [
Corollary 3.2 The one-sided CUSUM chart T,, on each a-level with reference value Ko (o is

unknown) possesses the test statistics t~(a) and control limit —5@ - 3RV(a) ez where s2
is the sample variance w.r.t. x;.

Corollary 3.3 For one-sided fuzzy CUSUM chart S'n, if the reference value is taken to be Ky (o is
unknown), then the test statistics mentioned above on each a-level is s*(a), and the control limit
is 51/ S + 3R(V(a),/ 2222,

Corollary 3.4 For one-sided fuzzy CUSUM chart Sy, if the reference value is taken to be K3 (o is
unknown,), then the test statistics mentioned above on each a-level is s*(a), and the control limit

is 5dx (10, a10, ar0) LR, (11, a1, ar) Lr] + 3RV () \/—2—"65

In the same way we can obtain the corresponding control limits of one-sided CUSUM chart 7,
in the case of K1, K3.

Based on possibility distribution (membership function) of Sp, T, we propose a soft control rule
for the two-sided CUSUM chart.

Let M be a natural number which stands for the times of checking for different a-levels, and it
should be determined reasonably based on a total evaluation from quality experts. There are many
approaches to determine M such as the weighted average score of several experts, the Bayesian
method using experience or historical data, or belief function generating method, etc. We further
choose an arbitrary z € {1,2,..., M} as a critical value (key number) based on some given possibility
levels and choose arbitrarily the levels {a1,aa,...,apn} C [0,1]. Let

1, if s7(a;) > hia, or t7 (o) < haa,
0, otherwise

(S, Tp) = {

where hjo, = 5\/% + 3R(_1)(a,-) Q%Z,hgai = -5 % — 3R(_1)(ai) 2%2 for corresponding
K = Kj. hia, and haq, can also be taken the corresponding values when K = K; or K = K3 as
that illustrated in Corollary 3.3 and Corollary 3.4.
Let u o
@G, Ty = § b i 2l 1) 2 2
0, otherwise
Then the decision rule for the fuzzy CUSUM control chart is that: we stop the process if and
only if ®(S,, T,) = 1.
inf{n|®;(Sy,, T) = 1}
R(ai) = ) : & &
00, if there is no n such that ®;(S,, T,) =1
is called o;- level stopping time.
R inf{n|®(S,, T,) =1}
00, if there is no n such that <I>(§n, fn) =1

is called the stopping time.
It is obvious that there exist at least z number {41,%2,...,7,} C {1,2,..., M} such that R >
max{R(c;, ), R(c,), ..., R(a;,)} where M € N.
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4 The computation of a kind of approximate ARL for the
fuzzy CUSUM chart

From the definition of the stoping times mentioned in former section, we are aware of that the
a-level (o # 1) stopping time is larger than the 1-level stopping time. This property not only shows
a strong flexibility implied in the fuzzy control limit but also exhibit an idea making the control
rule depending on the experts’s appraisal on the products quality level-wise.

Obviously, on each a;-level our fuzzy CUSUM control chart can be viewed as an ordinary
CUSUM chart, and for which the Average Run Length (ARL) can be carried out based on the
basic parameters K and h. Here the ARL of of the fuzzy CUSUM chart on the ;-level can be
approximated by Markov chain method as in the case of [19] (1991), [20] (1994), namely, ARL(c;) :=
E(R(a;)).

Let R and R(a;) be the stopping time and o;-level stopping time for the fuzzy CUSUM chart,
respectively, where o; € [0,1], ¢ € {1,2,...,M} and M € N. J. Hoppner [7] (1994) obtained
a conclusion on the relation between ARL E(R) and a;-level ARL E(R(c;)) for his EWMA chart
with fuzzy data, since it only concerned with the test-statistic ®, ®;, thus an analogue to CUSUM
chart can be stated as follows:

Theorem 4.1 Assume that there exists ARL=E(R) and «;-level ARL(c; )= E(R(«;)) for the fuzzy
CUSUM chart and z is a key number. Then it holds that

1 M
E(R) < 57— 77 ;E(R<ai)).

Corollary 4.1 If z = M in Theorem 4.1, then it holds that 55 Zfil E(R(a;)) <E(R) < Zf‘il E(R()).

We now approximate ARL of the fuzzy CUSUM chart, which is E(R). It is well known that an
approximation of ARL for ordinary CUSUM chart usually means to compute the ARL of one-sided
Sp-chart or of T,-chart, since S, and 1), can not signal simultaneously ([19] (1991),[20] (1994)).
However, now the situation becomes so complicated that the S,, and 7}, might simultaneous signal
at some special a-levels. We only consider the case in which ARL of fuzzy CUSUM chart can be
approximated through one-sided S, chart or T),-chart.

In the following, we employ Markov chain method to approximate the ARL(c;)s, ARL(a;)f.

Consider the one-sided S,-chart on a;-level, we divide the interval [0, h14,] into t subintervals
as follows:

LetteN, {ai,...,an} C(0,1).

(i) &% := %‘—‘;’—"1-, 26° is the length of subintervals.
(i) b :=2j6%, 1 < j <t —1is the mid-point of (j+1)st subinterval.
(iii) T} := (b5 — 0*, b% +6'], 1 < j <t —1is the (j+1I)st subinterval.
(iv) I :=[0,6%); b} := %i; I} = (h1a;, 00).
In Markov chain method, we need to compute the transition probability

Pl = P(s{, 1 1ya, € Lilsta, € 1)),

pf; can be approximated by pfj, ie.,

*T o b
Pij = DPij»
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where

pf]' L= P(s?;wl)ai € I}ls?:a,- = b;)
P(K+ (- 020" =8 < X[\ 1),
< K+ (5 — )26 + 69,

1=0,1,....t—1; j=0,1,....,t—1and K := Ky, K>, K3.
Thus we obtain an approximative transition probability matrix P, a (¢t + 1) x (¢ + 1) matrix as

( D (E-D)
=(o )

is a t x t matrix, dT = (1,1,...,1), OT = (0,0,...,0) and E is the t x t

follows:

where D = (p};)
unit matrix.

0<1,j<t—1

Theorem 4.2 Let the observational process {X;} be a sequence of independent and identically
distributed (i.i.d.) LR-fuzzy random variables, where each X; is the mean of group sample of size
e at time t;. Then it holds that

ARL(a;)g =~ poT (E — D) d.

where poT = (po,p1,...,Pt—1) denotes the start probability vector.

Proof. Since {X;} are i.i.d. fuzzy random variables, then S, can be viewed as a sum of
independent increment in term of fuzzy random variables, for each « € (0, 1] the process {s;},} can
be viewed as a real-valued Markov process. By the approximation method mentioned above, we
see that

+ i1 gt /
(P(S(nﬂ)m € IHS“’“ € I;))OSJ,jSt—l

L pn_ (D" (E-DV
- “\ oT 1

note that here
P(R(c) < nlsf,, € 1})

P(s, 1) € I|st,, € 1)
~ ((E—D")d),

where ((E — D™)d); denotes the Ist component of the vector (E — D™)d. Let p; :== P(s{,, € I}),
then th;(l, p; = 1 and let the vector py = (po,P1,--.,Pt—1)T be the start probability vector. Then
we have

P(R(a;) < n)

= Y mP{R(x) < nlST,, € I}})
=0
~ pg(E — D™)d.

and
P(R(a;) > n) ~ 1 —pg (E — D™)e = py (D™)d,
and

P(R(oy) =n) = P(R(a;) < n) — P(R(a;) <n—1)

~ pf (D - D).
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by the proof for theorem 3.11 of [20], we obtain that

E(R(es) = Y. nP(R(a)=n)

k
~ pg(klin;o Z n(D"! — D™)d)
n=1
= po"(E—-D)7'd.

