Adaptive algorithm for Markov decision processes using pattern-matrix
learning method
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This note is concerned with adaptive algorithm for uncertain Markov decision pro-
cesses(MDPs) with the average reward criterion. As a sequel to [2], we consider the learning
algorithm for investigating the structure of unknown transition matrices and getting adaptive
policy in regularly communicating model where the state space is decomposed into a single
communicating class and a transient class. Using pattern matrix learning method, we have an
asymptotic sequence of adaptive policies with nearly average optimal properties.
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1. Notation
Consider a controlled dynamic system with finite state space S = {1,2,..., N}, containing N < oo
elements. For each i € S, the finite set A(7) denotes the set of available actions at state i. Let Q
denote the parameter space of unknown transition matrices, i.e.,
(1) Q = {g = (455(a)lais (@) 2 0, g qij(a) = 1 for i, j € S and a € A(i)}.

The sample space is the product space 2 = (S x A)*> such that the projections Xy, A; on the
t-th factors S, A describe the state and action at the ¢-th stage (t = 0). Let IT denote the set of all
policies, i.e., for 7 = (mg,71,...) € I, let m; € P(A|(S x A)t x S) for all t = 0, where, for any finite
sets X and Y, P(X|Y) denotes the set of all conditional probability distribution on X given Y. A
randomized stationary policy £ and a stationary policy f are defined by a usual way (cf. [3]).

We will construct a probability space as follows:for any initial state Xo = i,m € II and a
transition law ¢ = (g;j(a)), let P(Xi41 = j|Xo,Do,..., Xy = 4,Ar = a) = ¢;j(a) and P(A; =
alXo, Ao, ..., Xy = 1) = m(a|Xo,Aog,..., Xt = i) (t = 0). Then, we can define the probability
measure Pr(-|Xo =1i,q) on Q. H,_1 = (Xo,Ao,...,Xp—1) denotes a history until the (n — 1)-th
step. Let n(D) denotes the number of elements in a set D.

For a given reward function r on S x A, we shall consider the long-run expected average reward:
(2) $(i, qlm) = Hminfr oo 727 Br (30 7(Xe, Ar) | Xo =1i,q)
where E;(:|Xo =i, q) is the expectation operator with respect to Pr(:|Xo =i, q).

Let D be a subset of Q. Then, the problem is to maximize (i, ¢|) over all 7 € II for any i € S

and ¢ € D. Thus, denoting the optimal value function as
(3) Y(i,q) = supen (i, q|),
a policy 7* € II will be called g-optimal if 1 (i, ¢|7*) = (i, q) for all i € S and called adaptively
optimal for D if 7* is g-optimal for all ¢ € D. The sequence of policies {7"}2°, C II is called an
asymptotic sequence of adaptive policies with nearly optimal properties for D C Q and E C S if
limy, 00 ¥(7, q|7"™) = (i, q) for all ¢ € D and i € E.

Let ¢ € Q. A subset E C S is called a communicating class for ¢ if (i) for any i,j € E,
there exists a path in E from ¢ to j with positive probability, rewritten by “i — 5”7, i.e., it holds
that ¢;,i,(01)¢igis(a2) - - qi,_yi,(ai—1) > 0 for some {i; = i,i,...,4 = j} C E and a € A(ix) and
2 <1< N, and (ii) E is closed, i.e., ZjeE gij(a) =1fori € E,a € A(i).

The transition matrix ¢ € Q is said to be regularly communicating if there exists an F ; S
such that (i) F is a communicating class for ¢ and (ii) 7 = S — E is an absolutely transient class,
i.e., Pr(X; € E for some t =2 1|Xy € T) = 1 for all 7 € II. For a regularly communicating ¢ € Q,
this corresponding communicating class £ will be denoted by F(q) depending on ¢ € Q. For any
igp € S, we denote by Q*(ig) the set of regularly communicating ¢ € Q with ig € E(q).

In this note, using the method of pattern-matrix learning we will construct an asymptotic
sequence of adaptive policies with nearly optimal properties for Q*(ig) with ig € S, which is
thought of as a wider class for uncertain MDPs than the communicating case treated in [2].



