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This note is concerned with adaptive algorithm for uncertain Markov decision pro-
cesses(MDPs) with the average reward criterion. As a sequel to [2], we consider the learning
algorithm for investigating the structure of unknown transition matrices and getting adaptive
policy in regularly communicating model where the state space is decomposed into a single
communicating class and a transient class. Using pattern matrix learning method, we have an
asymptotic sequence of adaptive policies with nearly average optimal properties.
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1. Notation

Consider a controlled dynamic system with finite state space S = {1, 2, . . . , N}, containing N <∞
elements. For each i ∈ S, the finite set A(i) denotes the set of available actions at state i. Let Q
denote the parameter space of unknown transition matrices, i.e.,
(1) Q = {q = (qij(a))|qij(a) = 0,

∑

j∈S qij(a) = 1 for i, j ∈ S and a ∈ A(i)}.
The sample space is the product space Ω = (S × A)∞ such that the projections Xt,∆t on the

t-th factors S,A describe the state and action at the t-th stage (t = 0). Let Π denote the set of all
policies, i.e., for π = (π0, π1, . . .) ∈ Π, let πt ∈ P (A|(S ×A)t×S) for all t = 0, where, for any finite
sets X and Y , P (X|Y ) denotes the set of all conditional probability distribution on X given Y . A
randomized stationary policy ξ and a stationary policy f are defined by a usual way (cf. [3]).

We will construct a probability space as follows:for any initial state X0 = i, π ∈ Π and a
transition law q = (qij(a)), let P (Xt+1 = j|X0,∆0, . . . , Xt = i,∆t = a) = qij(a) and P (∆t =
a|X0,∆0, . . . , Xt = i) = πt(a|X0,∆0, . . . , Xt = i) (t = 0). Then, we can define the probability
measure Pπ(·|X0 = i, q) on Ω. Hn−1 = (X0,∆0, . . . , Xn−1) denotes a history until the (n − 1)-th
step. Let n(D) denotes the number of elements in a set D.

For a given reward function r on S×A, we shall consider the long-run expected average reward:
(2) ψ(i, q|π) = lim infT→∞

1
T+1Eπ

(
∑T

t=0 r(Xt,∆t)
∣

∣ X0 = i, q
)

where Eπ(·|X0 = i, q) is the expectation operator with respect to Pπ(·|X0 = i, q).
Let D be a subset of Q. Then, the problem is to maximize ψ(i, q|π) over all π ∈ Π for any i ∈ S

and q ∈ D. Thus, denoting the optimal value function as
(3) ψ(i, q) = supπ∈Π ψ(i, q|π),
a policy π∗ ∈ Π will be called q-optimal if ψ(i, q|π∗) = ψ(i, q) for all i ∈ S and called adaptively
optimal for D if π∗ is q-optimal for all q ∈ D. The sequence of policies {π̃n}∞n=0 ⊂ Π is called an
asymptotic sequence of adaptive policies with nearly optimal properties for D ⊂ Q and E ⊂ S if
limn→∞ ψ(i, q|π̃n) = ψ(i, q) for all q ∈ D and i ∈ E.

Let q ∈ Q. A subset E ⊂ S is called a communicating class for q if (i) for any i, j ∈ E,
there exists a path in E from i to j with positive probability, rewritten by “i → j”, i.e., it holds
that qi1i2(a1)qi2i3(a2) · · · qil−1il(al−1) > 0 for some {i1 = i, i2, . . . , il = j} ⊂ E and ak ∈ A(ik) and
2 5 l 5 N, and (ii) E is closed, i.e.,

∑

j∈E qij(a) = 1 for i ∈ E, a ∈ A(i).

The transition matrix q ∈ Q is said to be regularly communicating if there exists an Ē $ S

such that (i) Ē is a communicating class for q and (ii) T = S − Ē is an absolutely transient class,
i.e., Pπ(Xt ∈ Ē for some t = 1|X0 ∈ T ) = 1 for all π ∈ Π. For a regularly communicating q ∈ Q,
this corresponding communicating class Ē will be denoted by Ē(q) depending on q ∈ Q. For any
i0 ∈ S, we denote by Q∗(i0) the set of regularly communicating q ∈ Q with i0 ∈ Ē(q).

In this note, using the method of pattern-matrix learning we will construct an asymptotic
sequence of adaptive policies with nearly optimal properties for Q∗(i0) with i0 ∈ S, which is
thought of as a wider class for uncertain MDPs than the communicating case treated in [2].



