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Abstract

We formulate a stopping problem for dynamic fuzzy systems concerning with fuzzy
decision environment. It could be regarded as a natural fuzzification of non-fuzzy
stopping problem with a deterministic dynamic system. The validity of the approach
by a-cuts of fuzzy sets will be discussed in constructing One-step Look Ahead policy
of an optimal fuzzy stopping time. A numerical example is given to illustrate the
theoretical results.

Key words: Fuzzy stopping problem; dynamic fuzzy system; fuzzy decision;
One-step Look Ahead policy.

1 Introduction and notations

The multistage decision-making models with fuzziness is introduced by Bell-
man and Zadeh[l] using the method of dynamic programming, and many
paper were published afterward. For a recent survey of the theories and ap-
plications, refer the paper by Kacprzyk and Esogbuel9]. Here we consider a
stopping problem in a fuzzy environment. The idea of a fuzzy stopping time has
been introduced by Kacprzyk[6,7], though the decision is assumed to be the
intersection of fuzzy constraints and a fuzzy goal. In this paper we have tried
to formulate a stopping problem under a dynamic fuzzy system with fuzzy
rewards discussed in [11,12], which is thought of as a natural fuzzification of
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non-fuzzy stopping problems induced by deterministic dynamic systems. The
interpretation of fuzzy stopping time is difficult in general. But the validity of
the approach by a-cuts of fuzzy sets is discussed in constructing an optimal
fuzzy stopping time. As a closely related work, see Yoshida [19] in which Snell’s
optimal stopping for a Markov fuzzy process has been studied. In remainder
of this section, we will give some notations and definition of a dynamic fuzzy
system.

Let E, E, Fy be convex compact subsets of some Banach space. Throughout
the paper, we will denote a fuzzy set and a fuzzy relation by their membership
functions. For the theory of fuzzy sets, refer to Zadeh [20], Novak [15] and
Dubois and Prade [4]. A fuzzy set @ : E — |0, 1] is called convex if

u( Az + (1= Ny) > a(z) Naly), =z,y€ E, Ael0,1],

where a A b := min{a,b}. Also, a fuzzy relation h : Ey x Ey — [0,1] is called
convex if
h(Azy+ (1= Nwg, Ays + (1= Nya) > b1, y1) A h(x,15)

for x1,x9 € E1, y1,y2 € Ey and X € [0, 1]. The a-cut («a € [0, 1]) of the fuzzy
set u is defined by

o :={rx e Flu(z)>a} (a«>0) and ug:=cl{ze E|u(r) >0},
where ‘cl” denotes the closure of a set.

Let F(E) be the set of all convex fuzzy sets, @, on E whose membership func-
tions are upper semi-continuous and have compact supports and the normality
condition : sup,.p@(zr) = 1. We denote by C(E) the collection of all com-
pact convex subsets of E' and by pp the Hausdorff metric on C(FE). Clearly,
u € F(E) means u, € C(F) for all @ € [0,1]. Let R be the set of all real
numbers. We see, from the definition, that C(R) and F(R) are the set of all
bounded closed intervals in R and all upper semi-continuous and convex fuzzy
numbers on R with compact supports, respectively.

The addition and the scalar multiplication on F(R) are defined as follows: For
m,n € F(R) and A > 0,

(m+n)(x) = sup {m(xz1) An(z2)} (2 €R) (1.1)

x1,22€R: x1+xo=2

and

N (/) if A >0
(Am)(z) = . (x € R). (1.2)
Lioy(x) ifA=0



Hence (m + )y = My + e and  (Am), = A, (o € [0,1]) holds where
A+ B:={x+y|leecAyeB}, M={|zecA}, A+0=0+A:=A
and A\) := () for any non-empty closed intervals A, B in R. We use the following
lemma.

Lemma 1 For anyu € F(Ey) and p € F(Ey x Es) satisfying p(z,-) € F(E2)
for x € Ey, it holds that sup{u(z) A p(z,-)} € F(E,).

el

We consider the dynamic fuzzy system([11,12]) with fuzzy rewards in order to
consider the a fuzzy stopping problem.