This completes the proof.

In a similar way, we can compute ARL(a;) -

Based on Corollary 4.1 and Corollary 4.2, we can approximate ARL of the fuzzy CUSUM control
chart provided that the number M and the key number z are predetermined.
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ON THE MASAMI YASUDA STOPPING GAME
KRZYSZTOF J. SZAJOWSKI

ABSTRACT. The sero-sum stopping game for the stochastic sequences has been
formulated in late sixties of the twenty century by Dynkin []. The formulation
had the assumption about separability of decision moment of the players which
simplified the construction of the solution. Further research by Neveu [27]
extended the model by admitting more general behaviour of the players and
their pay—offs. In new formulation there is the problem with existence of
the equilibrium. The proper approach to solution of the problem without
restriction of former models was developed by Yasuda [:]. The results was
crucial in these research. The author made often reference to the Yasuda’s []
result in his works (see [}, 37, 3]) as well as see results of others stimulated
by this paper. Withal, in this note another stopping game model, developed
by Yasuda with coauthors (see e.g. [14] and [(]) is recalled. The application
of the model to an analysis of system of detectors shows the power of the game
theory methods.

In the last part of the paper I would like to express my personal relation to
the Masami Yasuda game.

1. INTRODUCTION

The mathematical modelling of economic and engineering systems in stochas-
tic environment leads to various mathematical optimization and game theory
problems. If the decision problem relies on choice of intervention moments one
can formulate the model of such case as the optimal stopping problem. If it is
allowed to react more than once the approach depends on the number of deci-
sion makers and their aims. If there is one decision maker and two reactions
(or fix number of possible moment of actions) we have the optimal two stopping
(multiple stopping) problem. When there are two decision makers with their
prescribed aims we usually treat the problem as the stopping game. The related
models bring very subtle mathematical questions concerning the correctness of
the model, possibility of inference about rational strategies, their realization and
the existence of solution in the formulated mathematical model. In this note
I would like to focus our attention of two group of models not very precisely

Date: March 8, 2012.

1991 Mathematics Subject Classification. Primary 60G40; Secondary 62L15.

Key words and phrases. voting stopping rule, majority voting rule, monotone voting strat-
egy, change-point problems, quickest detection, sequential detection, simple game.
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defined. The first one is related to the existence of solution under mild as-
sumption on the processes defining the payoffs in the zero-sum stopping game
related to problem introduced by Dynkin [] (see the section 1.1). The second
group of the problems, which I have applied recently to modelling the sensor net-
works, developed by Yasuda with co-authors (see e.g. [14] and [17]), is devoted
to multivariate stopping problem when there are decision makers having some
interactions between each others (see the section 1.2).

1.1. The randomize strategies in Dynkins game. E. B. Dynkin [] pre-
sented the following problem: two players observe a stochastic sequence X,
n = 1,2,.... Each of them chooses a stopping time, say \ (resp. u) be the
stopping time chosen by the first (resp. the second) player. It is additionally
assumed that the first player can stop at odd and the second at even moments.
The pay-off is then: R(A, u) = EX a,. The player 1 seeks to maximize the ex-
pected pay-off, and the player 2 seeks to minimize it, it means that the solution
is a pair (A*, u*) such that

(L1) RO\, p7) < (X, p%) < (A5 ).

J. Neveu [22] modified this problem as follows: there are three random se-
quences (Xy, Frn), (Yo, Fn) and (W, F,,) with

Assumptions 1.2.
(1.3) X, <W, <Y, for eachn € N,

and the pay-off equals:
(1.4) R\, 1) = E{X\Ippcpy + Wialpnzpy + Yilguan }

where ), 4 € G are stopping times with respect to F,.This problem has solution
which is presented in [22].

When the assumption 1.2 is not fulfilled then, in general there are no equilib-
rium in the set of stopping times with respect of observed processes (X, Fn),
(Y,,F,) and (W,, F,). It is M. Yasuda who shown in [11] that the mixed ex-
tension of this game has equilibrium without the assumption 1.2. The mixed
extension in this case means that the set of strategies (stopping times) is ex-
tended to include randomized stopping time. First, a finite horizon problem is
considered. Next, the existence of the value and the equilibrium point in the
infinite horizon problem with a discount factor is proved under some natural
assumption concerning the integrability of the considered processes.

In that time there were many mathematicians doing research in stopping game
(see e.g. the papers by Zabczyk [], Stettner 4], Ohtsubo [2]). The Yasuda’s
paper [41] stimulated further research of Rosenberg, Solan and Vieille [2+] and

cesses with continuous parameter.
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1.2. The stopping processes by voting procedure. Let us consider p person
stopping game related to the observation of a Markov chain. Let (X, &, P2),
n=0,1,2,..., be a homogeneous Markov chain defined on a probability space
(Q,F,P) with state space (E,B). The players are able to observe the Markov
chain sequentially. At each moment n their knowledge is represented by F,.
Each player has his own utility function f; : E -+ R, ¢=1,2,...,p, and at each
moment n each player declares separately his willingness to stop the observation
of the process. The effective ends of the process and realization of the payofts
appears when a suitable subset of players agree to it. The aim of each player is
to maximize their expected payoffs. In fact, the problem will be formulated as

a p person non-cooperative game with the concept of Nash equilibrium [21] as
the solution. On the other hand, one can say that the considered multilateral
stopping procedure is based on sequential voting (cf [7], [17)], [1:}] for monotone
rule concept and the mathematics of voting).

Such model has been considered in mine and Yasuda paper [1(] and Fergu-
son [(]. Both papers were continuation of Masami Yasuda and his co-workers,
Kurano and Nakagami research published in [I1], [17], [17], [1%]. They have

investigated the multilateral version of the optimal stopping problem for inde-
pendent, identically distributed p dimensional random vectors X,. The gain
function of the i-th player is X! (i-th coordinate of X,,). In [14] the following
class of strategies is used.

(1) Each player can declare to stop at any stage.

(2) The majority level r (1 < r < p) is chosen by the players at the beginning
of the game.

(3) During the sequential observation process, if the number of players declar-
ing to stop is greater than or equal to the level r, the process must be
stopped.

This class of strategies is generalized in [1(] to monotone rules. Roughly speaking,
a monotone rule is a p variate, non-decreasing logical function defined on {0, 1}*.
In both papers the problem is formulated as a p person, non-cooperative game
with concept of Nash point as a solution. Paper [!] generalizes the unanimity
case, i.e. p = r solved by Sakaguchi [20]. The motivation for the model considered
is the secretary problem (see [/] for the formulation of the problem). A solution
of some bivariate version of the secretary problem is given in [!]. Presman and
Sonin [2¢] treat this problem with another set of strategies. They considered the
model in which each player’s decision does not affect the stopping of the process
but his reward only. Sakaguchi [0] and Kadane [!”] have solved a multilateral
sequential decision problem in which decisions whether to stop are made by the
players alternately, instead of simultaneous decision under a monotone rule.
The recent paper on the voting stopping problem are [20].