2. Preliminary lemmas

Lemma 1. Let q ∈ Q∗(i0) with i0 ∈ S. Let a policy π̃ = (π̃0, π̃1, . . .) and a decreasing sequence
of positive numbers {εt}

∞
t=0 satisfy that for each t = 0 π̃t(a|ht) = εt with a ∈ A(xt) and ht =

(x0, a0, x1, . . . , xt) ∈ Ht. Then, it holds that for any E $ Ē(q),

(4) Pπ̃(Xt+l ∈ Ē(q)− E for some l(1 5 l 5 N)|Xt ∈ E) = (δεt+N )N .

For q ∈ Q∗(i0) with i0 ∈ S, a sequence of stopping times {σt} and subsets {Eσt
} ⊂ Ē(q) will

be defined as follows:

(5) σn := min{t|Xt ∈ Tσn−1
, t > σn−1}, Eσn

= Eσn−1
∪ {Xσn

}, Tσn
= Ē(q)− Eσn

, (n = 1)

where min ∅ =∞, σ0 = 0, E0 := {i0} and T0 := Ē(q)− E0.
For any E ⊂ Ē(q), let n̄(E) = min{n = 1|Eσn

= Ē(q)}. If n̄(E) < ∞, we can find the
pattern-matrix M(q). Here, we have the following.
Lemma 2. Let q ∈ Q∗(i0) with i0 ∈ S and π̃ satisfy condition in Lemma 2.2 with

∑∞
t=0 ε

N
t =∞.

Then, for any E $ Ē(q) it holds that (i) Pπ̃(n̄(E) < ∞|X0 = i0, q) = 1, and (ii) for any k 5

n̄(E), Pπ̃(σk <∞|X0 = i0, q) = 1.
3. Pattern-matrix learning algorithms

For any sequence {bn}
∞
n=0 with b0 = 1, 0 < bn < 1 and bn > bn+1 for all n = 1, let φ be any

strictly increasing function that φ : [0, 1]→ [0, 1] and φ(bn) = bn+1 for all n = 0. Here, we consider
the following iterative scheme called a pattern-matrix learning algorithm with i0 ∈ S, {bn} and
τ ∈ (0, 1), denoted by PMLA(i0, {bn}, τ )(cf. [2]).
PMLA(i0, {bn}, τ ):

1. Set E0 = {i0}, T0 = S − E0, ṽ0(i0) = 0, X0 = i0 and π̃τ
0 (a|X0) = n(A(i0))

−1 for a ∈ A(i0).
2. Suppose that En ⊂ S, Tn = S − En, {ṽn(i)}, π̃τ

n(a|i) = Prob.(∆n = a|Hn−1,∆n−1, Xn =
i) (i ∈ En, a ∈ A(i)) are given.

3. Choose ∆n+1 ∈ A(Xn) from π̃n(·|Hn). PutEn+1 = En∪{Xn+1} if Xn+1 ∈ Tn and En+1 = En

ifXn ∈ En. CalculateNn+1(i, j|a) =
∑n

t=0 I{Xt=i,∆t=a,Xt+1=j} andNn+1(i|a) =
∑n

t=0 I{Xt=i,∆t=a}

for i, j ∈ En+1 and a ∈ A(i). Set qn+1 = (qn+1
ij (a)) by

(6) qn+1
ij (a) = Nn+1(i,j|a)

Nn+1(i,a) if Nn+1(i|a) > 0, q0j otherwise , (i, j ∈ En+1, a ∈ A(i))

where q0 = (q0j : j ∈ En+1) is any distribution on En+1 with q0j > 0 for all i ∈ En+1.
4. For each i ∈ En+1, choose ãn+1(i) which satisfies

ãn+1(i) ∈ arg maxa∈A(i){r(i, a) + (1− τ)
∑

j∈En+1
qn+1
ij (a)ṽn(j)}

and update π̃τ
n+1(a|i) = Prob.(∆n+1 = a|Hn,∆n+1, Xn+1 = i) as follows:

(7) π̃τ
n+1(ai|i) = 1−

∑

a 6=ai
φ(π̃τ

n(a|i)) if ai = ãn+1(i)), = φ(π̃τ
n(ai|i)) if ai 6= ãn+1(i) .

Put ṽn+1 = Uτ{q
n+1}ṽn on En+1.

5. Set n← n+ 1 and return to step 3.

We need the following condition on {bn}.

Condition (∗) bn → 0 as n→∞ and
∑∞

n=0 b
N
n =∞.

Combining the vanishing discount approach(cf. [2, 3]) as letting τ → 0 with PMLA(i0, {bn}, τ ),
we have the policy π̃τ = (π̃τ

0 , . . .) which has nearly average-optimal properties for Q∗(i0) as follows:
Theorem 1. Under condition (∗), a sequence {π̃τn}∞n=1 with τn → 0 as n → ∞ is an asymptotic
sequence of adaptive policies with nearly average-optimal properties for Q∗(i0).
4. A numerical experiment
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