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Abstract

A combined model of Markov decision process and the stopping prob-
lem, called Stopped Decision Processes, with a general utility is considered
in the paper. This model is important for the various applications includ-
ing Bandit problems and piecewise deterministic Markov processes, etc.
Our aim is to formulate the general utility-treatment of processes with a
countable state space and give a functional characterization from points
of seeking an optimal pair, that is, a policy and a stopping time. And
the further results concerning an optimality equation of our model are
given. If we restrict the problem as the choice of a policy for a given fixed
stopping time, this results are consistent with our previous paper(1998).
Especially, in the case of the exponential utility functions, the optimal
pair can be derived concretely using the idea of the one-step look ahead
policy. Also, a simple numerical example is given to illustrate the results.

Keywords: Markov Decision Process, Optimal Stopping Problem, Stopp-
ed Decision Process, General Utility, Optimal Pair, Optimality Equation,
Exponential Utility.

1 Introduction and formulation

Markov decision processes are applied to various problems such as an economic
dynamics, Bandit problem, queuing net works, etc. and many papers are pub-
lished. See [16, 17, 19]. Also the optimal stopping problem is now discussed to
the application of stock option markets so extensive studies are executed([2, 5]).
In this paper a combined model of Markov decision process and the stopping



problem, called Stopped Decision Processes, is considered in conjunction with
general utility. The general utility-treatment of stopped decision processes with
a countable state space seem not to be considered yet.

There are some papers[4, 9] which combined with two notions recently. How-
ever Furukawa and Twamoto[7] had discussed for reward system of the additive
type and Furukawal[8] has reformulated the stopped decision model in the fash-
ion of gambling theory. Hordijk[10] also had considered this model from a
standpoint of potential theory.

Our previous paper[14] has already considered the optimization problem of
the expected utility for the total discounted reward random variable accumu-
lated until the stopping time. We derived an optimality equation of the general
utility case, by which an optimal pair, that is, a policy and a stopping time has
been characterized, however, the concrete method of seeking an optimal pair is
not discussed there.

The objective of this paper is to give a functional characterization from
points of view of seeking an optimal pair. And we give further results concerning
an optimality equation of this model, which is useful in seeking an optimal pair.
Also, for the case of the exponential utility function (cf. [6, 15]), the optimal pair
can be obtained concretely using the idea of the one-step look ahead policy(cf.
[17]). By using an idea of which is appearing in Chung and Sobel[3], Sobel[18]
and White[20], the optimality equation is described by the class of distribution
functions of the present value.

In the remainder of this section, we will formulate the problem to be ex-
amined and an optimal pair of a policy and a stopping time is defined. Firstly
a well-known formulation of a standard Markov decision processes (MDPs) is
concerned with

(S’ {A(i)}iES’ q 7"),
which is specified by states of the processes, S = {1,2,---}, actions available
at each state i € S, A(7), the matrix of transition probabilities ¢ = (¢;;(a))
satisfying that 3. ¢ gij(a) = 1 for all i € S and a € A(3), and an immediate
reward function, r(i, a, j) defined on {(i,a,j) | i € S, a € A(7), j € S}.
Throughout this paper we assume as follows:
(i) For each i € S, A(7) is a closed set of a compact metric space.
(ii) For each i,j € S, both ¢;;(+) and (¢, -, j) are continuous on A(i), and
(iii) (-, -, -) is uniformly bounded.

A sample space of the decision processes is the product space Q@ = (S x A)*®
such that the projection X;, A; on the ¢-th factors S, A describe the state
and the action of time ¢ of the process (¢ > 0). A policy m = (mg,m1,--+) is a
sequence of conditional probabilities m; such that 7 (A(é;) | @0, a0, -+, %) = 1
for all histories (ig,ao,--,i) € (S x A)® x S. The set of policies is denoted

by M. Let Hy = (Xo,Aq, -+, At_1,X¢) for ¢ > 0. We assume for each 7 =
(ﬂ-Oa 1y ) S H,

P (X1 =J | Heo1, Apm1, Xe = 4, Ay = a) = ¢;5(a),



which is independent of the last history H;_; and the action A;_; for all ¢ > 0,
i,j €S, a € A(i). For any Borel measurable set X, P(X) denotes the set of all
probability measures on X. Then, any initial measure v € P(S) and a policy
7 € II determine the probability measure PJ € P() by a usual way. A total
present value until time ¢ is defined by

(1.1) B(t) = zt:r(Xk_l,Ak_l,Xk) (t>0),

where X_1, A_; are fictitious variables and set »(X_1, A_1, Xg) = 0. Note that
the total present value is a random variable defined on the probability space (£,
PT) for each v € P(S) and 7 € II.

In order to induce a utility function of the problem in the reward structure,
let us consider g as a non-decreasing continuous function on the real space R.
And we call a random variable o : Q@ — {0, 1,2, -} astopping time w.r.t. (v, m)
if the following conditions are satisfied:

(i) For each t >0, {oc =t} € F(H,),
(il) Pf(oc < o0)=1 and
(i) E7[g™(B(c))] < oo,

where F(H,) is the o-algebra induced by H; and g*(z) = max{#g(z),0}. The
class of this stopping times will be denoted by ¥, ) hereafter. For any v €
P(S), let

A, ={(m,0) | 0 €Xn),meIl}.