67



K. J. Szajowski

2. SENSORS’ NETWORK AND STOPPING GAMES

In [39] the construction of the mathematical model for a multivariate surveil-
lance system is presented. It is assumed that there is net 91 of p nodes which
register (observe) signals modeled by discrete time multivariate stochastic pro-
cess. At each node the state is the signal at moment n € N which is at least
one coordinate of the vector Z, € E C ®™. The distribution of the signal
at each node has two forms and depends on a pure or a dirty environment of
the node. The state of the system change dynamically. We consider the dis-
crete time observed signal as m > p dimensional process defined on the fixed
probability space (2, F,P). The observed at each node process is Markovian
with two different transition probabilities (see [1] for details). In the signal the
visual consequence of the transition distribution changes at moment 6;, i € I
is a change of its character. To avoid false alarm the confirmation from other
nodes is needed. The family of subsets (coalitions) of nodes are defined in such
a way that the decision of all member of some coalition is equivalent with the
claim of the net that the disorder appeared. It is not sure that the disorder
has had place. The aim is to define the rules of nodes and a construction of
the net decision based on individual nodes claims. Various approaches can be
found in the recent research for description or modelling of such systems (see e.g.
[42], [27]). The problem is quite similar to a pattern recognition with multiple
algorithm when the fusions of individual algorithms results are unified to a final
decision. The proposed solution will be based on a simple game and the stopping
game defined by a simple game on the observed signals. It gives a centralized,
Bayesian version of the multivariate detection with a common fusion center that
it has perfect information about observations and a priori knowledge of the sta-
tistics about the possible distribution changes at each node. Each sensor (player)
will declare to stop when it detects disorder at his region. Based on the simple
game the sensors’ decisions are aggregated to formulate the decision of the fusion
center. The sensors’ strategies are constructed as an equilibrium strategy in a
non-cooperative game with a logical function defined by a simple game (which
aggregates their decision).

This approach uses the general description of such multivariate stopping games
presented in the section 1.2. The voting aggregation rules are relieved by the sim-
ple game (see Ferguson [¢]) and the underlining processes form Markov sequences
(see [10]).

The model of disorder detection at each sensor are presented in the next sec-
tion. It allows to define the individual pay-off of the players (sensors). It is
assumed that the sensors are distributed in homogeneous way in the guarded
area and the intruders behaviour are well modelled by symmetric random walk.
By these assumptions in the section 3 the a priori distribution of the disorder
moment at each node can be chosen in such a way that it gives the best model of
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the structure of sensors and the behaviour of intruder . The section 4 introduces
the aggregation method based on a simple game of the sensors. The section 5
contains derivation of the non-cooperative game and existence theorem for equi-
librium strategy. The final decision based on the state of the sensors is given by
the fusion center and it is described in the section 6.1. The natural direction of
further research is formulated also in the same section. A conclusion and resume
of an algorithm for rational construction of the surveillance system is included
in the section 6.2.

The extension of non-cooperative games to the case when the communication
between player is allowed leads to various solutions concepts. The voting stopping
game is interesting approach also in this direction of research.

3. DETECTION OF DISORDER AT SENSORS

Following the consideration of Section 1, let us suppose that the process
{an,n € N}, N = {0,1,2,...}, is observed sequentia%r in such a way that
each sensor, e.g. 7 (gets its coordinates in the vector X, at moment n). By

assumption, it is a stochastic sequence that has the Markovian structure given
random moment 6,, in such a way that the process after 6, starts from state

ne.—1- The objective is to detect these moments based on the observation

of X, . at each sensor separately. There are some results on the discrete time
case of such disorder detection which generalize the basic problem stated by
Shiryaev in [32] (see e.g. Brodsky and Darkhovsky [], Bojdecki [!], Poor and

Hadjiliadis [2%], Yoshida [1], Szajowski [}"]) in various directions.
Application of the model for the detection of traffic anomalies in networks has
been discussed by Tartakovsky et al. [1{]. The version of the problem when the

moment of disorder is detected with given precision will be used here (see [31]).

3.1. Formulation of the problem. The observable random variables {Yn}neN
are consistent with the filtration F, (or F, = O'(Xko, ?1, ..., Xn)). The random

vectors ?n take values in (E,B), where E C ®™. On the same probability
space there are defined unobservable (hence not measurable with respect to F,)
random variables {6,}™ , which have the geometric distributions:

(3.1) PO, =j)=p ¢, ¢ =1—p, €(0,1),j=1,2,....

The sensor r follows the process which is based on switching between two, time
homogeneous and independent, Markov processes { X!, }nen, @ = 0,1, 7 € M with
the state space (E,B), both independent of {6,}/,. Moreover, it is assumed
that the processes { X7, }nen have transition densities with respect to the o-finite
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measure U, i.e., for any B € B we have
32 PUXheB) = P(X,eBIXy=a)= [ ).
B

The random processes {X,}, {X%}, {X..} and the random variables 0, are
connected via the rule: conditionally on 6, = k

X — X0 . if £ > n,
mo X}k Hk<n,

where {X } is started from X?, , (but is otherwise independent of X? ).
For any fixed d. € {0,1,2,...} we are looking for the stopping time 7 € T
such that

(3.3) P.(|6, — 7| < d,) = sup P.(|6, — 7| < d,)

TES
where &% denotes the set of all stopping times with respect to the filtration
{Fn}nen. The parameters d, determines the precision level of detection and it
can be different for too early and too late detection. These payoff functions
measure the chance of detection of intruder.

3.2. Construction of the optimal detection strategy. In [ !] the construc-
tion of 7* by transformation of the problem to the optimal stopping problem for

the Markov process £ has been made, such that & ., = (X, ,_;_4.n,Is), where

X

Ly n—-1-dr,n

= (?T Reledpy - -+ s Xkr n) and II,., is the posterior process:
HrO = 07
L, = P,(6,<n|F),n=012...

which is designed as information about the distribution of the disorder instant 6,.
In this equivalent the problem of the payoff function for sensor r is hy (7 y 4,12, @).

4. THE AGGREGATED DECISION VIA THE COOPERATIVE GAME

There are various methods combining the decisions of several classifiers or sen-
sors. Each ensemble member contributes to some degree to the decision at any
point of the sequentially delivered states. The fusion algorithm takes into account
all the decision outputs from each ensemble member and comes up with an en-
semble decision. When classifier outputs are binary, the fusion algorithms include
the majority voting [15], [1¢], naive Bayes combination [}], behavior knowledge

The majority vote is the simplest. The extension of this method is a simple
game.
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4.1. A simple game. Let us assume that there are many nodes absorbing infor-
mation and make decision if the disorder has appeared or not. The final decision
is made in the fusion center which aggregates information from all sensors. The
nature of the system and their role is to detect intrusion in the system as soon
as possible but without false alarm.

The voting decision is made according to the rules of a simple game. Let us
recall that a coalition is a subset of the players. Let C = {C' : C C 2} denote
the class of all coalitions.

Definition 4.1. (see [21], [(]) A simple game is coalition game having the char-
acteristic function, ¢(-) : C — {0,1}.
Let us denote W = {C C M : ¢(C) =1} and L = {C C M : $(C) = 0}. The

coalitions in W are called the winning coalitions, and those from £ are called
the losing coalitions.

Assumptions 4.2. By assumption the characteristic function satisfies the prop-
erties:

(1) Mew;

(2) D e L;

(3) (the monotonicity): T C S € L implies T € L.

4.2. The aggregated decision rule. When the simple game is defined and the
players can vote presence or absence, ; = 1 or x; = 0, ¢ € N, of the intruder
then the aggregated decision is given by the logical function

(4.3) 7(T1, T2,y . .., Tp) = Z Hx,— H(l — ;).
CeWieC  i¢C
For the logical function m we have (cf [10])

1 (2
w1, 2P+ 7 w(2h .., 0,. . 2P).

