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We consider an adaptive model for uncertain Markov decision processes(MDPs) with the av-
erage reward criterion. In our previous work [2], the adaptive policies are constructed by
applying the methods of value iteration, cooperated with the policy improvement(cf. [4]), in
which the corresponding value function is approximated through the expectation with re-
spect to the estimated transition matrices at each learning step. In this paper, under the
minorization condition, we construct an adaptive policy based on temporal difference method
in neuro-dynamic programming. By the stochastic iteration algorithm, the estimated value
function is updated using temporal difference and adaptive policy are constructed as an ε-
forced modification of the greedy policy for the estimates of value function and transition
probability matrices.
Key words: Adaptive Markov decision processes, neuro-dynamic programming, temporal
difference, average case.

1. Introduction and notation

Consider a controlled dynamic system with finite state and action spaces, S and A, which consist
of finite N and K elements respectively. For any δ > 0, let Qδ denote the parameter space of K
unknown stochastic matrices, defined by

(1) Qδ =
{

q = (qij(a))
∣

∣ qij(a) ≧ δ,
∑

j∈S qij(a) = 1 for i, j ∈ S, a ∈ A
}

.

A transition matrix of this class Qδ is the minorization condition (named after [3]) and is assumed
throughout the paper. The sample space is the product space Ω = (S × A)∞ such that the
projections Xt,∆t on the t-th factors S,A describe the state and action at the t-th stage of the
process(t ≧ 0). Let Π denote the set of all policies, i.e., for π = (π0, π1, . . .) ∈ Π, let πt ∈
P (A|(S × A)t × S) for all t ≧ 0, where, for any finite sets X and Y , P (X|Y ) denotes the set of
all conditional probability distribution on X given Y . A randomized stationary policy ξ and a
stationary policy f are defined by a usual way (cf. [2, 4]).

We will construct a probability space as follows: for any initial state X0 = i, π ∈ Π and a
transition law q = (qij(a)), let P (Xt+1 = j|X0,∆0, . . . , Xt = i,∆t = a) = qij(a) and P (∆t =
a|X0,∆0, . . . , Xt = i) = πt(a|X0,∆0, . . . , Xt = i) (t ≧ 0). Then, we can define the probability
measure Pπ(·|X0 = i, q) on Ω.

For a given reward function r on S×A, we shall consider the long-run expected average reward:

(2) ψ(i, q|π) = lim infT→∞
1

T+1
Eπ

(
∑T

t=0 r(Xt,∆t)
∣

∣ X0 = i, q
)

where Eπ(·|X0 = i, q) is the expectation operator with respect to Pπ(·|X0 = i, q).
Then, for any fixed δ > 0, the problem is to maximize ψ(i, q|π) over all π ∈ Π for i ∈ S and

q ∈ Qδ. Thus, for q ∈ Qδ denoting by ψ(i, q) the value function, i.e.,

(3) ψ(i, q) = supπ∈Π ψ(i, q|π),

π∗ ∈ Π will be called q-optimal if ψ(i, q|π∗) = ψ(i, q) for all i ∈ S and called adaptively optimal if
π∗ is q-optimal for all q ∈ Qδ.
2. Preliminary lemmas

Let B(S) be the set of all functions on S. For any q ∈ Qδ, we define the map U{q} : B(S) → B(S)
by

(4) U{q}u(i) = maxa∈A

{

r(i, a) +
∑

j∈S

(

qij(a) − δ
)

u(j)
}

Let h(q) ∈ B(S) be unique fixed point of U(q).
Lemma 1. Let q ∈ Qδ. Then, ψ∗(q) = ψ(i, q) (independent of i ∈ S) and if f(i) ∈ A∗(i|q) for
all i ∈ S, f is q-optimal, where ψ∗(q) = δ

∑

j∈S h(q)(j) and A∗(i|q) is the set of optimal actions at

state i and A∗(i|q) = arg maxa∈A

{

r(i, a) − ψ∗(q) +
∑

j∈S qij(a)h(q)(j)
}

.



