Adaptive Markov decision processes based on temporal difference method
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We consider an adaptive model for uncertain Markov decision processes(MDPs) with the av-
erage reward criterion. In our previous work [2], the adaptive policies are constructed by
applying the methods of value iteration, cooperated with the policy improvement(cf. [4]), in
which the corresponding value function is approximated through the expectation with re-
spect to the estimated transition matrices at each learning step. In this paper, under the
minorization condition, we construct an adaptive policy based on temporal difference method
in neuro-dynamic programming. By the stochastic iteration algorithm, the estimated value
function is updated using temporal difference and adaptive policy are constructed as an e-
forced modification of the greedy policy for the estimates of value function and transition
probability matrices.
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1. Introduction and notation
Consider a controlled dynamic system with finite state and action spaces, S and A, which consist
of finite N and K elements respectively. For any § > 0, let Q5 denote the parameter space of K
unknown stochastic matrices, defined by

(1) Qs = {g = (2:j(a)) | gij(@) 2 6,3 jeg aij(a) =1 for i,j € S,a € A},

A transition matrix of this class Qs is the minorization condition (named after [3]) and is assumed
throughout the paper. The sample space is the product space Q@ = (S x A)* such that the
projections Xy, A; on the t-th factors S, A describe the state and action at the ¢-th stage of the
process(t = 0). Let II denote the set of all policies, i.e., for 7 = (m,m,...) € II, let m €
P(A|(S x A)t x S) for all t = 0, where, for any finite sets X and Y, P(X|Y) denotes the set of
all conditional probability distribution on X given Y. A randomized stationary policy & and a
stationary policy f are defined by a usual way (cf. [2, 4]).

We will construct a probability space as follows: for any initial state Xg = é,7m € II and a
transition law ¢ = (gs(a)), let P(Xip1 = j|Xo,D0,..., Xt = i,Ar = a) = ¢ij(a) and P(A; =
alXo, Ao, ..., Xy = 1) = m(a|Xo,Aog,..., Xy = i) (t 2 0). Then, we can define the probability
measure Pr(:|Xo =1,q) on .

For a given reward function r on S x A, we shall consider the long-run expected average reward:

(2) Ui, qlm) = iminfr oo 727 Br (X0 7(Xe, Ar) | Xo =1i,q)
where E;(:|Xo =i, q) is the expectation operator with respect to Pr(:|Xo = i, q).

Then, for any fixed § > 0, the problem is to maximize (i, q|w) over all 7 € II for i € S and
q € Q5. Thus, for ¢ € Qs denoting by (i, q) the value function, i.e.,

(3) ¢(%Q) = SUPrenn 1/](2761’77)7
m* € Il will be called g-optimal if 1 (7, g|7*) = (i, q) for all i € S and called adaptively optimal if

m* is g-optimal for all g € Qs.
2. Preliminary lemmas
Let B(S) be the set of all functions on S. For any ¢ € Qs, we define the map U{q} : B(S) — B(S)

by
(4) U{q}u(i) = maxeea{r(i,a) + 3 ;e s(aij(a) — )u(j)}
Let h(g) € B(S) be unique fixed point of U(q).

Lemma 1. Let g € Qs. Then, ¥*(q) = ¥(i,q) (independent of i € S) and if f(i) € A*(ilq) for
alli € S, f is g-optimal, where ¥*(q) = 52]'65' h(q)(j) and A*(i|q) is the set of optimal actions at

state i and A*(i|lq) = argmaxaeA{r(i,a) —Y*(q) + ZjeS qij(a)h(q)(j)}.



For any map H : B(S) — B(S), we consider the stochastic algorithm {o;} for {X;}7°, on S,
whose update equations are described by, for ¢ € S,

(5) To(i) = 0,51 (7) = (1 — F4(1)) (i) + 7(3) (H@t(z’) +Wi(i) + ut(i)), t>0

where 44(7) is defined for a given sequence {7:(i)} by (i) = (i) if X; = i and = 0 otherwise.
Also, {Wy(i)} and {u.(i)} are random noise terms depending on i € S.
Lemma 2 (cf. Proposition 4.5 in [1]). Suppose that the following condition (i) — (v) are assumed
to hold. (i) E[W(i)|F] = 0 fori € S (ii) There exist A,B > 0 such that E[W(i)* | 7] <
A+ B||ty||?for t 2 0 and i € S. (iii) H is a contraction operator with a unique fized point
v* € B(S). (iv) %(i) Z 0, Y020 3(i) = 00 and > i 4(i)? < oo fort 20, i € S. (v) There exists
a nonnegative random sequence {0y} such that |ui(i)| < 04(||o¢]| + 1) fori € S and t = 0 and {0}
converges to zero with probability 1. Then, vy in (5) converges to v* with probability 1, where ||-|| is
a supremum norm and Fy is a minimal o-field generated by {X,(¢ < t), Wo(¢ £ t—1),U,(¢ £ t—1)}.
3. Temporal difference-based adaptive policies
Foreachi,j € Sanda € A, let N,(i,j|a) = 1o I1x,—i,A=a,x, 11—} and Ny (ila) = 3710 Iix,—i Ay=a)>
where Ip is the indicator function of a set D. Let ¢;(a) = Ny(i, jla)/Nn(ila) if Ny(ila) >0, =
0 otherwise. For any given ¢° = (q?j(a)) € Qs, we define ¢" = (Gj;(a)) € Qs by ¢f(a) = qfj(a) if
Ny, (ila) > 0, = q?j(a) otherwise. The adaptive policy is constructed in the following TD-based learn-
ing algorithm “Algorithm (x)” with the sequences {g:(7)}$2, for each i € S such that 0 < (i) < 1
fort20andic€ S.
Algorithm (x):
step 1. Set t =0 and 99 = 0 and let 79 € P(A|S) with 7p(ali) >0 for alla € Aand i € S.
step 2. Suppose that 7; € P(A | (S x A)! x S) and & € B(S) are given and A is chosen according
to ;. Observe the next state X;y1 = j selected according to the state X; =i and A,.
At the stage ¢t + 1, determine 0,11 € B(S) by the TD-based update equation: for i € S,

(6) 1 (1) = (1= 3(2)) 0e(8) + 3 (2) (r (i, Ar) + 0(Xer1) — 6 3o peg 0e(0))
where the step size 4; is defined as in (5) for a sequence {7:(4)}.

step 3. Let Gy41(i) € argmax,e,{r(i,a) + djes q,fj(a)ﬁt+1(j)} for each 7 € S. Then the policy
41 is given by

(7) Fear(ali) = e0(0)/(K(6) — 1) if a # s (i), = 1 — £4(6) if @ = ae1 (),

where K (i) denotes the number of actions in state i.
step 4. Set t =t + 1 and return to step 2.

Condition (x) (i) limyoe(i) = 0 and Y ;7 ee(2) = oo, (ii) (i) = 0, 1oq1(i) = oo and
Yo n(i)? < oo for all i € S.

Theorem 1. Suppose that Condition () holds and q = (gij(a)) € Qs with 6 > 0. Then, 0(i) —
h(q)(i) as t — oo with Pz(:|Xo = i, q)-probability 1.

Theorem 2. Let § > 0 be arbitrary. Suppose that Condition (x) holds. Then, T is adaptively
optimal for Qs.

4. A numerical experiment
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