5. A NON-COOPERATIVE STOPPING GAME

Following the results of the author and Yasuda [)] the multilateral stopping
of a Markov chain problem can be described in the terms of the notation used
in the non-cooperative game theory (see [21], [4], [17], [24]). Let (Yn,%’n,Px),
n=0,1,2,..., N, be a homogeneous Markov chain with state space (E, B). The
horizon can be finite or infinite. The players are able to observe the Markov chain
sequentially. Each player has their utility function f; : E = R, 4 = 1,2,...,p,
such that E;|f;(X1)| < oo. If process is not stopped at moment n, then each
player, based on F,, can declare independently their willingness to stop the
observation of the process.
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Definition 5.1. (see [16]) An individual stopping strategy of the player i (ISS)
is the sequence of random variables {o%}Y | where o :  — {0,1}, such that
o' is Fp-measurable.

The interpretation of the strategy is following. If of = 1 then player 7 declares
that they would like to stop the process and accept the realization of X,. Denote
ot = (oi,0%,...,0%) and let &' be the set of ISSs of player i, ¢ = 1,2,...,p.
Define

G=6'"x62x...x 6"

The element o = (01,02,...,0P)T € & will be called the stopping strategy (SS).
The stopping strategy o € & is a random matrix. The rows of the matrix are the
ISSs. The columns are the decisions of the players at successive moments. The
factual stopping of the observation process, and the players realization of the
payoffs is defined by the stopping strategy exploiting p-variate logical function.
Let m : {0,1}* — {0,1}. In this stopping game model the stopping strategy
is the list of declarations of the individual players. The aggregate function 7
converts the declarations to an effective stopping time.

Definition 5.2. A stopping time t,(o) generated by the SS ¢ € & and the
aggregate function 7 is defined by
t:(0) =inf{l <n < N:m(o},02,...,0°) =1}
(inf(P) = oo). Since 7 is fixed during the analysis we skip index m and write
t(0) = tx(0).
We have {w € Q: t;(0) = n} = iZ{{w € Q: (o}, 0%,...,00) =0} N{w €
Q:7m(ok,02,...,0P) = 1} € Fn, then the random variable t,(o) is stopping time

n’ ni*

with respect to {F,}2_,. For any stopping time t,(0) and i € {1,2,...,p}, let
' | fi(Xn) if t;(0) = n,
i) = { lim S, o0 £i(Xn) if te(0) = 00
(cf {33], [40]). If players use SS ¢ € & and the individual preferences are con-
verted to the effective stopping time by the aggregate rule 7, then player 7 gets
fiXen(o))-
Let o = (*o!,%?2,...,%0P)T be fixed SS. Denote

)
(Z) ( *O_z 1,0_1 *O_z+1 . *a_p)T'
[

Definition 5.3. (cf.
o = (%ol,%?,...,%0P)T € & is an equilibrium strategy with respect to 7 if for

]) Let the aggregate rule m be fixed. The strategy

each i € {1,2,...,p} and any o' € &' we have

(5.4) Eafi(Xtrn) 2 Bafi(X o oiy)-
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The set of SS &, the vector of the utility functions f = (f1, fa, ..., fp) and the
monotone rule 7 define the non-cooperative game G = (&, f,m). The construction
of the equilibrium strategy *o € & in G is provided in [40]. For completeness
this construction will be recalled here. Let us define an individual stopping set
on the state space. This set describes the ISS of the player. With each ISS of
player i the sequence of stopping events D}, = {w : o}, = 1} combines. For each
aggregate rule 7 there exists the corresponding set value function Il : § — §
such that (o}, 02,...,08) = n{lpy,Ipz,...,Ipe} = Inpa pz...pey. For solution
of the considered game the important class of ISS and the stopping events can
be defined by subsets C* € B of the state space E. A given set C* € B will be
called the stopping set for player i at moment n if D}, = {w : X,, € C*} is the
stopping event.

For the logical function 7= we have

1 1
(..., 2P) =2t n(zt,...,1,...,2°) + T -w(z},...,0,...,2P).

It implies that for D' € §

.

(5.5) I(DY,...,DP) = {D"ﬂH(Dl,...,Q,....,D”)}
u{D'NI(DY,...,0,...,DP)}.

Let f;, g; be the real valued, integrable (i.e. E,|f;(X;)| < 0o0) function defined
on E. For fixed D}, j=1,2,...,p, j # i, and C* € B define

P(C') = B, [fi(Xl)]Iipl(Dg) + gi(X1)Hm]

where ‘D, (A) = II(D},..., DY A, D ... DP) and D} = {w: X, € C'}. Let
at = max{0, a} and ¢~ = min{0, —a}.

Lemma 5.6. Let f;, g;, be integrable and let C7 € B, j =1,2,...,p, j # 1, be
fized. Then the set *C* = {z € E : fi(z) — gi(x) > 0} € B is such that

Y(*C") = sup ¥(C")

CieB
and
(5.7) P(*CY) = Eu(fi(X1) — gi(X1)) Lip, (o)
—E,(fi(X1) — :(X1)) Lip, ) + Ez9i(X1).

Based on Lemma 5.6 we derive the recursive formulae defining the equilibrium
point and the equilibrium payoff for the finite horizon game.
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5.1. The finite horizon game. Let horizon N be finite. If the equilibrium
strategy "o exists, then we denote v; x(z) = E; f;(Xy=)) the equilibrium payoff
of i-th player when X, = z. For the backward induction we introduce a useful
notation. Let & = {{oi},k = n,..., N} be the set of ISS for moments n <
k<N and G, =6, x &2 x ... x G2. The SS for moments not earlier than n
is "o = ("o',"0?,...,"0?) € &,, where "o’ = (0},0%,,,...,0%). Denote

tn =tn(0) = t("0) = inf{n <k < N :7(0},0%,...,00) =1}
to be the stopping time not earlier than n.

Definition 5.8. The stopping strategy ™o = ("o!,™02,...,™P) is an equilib-

rium in &,, if
Exfi(th(*a)) 2 Ea:fi(th(*a(i))) Px — a.e.
for every i € {1,2,...,p}, where

n*O(i) — (n*O'l, o ’n*o_i-l, no.i, n*o_i—f-l’ o ,n*o_p).

Denote

'Ui,N—n+1(Xn——l) = Ez[fi(th(*a))lgn—l] = EXn—lfi(th(*U))'

At moment n = N the players have to declare to stop and v; o(z) = f;(z). Let us
assume that the process is not stopped up to moment n, the players are using the
equilibrium strategies 0%, i = 1,2,...,p, at moments k =n +1,..., N. Choose
player ¢ and assume that other players are using the equilibrium strategies *o7,
j # i, and player i is using strategy of defined by stopping set C®. Then the
expected payoff on_n(X,_1, C*) of player i in the game starting at moment n,
when the state of the Markov chain at moment n — 1 is X,,_; is equal to

oN-n(Xn-1,C") = Ex,_, [fi(Xn)]Ii*Dn(Dz) + ”i,N—n(Xn)HW] ,

where D, (A) = [I(*D}, ... ,*Di-1, A, *Di+t .. *DP). .
By Lemma 5.6 the conditional expected gain pn_n(Xny—n, C') attains the max-
imum on the stopping set *C} = {z € E : fi(z) — v; n—n(z) > 0} and

vi,N——n—i—l(Xn—l) = Ex[(fz(Xn) - Ui,N—n(Xn))+]Ii*Dn(Q)|Sn—1]
(5.1) —E;[(fi(Xn) — vin-n(Xn)) Lop, 9)[Fn—1]
+Ew[vi,N—n(Xn)|3n—1]

P,—a.e.. It allows to formulate the following construction of the equilibrium
strategy and the equilibrium value for the game G.