Definition 2 The dynamic fuzzy system is defined by three elements (S, q,T)
as follows:

(i) The state space S is a convex compact subset of some Banach space and is
a element of F(S). Since the system is in a fuzzy environment, so that a
state of the system is called a fuzzy state.

(ii) The law of motion G : S x S +— [0,1] for the system is time-invariant and,
is assumed that ¢ € F(S x S) and ¢(x,-) € F(S) for allx € S.

(iii) The fuzzy reward 7 : S X R +— [0,1] is assumed that 7 € F(S x R) and

7(z,-) € F(R) forallxz € S..

If the system is in a fuzzy state 5 € F(5), a fuzzy reward R(S) is earned and
the state is moved to a new fuzzy state Q(5), where @ : F(S) — F(S) and
R: F(S) — F(R) are defined by

QE)() = sup{s(z) Aglw,y)} (v € 5) (1.3)
and
R(3)(z) := ilég{§(x) NT(x,2)} (2 €R). (1.4)

Note that by Lemma 1 these maps () and R are well-defined.

For the dynamic fuzzy system (5, q,7), if we give an initial fuzzy state § €
F(S), we can define a sequence of fuzzy rewards { R(5;) }?2,, where a sequence
of fuzzy states {5;}:2, is defined by

51:=5 and S :=Q(5) (t>1). (1.5)

In the following section, a fuzzy stopping problem for { R(s;)}:2, is formulated.



2 A fuzzy stopping problem

For the sake of brevity, denote F = F(S). The metric p on F is given as
(1, V) = SUP4e(o.1] £5(Ua, Vo) for 4,0 € F (see Nanda [14]). Let B(F) be the
set of Borel measurable subsets of F with respect to p. Putting by Q; := F*
the t(> 1) times product of F and by B; := B(F") the set of Borel measurable
subsets of F! with a metric p' on F* defined by

PEY AR = Y 2 p(E,5)). (2.1)

=1

We can interpret {$;}5°, € Q, where {5;}2, is defined by (1.5) with any given
initial fuzzy state s; = s € F. Here, applying the idea of fuzzy termination
time in Kacprzyk [6-8|, we will define a fuzzy stopping time. Let N be the set
of all natural numbers.

Definition 3 A fuzzy stopping time is a fuzzy relation 6 : Qo x N — [0, 1]
such that

(i) for each t > 1, &(-,t) is B;-measurable, and
(ii) for each W € o, 6(W,+) is non-increasing and there exists tz € N with
a(w,t) =0 for all t > 5.

In the grade of membership of stopping times, ‘0’ and ‘1’ represent ‘stop’ and
‘continue’ respectively. That is, the lower the value, the higher the grade of
“stop”. We denote by ¥ the set of all fuzzy stopping times.

Lemma 4 Let any 6 € 3. Define a map 7, : Qoo — N by
o(@) =min{t > 1| 6(w,t) <a} (We Q) foraec(0,1]. (2.2)
Then, we have:
(i) {6a<treB, (t>1);

(i) 0,(@) <ow(@) (@€eNy) ifa>da;
(i) limyqe 0u (@) =64(W) (@€ Q) ifa>0.

PROOF. (i) is from {6, > t} = {w € QO | 6(w,t) > a} € B;. (ii) and (iii)

follow immediately from the definition. O

In order to treat an optimal fuzzy stopping problem, we specify a function
G(58, ) with a linear ranking function g, which measures the system’s perfor-
mance when a fuzzy stopping time ¢ € X and an initial fuzzy state s € F were



adapted. It seems to be natural that the scalarization of the total fuzzy re-
ward should be incorporated for these kind of optimization. Refer to Fortemps
and Roubens [5], Wang and Kerre [17,18] and Kurano et al [13] for a ranking
method and an ordering of fuzzy sets.