2. Preliminary lemmas
Lemma 1. Let ¢ € Q*(ig) with ig € S. Let a policy @ = (7o, 71,...) and a decreasing sequence
of positive numbers {e:};2, satisfy that for each t = 0 7 (alh:) = e with a € A(zy) and hy =
(zo,a0,1,...,2¢) € Hy. Then, it holds that for any E ; E(q),
(4) P:(Xi41 € E(q) — E for some (1 S 1< N)| Xy € E) 2 (6epyn)Y

For q € Q*(ip) with ig € S, a sequence of stopping times {o;} and subsets {E,,} C E(q) will
be defined as follows:
(5)  on:=min{t|X; €15, ,,t > op}, By, = Eo,, U{X,, } 1o, = E(q) — Ep,,, (n21)
where min () = oo, 09 = 0, Ey := {ig} and T := E(q) — Ep.

For any E C E(q), let n(E) = min{n = 1|E,, = E(q)}. If i(E) < oo, we can find the
pattern-matrix M (q). Here, we have the following.
Lemma 2. Let ¢ € Q*(ig) with iy € S and T satisfy condition in Lemma 2.2 with Y .-, el = .
Then, for any E S E(q) it holds that (i) Px((E) < oo|Xo = io,q) = 1, and (ii) for any k <
n(E), Px(oy, < oo|Xo = ip,q) = 1.
3. Pattern-matrix learning algorithms
For any sequence {b,}5°, with by = 1,0 < b, < 1 and b, > b,y for all n = 1, let ¢ be any
strictly increasing function that ¢ : [0,1] — [0, 1] and ¢(b,,) = b, for all n = 0. Here, we consider
the following iterative scheme called a pattern-matrix learning algorithm with ig € S, {b,} and
7 € (0,1), denoted by PMLA (9, {bn}, 7)(cf. [2]).
PMLA (ig, {bn},T):

1. Set Ey = {io},To =5- Eo,@o( ) =0, Xg =19 and 7] a‘Xo = n ( )) Lfor a € A(Zo)

2. Suppose that E, C S,T,, = S — E,, {0,(4)}, 7] a|0) = Prob.(A, = a|Hp—1,Ap-1, X, =
i) (i € Ey,a € A(1)) are given.

3. Choose Ay 41 € A(X,,) from 7, (-|Hyp). PutEp41 = E,U{X,11} if X;,11 € Ty, and By = E,
if X, € Ep. Calculate Ny41(4, jla) = > 1, Iix,—iAv=a,X,11 =5} and Npy1(ila) = Yoo I X,=i Av=a}
for i,j € E,11 and a € A(i). Set ¢"*1 = (qZH( a)) by

(6) qZ'H( ) = N]g%((ﬂa)) if Nys1(ila) > 0, g9 otherwise , (i,j € Epy1,a € A(i))

where ¢° = (q] : J € Ep4q) is any distribution on E,, 1 with q;-) >0 forallie€ E, 1.
4. For each i € Fy11, choose a,1(i) which satisfies
an41(4) € argmax,e gy {r(i,a) + (1 —=7) > cp, ., qu( Von(4)}
and update 7] (ali) = Prob.(Apy1 = a|Hp, Apy1, Xpy1 = i) as follows:
(1) Ay (i) = 1 — X S ali)) I @i = 1 (1)), = ST (ali)) I @i # s (0)
Put 9,41 = U {q" "' }9, on E, 1.
5. Set n «— n + 1 and return to step 3.

We need the following condition on {b,}.
Condition (x) b, —0asn — oo and > oo bl = occ.

Combining the vanishing discount approach(cf (2, 3]) as letting 7 — 0 with PMLA (<9, {bn}, T),
we have the policy 77 = (@[, ...) which has nearly average-optimal properties for Q*(ig) as follows:
Theorem 1. Under condition (x), a sequence {7™ }>° | with 7, — 0 as n — oo is an asymptotic
sequence of adaptive policies with nearly average-optimal properties for Q*(ig).

4. A numerical experiment
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