Theorem 5.2. In the game Guwith finite horizon N we have the following solu-
tion.
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(1): The equilibrium value v;i(x), ¢ = 1,2,...,p, of the game G can be cal-
culated recursively as follows:
(1) vio(z) = fi(x);
(2) Forn=1,2,...,N we have Py—a.e.
'Ui,n(x) = Ez[(fi(XN-n+1) — Ui,n—l(XN—n+l))+L*DN_n+1(Q)|3N—n]
—Ew[(fi(XN—n+1) - 'Ui,n—l(XN—n+1))_]Iz‘~DN_n+1(@)|3N——n]
+Ez[Vin—1(XN-n+1)|[EN-nl,
fori=1,2,...,p.

(ii): The equilibrium strategy *o € & is defined by the SS of the players *o?,
where Yot = 1 if X, € *C%, and *C! = {z € E : fi(z) — vin-n(z) > 0},
n=0,1,...,N.

We have vi(z) = v n(2), and B fi(Xy0)) = vin(z), 1 =1,2,...,p.

6. INFINITE HORIZON GAME

In this class of games the equilibrium strategy is presented in Definition 5.3
but in class of SS

6} ={0€ 6" E.f; (Xyr)) <o forevery z€E,i=12,...,p}
Let "o € &% be an equilibrium strategy. Denote
'”i(x) = Ezfi(Xt(*a))'

Let us assume that "tV € &3} ,41 is constructed and it is an equilibrium
strategy. If players j = 1,2,...,p, j # %, apply at moment n the equilibrium
strategies "o/ , player i the strategy o defined by stopping set C* and "*D% at
moments n + 1,n+ 2, ..., then the expected payoff of the player ¢, when history
of the process up to moment n — 1 is known, is given by

on(Xn-1, C') = Ex,_, [fz'(Xn)]L*Dn(Dm + ”i(Xn)Hi*Dn(Da)] )

where #*D,,(A) = TI(*DL, ... *Di Y A*DEFY L *DR), *Di = {w € Q : *od = 1},
j=1,2...,p,j#5and Di ={weQ:0’ =1} =1} ={we Q: X, €C}. By
Lemma 5.6 the conditional expected gain ¢, (X,_1, C*) attains the maximum on -
the stopping set *Ci = {z € E : fi(z) > vi(z)} and
(pn(Xn—ly *Ci) = E.z'[(fz(Xn) - 'Ui(Xn))+]L'*Dn(Q)|Sn—1]
—Eo[(fi(Xn) = vi(Xn)) Lo, @) Fn-1]
+Ex[vz(Xn)|3’n-1]
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Let us assume that there exists solution (w;(z), we(), ..., wy(z)) of the equa-
tions
(6.1) wi(z) = E(fi(X1) — wi(X1)) Lip, ()

—E; (fi(X1) — wi(X1)) Liep, () + Eowi(X1),

i =1,2,...,p. Consider the stopping game with the following payoff function
fori=1,2,...,p.
$in(z) = { vi(z) ifn>N.

Lemma 6.2. Let 'o € &} be an equilibrium strategy in the infinite horizon game
G. For every N we have

Ez¢z‘,N(Xt*) = v;(x).
Let us assume that for i = 1,2,...,p and every z € E we have
(6.3) E,[suppen fi" (X5)] < 0.

Theorem 6.4. Let (X, Fn, Pz)32, be a homogeneous Markov chain and the pay-
off functions of the players fulfill (6.3). If t* = t('0), "o € &% then E, fi(Xs+) =

vi(z).

Theorem 6.5. Let the stopping strategy "o € &} be defined by the stopping sets
*‘Ci={z e E: fi(z) >v(zx)},i=1,2,...,p, then "o is the equilibrium strategy
in the infinite stopping game G.

6.1. Determining the strategies of sensors. Based on the model constructed
in Sections 3-5 for the net of sensors with the fusion center determined by a sim-
ple game, one can determine the rational decisions of each nodes. The rationality
of such a construction refers to the individual aspiration for the highest sensitivity
to detect the disorder without false alarm. The Nash equilibrium fulfills require-
ment that nobody deviates from the equilibrium strategy because its probability
of detection will be smaller. The role of the simple game is to define wining
coalitions in such a way that the detection of intrusion to the guarded area is
maximal and the probability of false alarm is minimal. The method of construct-
ing the optimum winning coalitions family is not the subject of the research in
this article. However, there are some natural methods of solving this problem.
The research here is focused on constructing the solution of the non-cooperative
stopping game as to determine the detection strategy of the sensors. To this end,
the game analyzed in Section 5 with the payoff function of the players defined
by the individual disorder problem formulated in Section 3 should be derived.
The proposed model disregards correlation of the signals. It is also assumed
that the fusion center has perfect information about signals and the information
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is available at each node. The further research should help to qualify these real
needs of such models and to extend the model to more general cases. In some
type of distribution of sensors, e.g. when the distribution of the pollution in the
given direction is observed, the multiple disorder model should work better than
the game approach. In this case the a priori distribution of disorder moment
has the form of sequentially dependent random moments and the fusion decision
can be formulated as the threshold one: stop when k* disorder is detected. The
method of a cooperative game was used in [] to find the best coalition of sensors
in the problem of the target localization. The approach which is proposed here
shows possibility of modelling the detection problem by multiple agents at a
general level.

6.2. Final conclusion concerning the disorder detection system. In a
general case the consideration of the paper [37] leads to the algorithm of con-
structing the disorder detection system.

FIGURE 1. Sudety Mountains. International Conference on Math-
ematical Statistics STAT’2000. Szklarska Poreba, Poland, August,
2000
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FI1GURE 2. RIMS Conference 2002, Kyoto, Japan. From the left:
the author of this note, professors Masami Yasuda, Vladimir V.
Mazalov and Mitsushi Tamaki

6.2.1. Algorithm.

(1) Define a simple game on the sensors.
(2) Describe signal processes and a priori distribution of the disorder mo-

ments at all sensors. Establish the a posteriori processes: ﬁn = (1, - -+ ipa),

where I, = P(8 < n|F,).
(3) Solve the multivariate stopping game on the simple game to get the in-
dividual strategies of the sensors.

7. THE CONTRIBUTION TO THE MATHEMATICAL EDUCATION, THE
SCIENTIFIC COOPERATION AND THE FRIENDSHIP

It was 1994 when I came to Japan for the first time based on Prof. Minoru Sak-
aguchi and Prof. Katsunori Ano invitation to take part in the International Con-
ference on Stochastic Models and Optimal Stopping, Nanzan University, Nagoya.
Since this event Professor Masami Yasuda is my guide in the mathematics and
the Japanese culture. When the Internet connected the people we discussed
the game model, which I call myself the Masami Yasuda game described in this
note in the sections 1.2 and 2. Based on the discussion we have written the
papers [40] and [47]. Our meeting and discussion were in Poland (see Figure 1),
Japan (see Figure 2) and Russia (see Figure 3). Last year, during the one day
workshop, the possible further research and academic cooperation was the topic
of our discussion. Based on European Union integration processes the Polish
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FIGURE 3. 13 Symposium of ISDG 2008, St.Petersburg, Russia

educational system is under very intensive reconstruction process. The mathe-
matical education of engineering faculties students is very fragile task. Professor
Yasuda provides us his extensive academic experience by his contribution to our
local conferences devoted to teaching mathematics for non-mathematical major
students. Such organized events were in Ibaraki National College of Technology,
Hitachinaka (2006) and Wroclaw Univeristy of Technology (2008).
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Why is Uncertainty Theory Useful?