We define weo(+) : F — Qx by
Woo(8) := {81}, (2.3)

and {5;}2, is defined by (1.5) with §; = 5. Let g : C(R) — R be a continuous
and monotone function. Using this, the description of the scalarization of the
total fuzzy reward will be completed by

G(3,5) = /0 ' (0(5.5).) do (2.4)

Ga—1

where 64 1= 5a(weo(5)) and ¢(5,6)a == > _ R(5:)a provided Y7 := {0}. Note
t=1

that since ¢(5,6), € C(R) and the map a — g(¢(5,5),) is left-continuous
on (0, 1], the right-hand integral of (2.4) is well-defined. Now, our objective of
the problem is to maximize (2.4) over all fuzzy stopping times & € ¥ for each
initial fuzzy state s € F.

Definition 5 For 5 € F, a fuzzy stopping time ¢* is called s-optimal if
G(5,0) < G(8,6%) for all 6 € X. If 6* is s-optimal for all 5 € X, 6* is
called optimal.

In the following section, the a-cuts of fuzzy stopping time will be investigated,
whose results are used to construct an optimal fuzzy stopping time in Section
4.

3 «a-cut of fuzzy stopping times

First, we establish several notations that will be used in the sequel. Associated
with the fuzzy relations ¢ and 7, the corresponding maps @, : C(S) — C(S)
and R, : C(S) — C(R) (« € [0,1]) are defined, respectively, as follows: For
D e C(9),

{y € S| q(z,y) > a for somex € D} for a >0
Q.(D) = (3.1)
c{y € S| q(z,y) > 0 for somex € D} for a =0,



and

z€ R |7(x,z) > «a for somex € D for a >0
R.(D) {{ |72, 2) } (3.2)

c{z € R|7F(x,z) >0 for somex € D} for a =0.

By g € F(S x S) and 7 € F(S x R), these maps @, and R, (a € [0,1]) are
well-defined. The iterates Q?, (¢ > 0) are defined by setting QY := I(identity)
and iteratively,

prj_l = Qan (t Z 0)

In the following lemma, which is easily verified by the idea in the proof of
Kurano et al. [11, Lemma 1], the a-cuts of Q(3) and R(5) defined by (1.3) and
(1.4) are specified using the maps @, and R,.

Lemma 6 ([11,12]). For any a € [0,1] and s € F, we have:

(1) Q(g)oz = Qa(ga);
(i) R(8)a = Ra(Sa);
(i) 80 = Q5" (5a) (£21),

where St o = (5t)a and {5:}52, is defined by (1.5) with 5, = 5.

Here we need the following assumption which is assumed to hold henceforth.

Assumption A (Lipschitz condition). There exists a constant K > 0 such
that

ps(Qa(D1), Qa(D2)) < K ps(Dy, Dy) (3-3)

for all a € [0,1] and Dy, Dy € C(S).

Theorem 7 Let a fuzzy stopping time 6 € X. Then, the map &'(-,-) : F X
N — [0,1] defined by &(5,t) = d(wao(5),t) (5 € F,t € N) has the following
properties (i) and (ii):

(i) a'(-,t) is B(F)-measurable for each t > 1.
(ii) For each s € F, &'(5,-) is non-increasing and there exists t; € N such that
' (5,t) =0 for all t > ts.

PROOF. For t > 1, we define a map w; : F +— F' by w(5) := {5;}_;, where
{81}2, is defined by (1.5) with §; = 3. For (i), it suffices to prove that wy is
continuous for each ¢t > 1, together with the measurability of . We will show



only the case of t = 2, since the case of ¢ > 3 is proved from (2.1) in the same
manner. For §,§ € F, we have

p(wa(3),w2(5) < p(5,5) +271p(Q(5),Q(5) < (1 + K/2)p(5,5),

from Lemma 6 and Assumption A. This shows the continuity of wy(-). Also,
(ii) follows from the definition of a fuzzy stopping time. O

Observing the scalarization (2.4) and the objective function G(5,&) for the
stopping problem, we can confine ourselves to the class of fuzzy stopping
times 6'(+,-) : F x N+ [0, 1] satisfying (i) and (ii) in Theorem 7. The class
of such fuzzy stopping times will be denoted by >'. The following theorem is
useful in constructing an optimal fuzzy time which is done in Section 4.