For any map H : B(S) → B(S), we consider the stochastic algorithm {ṽt} for {Xt}
∞
t=0 on S,

whose update equations are described by, for i ∈ S,

(5) ṽ0(i) ≡ 0, ṽt+1(i) =
(

1 − γ̃t(i)
)

ṽt(i) + γ̃t(i)
(

Hṽt(i) +Wt(i) + ut(i)
)

, t ≧ 0

where γ̃t(i) is defined for a given sequence {γt(i)} by γ̃t(i) = γt(i) if Xt = i and = 0 otherwise.
Also, {Wt(i)} and {ut(i)} are random noise terms depending on i ∈ S.
Lemma 2 (cf. Proposition 4.5 in [1]). Suppose that the following condition (i) – (v) are assumed
to hold. (i) E[Wt(i)|Ft] = 0 for i ∈ S (ii) There exist A,B > 0 such that E

[

Wt(i)
2

∣

∣ Ft

]

≦

A + B‖ṽt‖
2for t ≧ 0 and i ∈ S. (iii) H is a contraction operator with a unique fixed point

v∗ ∈ B(S). (iv) γ̃t(i) ≧ 0,
∑∞

t=0 γ̃t(i) = ∞ and
∑∞

t=0 γ̃t(i)
2 <∞ for t ≧ 0, i ∈ S. (v) There exists

a nonnegative random sequence {θt} such that |ut(i)| ≦ θt(||ṽt|| + 1) for i ∈ S and t ≧ 0 and {θt}
converges to zero with probability 1. Then, ṽt in (5) converges to v∗ with probability 1, where || · || is
a supremum norm and Ft is a minimal σ-field generated by

{

Xℓ(ℓ ≦ t),Wℓ(ℓ ≦ t−1), Uℓ(ℓ ≦ t−1)
}

.
3. Temporal difference-based adaptive policies

For each i, j ∈ S and a ∈ A, letNn(i, j|a) =
∑n

t=0 I{Xt=i,∆t=a,Xt+1=j} andNn(i|a) =
∑n

t=0 I{Xt=i,∆t=a},
where ID is the indicator function of a set D. Let qn

ij(a) = Nn(i, j|a)/Nn(i|a) if Nn(i|a) > 0, =

0 otherwise. For any given q0 = (q0ij(a)) ∈ Qδ, we define q̃n = (q̃n
ij(a)) ∈ Qδ by q̃n

ij(a) = qn
ij(a) if

Nn(i|a) > 0, = q0ij(a) otherwise. The adaptive policy is constructed in the following TD-based learn-
ing algorithm “Algorithm (∗)” with the sequences {εt(i)}

∞
t=0 for each i ∈ S such that 0 < εt(i) < 1

for t ≧ 0 and i ∈ S.
Algorithm (∗):

step 1. Set t = 0 and ṽ0 ≡ 0 and let π̃0 ∈ P (A|S) with π̃0(a|i) > 0 for all a ∈ A and i ∈ S.
step 2. Suppose that π̃t ∈ P

(

A
∣

∣ (S×A)t ×S
)

and ṽt ∈ B(S) are given and ∆t is chosen according
to π̃t. Observe the next state Xt+1 = j selected according to the state Xt = i and ∆t.
At the stage t+ 1, determine ṽt+1 ∈ B(S) by the TD-based update equation: for i ∈ S,

(6) ṽt+1(i) =
(

1 − γ̃t(i)
)

ṽt(i) + γ̃t(i)
(

r(i,∆t) + ṽt(Xt+1) − δ
∑

ℓ∈S ṽt(ℓ)
)

where the step size γ̃t is defined as in (5) for a sequence {γt(i)}.
step 3. Let ãt+1(i) ∈ arg maxa∈A

{

r(i, a) +
∑

j∈S q̃
t
ij(a)ṽt+1(j)

}

for each i ∈ S. Then the policy
π̃t+1 is given by

(7) π̃t+1(a|i) = εt(i)/(K(i) − 1) if a 6= ãt+1(i),= 1 − εt(i) if a = ãt+1(i),

where K(i) denotes the number of actions in state i.
step 4. Set t = t+ 1 and return to step 2.

Condition (∗) (i) limt→∞ εt(i) = 0 and
∑∞

t=0 εt(i) = ∞, (ii) γt(i) ≧ 0,
∑∞

t=0 γt(i) = ∞ and
∑∞

t=0 γt(i)
2 <∞ for all i ∈ S.

Theorem 1. Suppose that Condition (∗) holds and q = (qij(a)) ∈ Qδ with δ > 0. Then, ṽt(i) →
h(q)(i) as t→ ∞ with Pπ̃(·|X0 = i, q)-probability 1.
Theorem 2. Let δ > 0 be arbitrary. Suppose that Condition (∗) holds. Then, π̃ is adaptively
optimal for Qδ.
4. A numerical experiment
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