Baoding Liu
Uncertainty Theory Laboratory
Department of Mathematical Sciences
Tsinghua University, Beijing 100084, China
liu@tsinghua.edu.cn  http://orsc.edu.cn/liu

This presentation is based on the book: B. Liu, Uncertainty Theory, 4th ed., http://orsc.edu.cn/liu/ut.pdf.

1 What is uncertainty theory?

When the sample size is too small (even no-sample) to estimate a probability distribution, we have to invite
some domain experts to evaluate their belief degree that each event will occur. Since human beings usually
overweight unlikely events, the belief degree may have much larger variance than the real frequency. Perhaps
some people think that the belief degree is subjective probability. However, it is inappropriate because
probability theory may lead to counterintuitive results in this case. In order to distinguish from randomness,
this phenomenon was named “uncertainty”.

How do we understand uncertainty? How do we model uncertainty? In order to answer those questions,
an uncertainty theory was founded by Liu [6] in 2007 and refined by Liu [9] in 2010. Nowadays uncertainty
theory has become a branch of mathematics for modeling human uncertainty.

Let T’ be a nonempty set, and £ a o-algebra over I'. Each element A in L is called an event. A set function
M from L to [0,1] is called an uncertain measure if it satisfies the following axioms (Liu [6]):

Axiom 1. (Normality Axiom) M{T'} =1 for the universal set I';
Axiom 2. (Duality Axiom) M{A} + M{A°} =1 for any event A;

Axiom 3. (Subadditivity Axiom) For every countable sequence of events A;, Az, - -+, we have

M{G Ai} < iM{Ai}. (1)

i=1

The triplet (I, £, M) is called an uncertainty space. In order to obtain an uncertain measure of compound
event, a product uncertain measure was defined by Liu [8], thus producing the fourth axiom of uncertainty
theory:

Axiom 4. (Product Axiom) Let (I'k, Lg, My) be uncertainty spaces for k = 1,2,--- The product uncertain
measure M is an uncertain measure satisfying

M {ﬁ Ak} = R Mi{Ax} (2)
k=1 k=1

where Ay are arbitrarily chosen events from L, for k = 1,2,---, respectively.
An uncertain variable is defined as a measurable function £ from an uncertainty space (I', £, M) to the set
of real numbers, i.e., for any Borel set B of real numbers, the set

{¢eB}={yeT|¢(y) € B} 3)

is an event. In order to describe an uncertain variable in practice, the concept of uncertainty distribution is
defined by

P(z)=M{¢ <z}, VzeR (4)
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Peng and Iwamura [14] proved that a function @ : ® — [0,1] is an uncertainty distribution if and only if it is
a monotone increasing function except ®(z) = 0 and ®(x) = 1. The expected value of an uncertain variable
¢ is defined by Liu [6] as an average value of the uncertain variable in the sense of uncertain measure, i.e.,

+o0 0
Blg= [ attezrar- [ ae<nar (5)
0 —00
provided that at least one of the two integrals is finite. If £ has an uncertainty distribution ®, then the
expected value may be calculated by

+00 0
El¢] =/ (1 —@(z))dz —/ ®(z)dz. (6)
0 —00

Let &1,&2, -, &, be independent uncertain variables with uncertainty distributions ®;, ®o,--- , ®,, re-
spectively. If the function f(xi,z2,---,xy) is strictly increasing with respect to x1,x2, -+, Z,, and strictly
decreasing with respect to Tm+1,Tm+2," - ,ZTn, then & = f(£1,8&2, -+, &) is an uncertain variable with inverse
uncertainty distribution

U a) = f(27 (@), @51 (), @14 (1 - a), -+, @5 (1~ a)). (7

This is the operational law of uncertain variables. For example, let £ and & be independent uncertain
variables with regular uncertainty distributions ®; and ®,, respectively. Since x| + 5 is a strictly increasing
function with respect to (z1,z2), the sum & = & + & is an uncertain variable with inverse uncertainty
distribution

Ul (a) = @7 () + 051 (@) (8)

In addition, since x; — x is strictly increasing with respect to z; and strictly decreasing with respect to 2,
the inverse uncertainty distribution of the difference &; — &; is

U a) =27 (e) - 23 (1 - ). ©)

Furthermore, Liu and Ha [12] proved that the uncertain variable £ = f(&;,&2,-- - ,&,) has an expected value
1

E[¢) = / f(@7Ha), - ,@;}(a),@;lﬂ(l —a), -, 0711 —a))da. (10)
0

For exploring the recent developments of uncertainty theory, the readers may consult my book Uncertainty
Theory at http://orsc.edu.cn/liu/ut.pdf.

2 What is uncertainty?

Uncertainty theory is a branch of mathematics for modeling human uncertainty. Perhaps some readers may
complain that I never clarify what uncertainty is. In fact, I really have no idea how to use natural language to
define the concept of uncertainty clearly, and I think all existing definitions by natural language are specious
because they are just like riddles. A very personal and ultra viewpoint is that the words like randomness,
fuzziness, roughness, vagueness, greyness, and uncertainty are nothing but ambiguity of human language!
Perhaps those concepts cannot be defined directly by natural language.

However, fortunately, some “mathematical scales” have been invented to measure the truth values of propo-
sitions, for example, probability measure, capacity, fuzzy measure, possibility measure as well as uncertain
measure. All of those measures have been defined clearly and precisely by axiomatic methods.

Let us go back to the first question “what is uncertainty”. Perhaps we can answer it this way. If it happens
that some phenomenon can be quantified by uncertain measure, then we call the phenomenon uncertainty.

How do we verify that a phenomenon can be quantified by uncertain measure? In order to answer it,
let us consider the question “how many students are there in Uncertainty Theory Laboratory”. Assume the
“number of students” is not exactly known but between 7 and 9. In this case, we may derive 8 events (i.e., a
o-algebra) from the concept of “number of students”. The 8 events are listed as follows,

0, {73}, {8}, {9}, {7, 8}, {7,9}, {8,9}, {7,8,9}.
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In order to indicate the belief degree that each event will occur, we must assign to each event a number
between 0 and 1, for example,

M{7} =06, M{8} =03, M{9}=0.2,
M{7,8} =08, M{7,9} =07, M{8,9} =04,
M{0} =0, M{7,8,9}=1.

This assignment implies that a set function M is defined from those 8 events to [0, 1]. If it happens that such
a set function satisfies the axioms of uncertainty theory (i.e., it is an uncertain measure), then the “number
of students” is an uncertain variable.

Perhaps the above approach is the unique scientific way to judge if a phenomenon is uncertainty. Liu
[9] suggested that uncertainty is anything that satisfies the azioms of uncertainty theory. In other words,
uncertainty is anything that can be quantified by the uncertain measure.