Theorem 8 Suppose that, for each o € [0, 1], there exists a B(C(S))-measurable
map oo : C(S) — N. Using this family {oa }acp0,1], define the map & : F x N —
[0,1] by

5(5.t) = sup {a ALy con ()}, FEF, 121 (3.4)
a€(0,1]

Then, if for each 5 € F, 04(84) is non-increasing and left-continuous in o €
0, 1], it holds that

(i) 6 €X', and
(i) 0a(Sa) =min{t >1|5(5,t) <a} (ae€(0,1)).

PROOF. If 0,(5,) is non-increasing in a € [0, 1], the inequalities &(s,t) >
(s, t+1) (t > 1) follow from (3.4). Also, (3.4) implies that, for each ¢t > 1
and a € [0,1],

GeF|66G.02al = NEEF|ousmGaim)>th  (35)

n=1
For a continuous map 7, : F — C(S) defined by 7,(5) = 3, (5 € F), we have
{5 € Fl0a(Sa) >t} =n,"({D €C(S) | 0a(D) 2t +1}),
so that {s € F | ¢(5,t) > a} € B(F) follows from (3.5) and B(C(S))-

measurability of o,. The above facts imply 6 € 3. Also, (ii) holds obvi-
ously. O



4 Optimal fuzzy stopping times

In this section, we try to construct an optimal fuzzy stopping time, by applying
an approach by a-cuts. Now, we define a non-fuzzy stopping problem specified
by C(S), Q. and R, (a € [0, 1]), associated with the fuzzy stopping problem
considered in the preceding section. For each o € [0, 1] and any initial subset
c € C(9), a sequence {¢;}2, C C(9) is defined by

cp:=c and ¢ = Qu(c) (E>1). (4.1)
Let
Y :={0:C(S)— N|{o =t} €B(C(Y)) for each t > 1}. (4.2)

Using this sequence {¢;}°, given by (4.1) with ¢; := ¢, let
t—1

©*(c,t) ==Y _Ra(c;) for c € C(S). (4.3)

=1

Note that ¢%(c,o(c)) = 2097 Ry (Q% 1 (c)) € C(R) for all 0 € %y. The non-
fuzzy stopping problem considered here is to maximize g(p®(c,o(c))) over all
o € Y1, where g is the weighting function given in Section 2. A map 7, € ¥
is called an a-optimal stopping time if

g(p“(c,1a(c))) = g(p“(c,0(c))) for all o € ¥.

In order to characterize a-optimal stopping times, let

i (e) :== sup g(¢*(c,0(c))) fort > 1 and c € C(S5), (4.4)

TEY:

where ¥y :={oVt|oe X} (t>1).

Assumption B (Closedness). For any a € [0, 1], if (¢*(Sa,1), 5ta) € K%(g)
for some ¢, then (p*(84,t'),5r.a) € K%(g) for all ¢ > t where K%(g) =
{(h,c) € C(R) x C(5) [ g(h) = g(h + Ra(Qa(c)))}-

For c € C(9), let

Tx(c) ;= min{t € N | (¢%(c,t),¢;) € K%(g)}. (4.5)

«

Then, the next lemma is given as deterministic versions of the results for
stochastic stopping problems in Chow et al. [3] and Kadota et al. [10].



Lemma 9 (c.f. [3, Theorems 4.1 and 4.5] and [10]). Suppose Assumption B
holds. Let o € [0,1]. The following (i) and (ii) hold:

(i) 7 (c) = max{g(e®(c, 1)), (0)}  (E=1,ceC(9)).
(i) Suppose that lim;_, g(p“(c,t)) = —o0 and sup,~; g(¢*(c,t)) < oo for each
¢ € C(S). Then, * is a-optimal and 72(-) = g(o*(-, 7(+))).

Chow et al. [3] studied the general case in optimal stopping problems, and
Kadota et al. [10] discussed the one-step look ahead optimal stopping times
given by (4.5). For each o € [0,1], applying the above lemma, we can find
an a-optimal stopping time 7 under conditions of Lemma 9(ii). Assuming
the existence of a-optimal stopping times for each o € [0, 1], let {77 }ac(0,1] be
the family of such stopping times. Here, we try to construct an optimal fuzzy
stopping time from {7 }ac[o1]- For this purpose, a regularity condition is need
to prove our main results Theorem 10.

Assumption C (Regularity). 77(3,) is non-increasing in a € [0, 1].

We can assume the left-continuity of the map o +— 77(S,), by considering
limy1a 7 (Sar) instead of 77(S,). Define a map 7* : F x N — [0, 1] by

7:*(57 t) = Sup {CY A 1{t:T§(§a)>t}<t>} : (46)

«€(0,1]
forallse Fandt € N.

Theorem 10 Suppose Assumptions B and C hold. Then, 7* defined by (4.6)
s an s-optimal fuzzy stopping time.

PROOF. From Assumption C, 75(5,) < 75(54) if @ > o/, so that 7 € ¥’
follows from Theorem 8. For any s € F and ¢ € ¥/, from Lemma 4 and 6 we
have

Ga(sa)—1 Ga(sa)—1
(p(g, 6)& - Z Ra(gt,a) - Z Ra(Q271<§a>>‘ (47>
t=1 t=1

Since o, € X1, the optimality of 7% implies by (4.7) that, for all « € [0, 1],
9(¢(5,0)a) = 9(¢" (Sa; 0a(5a))) < 9(¢ (S0, T2 (5a))) = 9((5,7)a)-
Therefore, we have
o 1 o 1 L L
G(5.5) = [ 9(¢(5.5)a) da < [ g(p(5.7)a) da = G(5.7).

This means that 7* is s-optimal, as required. O



If the regularity does not hold for some s € F, the s-optimality of 7* does not
follow. But, 7* defined by (4.6) is thought of as a good fuzzy stopping time.

5 A numerical example

In this section, an example is given to illustrate the theoretical results. Let
S :=10,1] and 0 < 8 < 0.98. The fuzzy relations ¢ and 7 are given by

gz,y) = (1—-10"%ly — Bz|) v O, z,y€l0,1]

and, for a given constant A > 107%(1 — 3),

_ lifz—2z=2A
m(z,z) = for x € [0,1], z € R,
0 otherwise

where A\ means an observation cost. Then, each @), and R, of (3.1) and (3.2)
are calculated easily as follows: For 0 <a <b <1,

Qalla, b)) =[fa— (1 —a),0b+ (1 —a)] and R,([a,b]) =[a—\b— A

Now, let the linear ranking function to be g([a,b]) =b (0 < a < b < 1). Easily
we have that

o (e.1) = g (i Ram)) ~ 0 e -y

and

i (c) = sup g(¢*(c,0(c))) = sup

oEY: n>t

1-p

where b, :=b—107%(1 —a)/(1 — 8) and A, := X — 107%(1 — a)/(1 — 3) for
a € [0,1]. Then, applying Lemma 4.1, the a-optimal stopping time 77 is given
by

{H’“Wv_ka(n_l)}

7(a, b)) =min {t > 1] (¢°([a,b],1), 3 [a,b]) € K*(g)}

:min{t > 1|(1_1ﬁ_t;)ba — At —1) > (11—_ﬁ2ba —)\at}

for each o € [0, 1]. Let 5(z) = (1 — 4|2z — 1|) VO for z € [0.1]. We see that
5o = [(3+ @)/8,(5 — «)/8]. Therefore

ri(Fa) = pogm/log@ 1,

10



where |-] is the largest dominated integer. Since § is regular with respect to
{72 }ae0,17, Theorem 10 implies that the 5-optimal fuzzy stopping time 7* is
given by

75(8,t) =sup {a € [O,I]Hlog m/bgﬂJ > t}

—{ov 8(1 — B+ Btlog B) + 500/ log 3 + 800(1 —ﬁ))\} i1
N 8(1 — B+ Btlog 3) + 1003t log 3 ‘

The numerical values are given in Table 1.

t 1 2 3 4 5 6 7 8 9
7*(5,1)0.938(0.812(0.681]0.546|0.405|0.260{0.108|0.000{0.000 |- - -

Table 1. s-optimal fuzzy stopping time 7*(s,-) when A = 0.5 and g = 0.97.
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