Please note that the word “uncertainty” has been widely used or abused. In a wide sense, Knight [4] and
Keynes [3] used uncertainty to represent any non-probabilistic phenomena. This type of uncertainty is also
known as Knightian uncertainty, Keynesian uncertainty, or true uncertainty. Unfortunately, it seems impos-
sible for us to develop a unified mathematical theory to deal with such a broad class of uncertainty because
the concept of non-probability represents too many things. In a narrow sense, Liu [9] defined uncertainty as
anything that satisfies the axioms of uncertainty theory. It is emphasized that uncertainty in the narrow sense
is a scientific terminology, but uncertainty in the wide sense is not.

Some people think that uncertainty and probability are synonymous. This is a wrong viewpoint either in
the wide sense or in the narrow sense. Uncertainty and probability are undoubtedly two different concepts.
Otherwise, the terminology “uncertainty” becomes superfluous and we should use “probability” only.

Some people believe that everything is probability or subjective probability. When the sample size is large
enough, the estimated probability may be close enough to the real one. Meanwhile, perhaps the viewpoint is
somewhat true. However, we are frequently lack of observed data, and then the estimated probability may
be far from the real one. Liu [11] asserted that probability theory may lead to counterintuitive results in this
case. More extensively, Hicks [2] concluded that “we should always ask ourselves, before we apply [stochastic
methods], whether they are appropriate to the problem at hand. Very often they are not.”

Some people affirm that probability theory is the only legitimate approach. Perhaps this misconception is
rooted in Cox’s theorem [1] that any measure of belief is “isomorphic” to a probability measure. However,
uncertain measure is considered coherent but not isomorphic to any probability measure. What goes wrong
with Cox’s theorem? Personally I think that Cox’s theorem presumes the truth value of conjunction of two
propositions is a twice differentiable function of the truth values of individual propositions, and then excludes
uncertain measure from its start. In fact, there does not exist any evidence that the truth value of conjunction
is completely determined by the truth values of individual propositions, let alone a twice differentiable function.

3 In what situations does uncertainty arise?

Frequency is the percentage of all the occurrences of an event in the experiment. An event’s frequency is a
factual property, and does not change with our state of knowledge. In other words, the frequency in the long
run exists and is relatively invariant, no matter if it is observed by us.

A fundamental premise of applying probability theory is that the estimated probability is close enough to
the real frequency, no matter whether the probability is interpreted as subjective or objective. Otherwise, the
law of large numbers is no longer valid and probability theory is no longer applicable.

However, very often we are lack of observed data about the unknown state of nature, not only for economic
reasons, but also for technical difficulties. How do we deal with this case? It seems that we have to invite
some domain experts to evaluate their belief degree that each event will occur. Since human beings usually
overweight unlikely events (Tversky and Kahneman [15]), the belief degree may have much larger variance
than the real frequency, and we should deal with it by uncertainty theory.

Could we deal with the belief degree by probability theory when the belief degree deviates from the
frequency? Some people do think so and call it subjective probability. However, it is inappropriate because
probability theory may lead to counterintuitive results in this case.

85



Probability Uncertainty

Figure 1: When the estimated probability (curve) is close enough to the real frequency (solid histogram),
we should use probability theory. When the belief degree (curve) has much larger variance than the real
frequency (dashed histogram), we should deal with it by uncertainty theory.

Consider a counterexample presented by Liu [11]. Assume the weight of a truck is 90 tons and the strengths
of 50 bridges are iid normal random variables A/(100, 1) in tons (I am afraid this fact cannot be verified without
the help of God). For simplicity, it is admitted that there is only one truck on the bridge at every time, and
a bridge collapses whenever its real strength is less than the weight of truck. Now let us have the truck cross
over the 50 bridges one by one. It is easy to verify that

Pr{“the truck can cross over the 50 bridges”} ~ 1. (11)

That is to say, the truck may cross over the 50 bridges successfully.

However, when there do not exist any observed data for the strength of each bridge at the moment, we
have to invite some domain experts to evaluate the belief degree about it. As we stated before, usually the
belief degree has much larger variance than the real strength of bridges. Assume the belief degree looks like a
normal probability distribution A/(100,100). Let us imagine what will happen if the belief degree is treated
as probability. At first, we have no choice but to regard the strengths of the 50 bridges as iid normal random
variables with expected value 100 and variance 100 in tons. If we have the truck cross over the 50 bridges one
by one, then we immediately have

Pr{“the truck can cross over the 50 bridges”} ~ 0. (12)

Thus it is almost impossible that the truck crosses over the 50 bridges successfully. Unfortunately, the results
(11) and (12) are at opposite poles. This conclusion seems unacceptable and then the belief degree cannot be
treated as probability.

Within the research area of information science, Liu [11] suggested a basic principle that a possible propo-
sition cannot be judged impossible. In other words, if a proposition is possibly true, then its truth value should
not be zero. Equivalently, if a proposition is possibly false, then its truth value should not be unity. Thus
probability theory is not appropriate to human uncertainty on the basis of such a principle.

In summary, Liu [11] wrote that “when the sample size is too small (even no-sample) to estimate a
probability distribution, we have to invite some domain experts to evaluate their belief degree that each event
will occur. Since human beings usually overweight unlikely events, the belief degree may have much larger
variance than the real frequency and then probability theory is no longer valid. In this situation, we should deal
with it by uncertainty theory.” When the sample size becomes large, the uncertainty disappears. Meanwhile,
the problem at hand becomes probabilistic and we should use probability theory instead of uncertainty theory.

4 What is the difference between uncertain variable and uncertain
set?

Uncertain variable (Liu [6]) and uncertain set (Liu [10]) are two basic tools in uncertainty theory. What is
the difference between them? As their names suggest, both of them belong to the same broad category of
uncertain concepts. However, they are differentiated by their mathematical definitions: an uncertain set is a
set-valued function while an uncertain variable is a real-valued function. In other words, the former refers to
a collection of values, while the latter to one value.
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Essentially, the difference between uncertain variable and uncertain set focuses on the property of exclu-
siwity. In fact, the same word can be either uncertain variable or uncertain set. They will be distinguished
from the context. If the concept has exclusivity, then it is an uncertain variable. Otherwise, it is an uncertain
set. A few examples will illustrate the difference between the two concepts.

Example 1: Consider the statement “Tom came into the classroom at approximately three o’clock”. Is
“approximately three o’clock” an uncertain variable or an uncertain set? If we are interested in when Tom
came into the classroom, then the phrase “approximately three o’clock” is an uncertain variable rather than
an uncertain set because it is an exclusive concept (Tom’s arrival time cannot be more than one value). For
example, if Tom came into the classroom at 2:59, then it is impossible that Tom came into the classroom at
3:01. In other words, “Tom came into the classroom at 2:59” does exclude the possibility that “Tom came into
the classroom at 3:01”. By contrast, if we are interested in what time can be considered “approximately three
o’clock”, then “approximately three o’clock” is an uncertain set rather than an uncertain variable because
the concept now has no exclusivity. For example, both 2:59 and 3:01 can be considered “approximately three
o’clock”. In other words, “2:59 is approximately three o’clock” does not exclude the possibility that “3:01 is
approximately three o’clock”.

Example 2: Consider the statement “John is a young man”. Is “young” an uncertain variable or an uncertain
set? If we are interested in John’s real age, then “young” is an uncertain variable rather than an uncertain
set because it is an exclusive concept (John’s age cannot be more than one value). For example, if John is 20
years old, then it is impossible that John is 25 years old. In other words, “John is 20 years old” does exclude
the possibility that “John is 25 years old”. By contrast, if we are interested in what ages can be regarded
‘“young”, then “young” is an uncertain set rather than an uncertain variable because the concept now has no
exclusivity. For example, both 20-year-old and 25-year-old men can be considered “young”. In other words,
“a 20-year-old man is young” does not exclude the possibility that “a 25-year-old man is young”.

Example 3: Consider the statement “James is a tall man”. Is “tall” an uncertain variable or an uncertain
set? If we are interested in James’ real height, then “tall” is an uncertain variable rather than an uncertain set
because the concept now is exclusive (James’ height cannot be more than one value). For example, if James
is 180cm in height, then it is impossible that James is 185cm in height. In other words, “James is 180cm in
height” does exclude the possibility that “James is 185cm in height”. By contrast, if we are interested in what
heights can be considered “tall”, then “tall” is an uncertain set rather than an uncertain variable because
the concept in this case has no exclusivity. For example, both 180cm and 185cm can be considered “tall”. In
other words, “a 180cm-tall man is tall” does not exclude the possibility that “a 185cm-tall man is tall”.

Example 4: Consider the statement “today is a warm day”. Is “warm” an uncertain variable or an uncertain
set? If we are interested in today’s real temperature, then “warm” is an uncertain variable rather than an
uncertain set because the concept now is exclusive. For example, if today is 20°C, then it is impossible that
today is 25°C. In other words, “today is 20°C” does exclude the possibility that “today is 25°C”. By contrast,
if we are interested in what temperatures can be regarded “warm”, then “warm” is an uncertain set rather
than an uncertain variable because the concept now has no exclusivity. For example, both 20°C and 25°C
can be considered “warm”. In other words, “20°C is a warm day” does not exclude the possibility that “25°C
is a warm day”.

Example 5: Consider the statement “most students are boys”. Is “most” an uncertain variable or an
uncertain set? If we are interested in what percentage of students are boys, then “most” is an uncertain
variable rather than an-uncertain set because the concept in this case is exclusive. For example, if 80% of
students are boys, then it is impossible that 85% of students are boys. By contrast, if we are interested in
what percentages can be considered “most”, then “most” is an uncertain set rather than an uncertain variable
because the concept now has no exclusivity. For example, both 80% and 85% can be considered “most”.
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5 Why is fuzzy variable not suitable for modeling uncertain quan-
tities?

A fuzzy variable is a function from a possibility space to the set of real numbers (Nahmias [13]). Some people
think that fuzzy variable is a suitable tool for modeling uncertain quantities. Is it really true? Unfortunately,
the answer is negative.

Let us reconsider the counterexample presented by Liu [11]. If the strength of bridge, “about 100 tons”,
is regarded as a fuzzy concept, then we may assign it a membership function, say

13
120 — 7)/20, if 100 < z < 120 (13)

(z —80)/20, if 80 <z < 100
p(x) =
(
that is just the triangular fuzzy variable (80,100, 120).
Please do not argue why I choose such a membership function because it is not important for the focus of
debate. Based on the membership function p and the definition of possibility measure

Pos{B} = sup u(z), (14)
z€B

the possibility theory will immediately conclude the following three propositions:

(a) the strength is “exactly 100 tons” with possibility measure 1,
(b) the strength is “not 100 tons” with possibility measure 1,
(c) “exactly 100 tons” and “not 100 tons” are equally likely.

However, it is doubtless that the belief degree of “exactly 100 tons” is almost zero. Nobody is so naive to
expect that “exactly 100 tons” is the true strength of the bridge. On the other hand, “exactly 100 tons” and
“not 100 tons” have the same belief degree in possibility measure. Thus we have to regard them “equally
likely”. It seems that no human being can accept this conclusion. This paradox shows that those imprecise
quantities like “about 100 tons” cannot be quantified by possibility measure and then they are not fuzzy
concepts.

6 Why is fuzzy set not suitable for modeling unsharp concepts?

A fuzzy set is defined by its membership function p which assigns to each element z a real number u(z) in the
interval [0, 1], where the value of p(z) represents the grade of membership of z in the fuzzy set. This definition
was given by Zadeh [16] in 1965. However, there are too many fuzzy sets that share the same membership
functions. Perhaps this is the root of debate about fuzzy set theory. A more precise definition states that a
fuzzy set is a function from a possibility space to a collection of sets.

Some people believe that fuzzy set is a suitable tool to model unsharp concepts. Unfortunately, it is not
true. In order to convince the reader, let us examine the concept of “young”. Without loss of generality,

13

assume “young” has a trapezoidal membership function (15,20, 30, 40), i.e.,
0, ifz <15
(x—15)/5, if15<x<20
ulz) = 1, if20< <30
(40 — £)/10, if30 <z < 40
0, if > 40.

It follows from the fuzzy set theory that “young” may take any values of a-cut of u. Thus we immediately
conclude two propositions:

(a) “young” includes [20yr, 30yr| with possibility measure 1,
(b) “young” is just [20yr, 30yr] with possibility measure 1.
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The first conclusion sounds good. However, the second conclusion seems unacceptable because it is almost
impossible that “young” does mean the ages just from 20 to 30. This fact says that “young” cannot be
regarded as a fuzzy set.

Liu [11] claimed that “we should always ask ourselves, before we apply fuzzy set theory, whether it is
appropriate to the problem at hand. Almost it is not.”

7 What is the difference between uncertainty theory and fuzzy
mathematics?

Uncertainty theory (Liu [6][9]) is a branch of mathematics for modeling human uncertainty, while fuzzy
mathematics (Zadeh [16]) is a branch of mathematics for studying the behavior of fuzzy phenomena.
What is the difference between uncertainty theory and fuzzy mathematics? The essential difference is that
fuzzy mathematics assumes
Pos{AU B} = Pos{A} V Pos{B} (15)

for any events A and B no matter if they are independent or not, and uncertainty theory assumes
M{AU B} = M{A} v M{B} (16)

only for independent events A and B. However, a lot of surveys showed that the measure of the union of
events is usually greater than the maximum when the events are not independent. This fact states that human
brains do not behave fuzziness.

Both uncertainty theory and fuzzy mathematics attempt to model human belief degree, where the former
uses the tool of uncertain measure and the latter uses the tool of possibility measure. Thus they are complete
competitors.

8 What is the difference between uncertainty theory and proba-
bility theory?

Uncertainty theory (Liu [6][9]) is a branch of mathematics for modeling human uncertainty, while probability
theory (Kolmogorov [5]) is a branch of mathematics for studying the behavior of random phenomena.

What is the difference between uncertainty theory and probability theory? The main difference is that
the product uncertain measure is the minimum of uncertain measures of uncertain events, i.e.,

M{A x B} = M{A} AM{B}, (17)
and the product probability measure is the product of probability measures of random events, i.e.,
Pr{A x B} = Pr{A} x Pr{B}. (18)

This difference implies that uncertain variables and random variables obey different operational laws.

Probability theory and uncertainty theory are complementary mathematical systems that provide two
acceptable mathematical models to deal with the phenomena whose outcomes cannot be exactly predicted in
advance. Personally I think probability measure should be interpreted as frequency while uncertain measure
should be interpreted as belief degree. Probability theory is not an appropriate tool to model belief degree,
just like that uncertainty theory is not an appropriate tool to model frequency.

9 Conclusion

When the sample size is too small (even no-sample) to estimate a probability distribution, we have to invite
some domain experts to evaluate their belief degree that each event will occur. Since human beings usually
overweight unlikely events, the belief degree may have much larger variance than the real frequency and then
probability theory is no longer valid. In this situation, we should deal with it by uncertainty theory.
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