Our problem is to maximize the expected utility E7 [¢(B(c))] over all (7, 0) €
A, for a fixed v € P(S). Therefore the pair of a policy and a stopping time,
(m*,0*) € Ay, is called (v, g)-optimal or simply optimal pair if

(1.2) 5 lg(B(o™)] 2 EX[g(B(o))] for all (r,0) € A,.

In Section 2, we will give a characterization of the optimal policy. In the
case that the stopping time is fixed, its results are applied to obtain an optimal
pair in the sequel section. In Section 3, we extend the results obtained in [14] for
the discount reward to the general case. An optimality equation for the stopped
decision process 1s derived and the optimal pair is characterized. The proofs are
analogous to those in [14], so that several proofs in the theorems will be omitted.
The exponential utility case is treated in Section 4, where the optimal pair is
sought by using the idea of the one-step look ahead (OLA) stopping time.

2 MDPs with the stopping region

For a subset K of the state space S, let us consider a stopping time of the first
hitting time for the region, that is,

ok = the first time ¢ > 0 such that X; € K.



Henceforth we assume that o is a stopping time w.r.t. any (v, w) € P(S) x II.
We say that a policy 7* € I is (v, g)-optimal w.r.t. o if

EJ [g(B(ox))] > Elg(B(ox))] for allm € T,

When 7 is (v, g)-optimal for all v € P(S), it is simply called g-optimal w.r.t.
ok . In order to analyze the above problem, it is convenient for us to rewrite
El[9(B(ck))] by using the distribution function of B(o k) corresponding to P .
Suppressing K in the notation, let for v € P(S) and 7 € I,

FJ(z) .= P (B(ok) <z) and

v

O(v) :={F7() | meT}.

Then, it is obvious that El[g(B(ck))] = /g(z) FJ(dz) holds.

For any w € II, the following integral is well-defined and hence the map
vz : R X P(S) = R means a value function associated with a fortune d and an
initial measure v :

veldv)i= [ 04 P2 = [ gla+ ) FE(02)

where g4(z) := g(d + z). We note that v(0,v) = EZ[g(B(ok))] and v.(d, i) =
g(d) if i € K, where the initial measure v € P(S) is simply denoted by i
whenever if the measure is degenerate at {i}.

The value function for our model can be denoted by

(2.1) v(d,v) := sup v (d, V),
Tell

which is depending on a present fortune d € R and a state distributionv € P(S5).
In the following lemma, it is shown that the supremum in (2.1) can be
attainable.

Lemma 2.1. For any v € P(S), v(d,v) = maxpca() /gd(z) F(dz) holds,
and, for each v € P(S), there exists (v, g)-optimal policy w.r.t. ok.

Proof. For each v € P(S), the set {PJ(:) € P(Q) | = € IT} is known to be
compact in the weak topology(c.f. Borker[1]). Since the map B(ox): @ — R is
continuous, ®(v) is weak-compact. Thus, from the assumption of the continuity
of g4(z), it follows that

odr) = sup [ gue) F(dz) = [ gale) P(d2)
Fed(v)

for some F* € ®(v). This proves the first part of the results. For F* € ®(v)

with v(0,v) = /g(z) F*(dz), the policy m* corresponding to F* is clearly (v, g)-

optimal w.r.t. ok, as required. a



Lemma 2.2. Foreacht > 0,d € R and m € 11,

EZl9a(Blok)) | ok > 1]
(2.2) ) .
< .
<Ey [aemA?)i)Zth,y(a) U(d,j) | ox > tf,
jES
Where J:: d+B(t - 1) +T(Xt7aa.j).

Proof. For simplicity, denote ET by E. For any w = (ig, ag,?1,0a1, ) € Q,
let ;(w) = (i, at, %x41, - - -) be a shift operator for ¢ > 1. The Markov property
of the transition law yields that

Elga(B(ox)) | ox > 1]
E[Blga(B(t— 1)+ r(X:, Ay, Xey1) + Blog)(0:(w)) | He] | ox > 1]

S E[U(d+6(t—1)+7”(Xt,At,Xt+1)) | oK >t]
< {the right-hand of the inequality (2.2)},
which completes the proof. a

For any d € R and i ¢ K, let

A(d, 1) := arg renf(x) Z%’(G) v(d + r(i,a,j), §).
a 2 ]ES

The value function v(d, ) is shown to satisfy the optimality equation in the
following theorem.

Theorem 2.1. The value function v(d,i);d € R,i € S satisfies the following
equation.

max thj(a) v(d+r(i,a,j), j) for i¢ K,
(2.3) v(d, i) = { €@ jes
d for i€ K.

Proof. For any f € F such that f(i) € A(d,i) for i ¢ K and f(i) =
a(arbitrary)e A(i) for i € K, let 7\9) be a policy corresponding to Fr e @(j)
satisfying

o(d+ (i, 1(5), ), ) = / 0a(r(i, £0),5) + =) F} (d2),

whose existence is guaranteed by Lemma 2.1. Let 7 be the policy that choose
the action Ag at time 0 according to f and use policy () from time 1 when
X1 = j. Then, clearly it holds

ETga(B(ok))] = jes a5 (f(0) v(d + r(i, f(9),7), )
= maXeea(i) ) jes %ij(@) v(d + (i, f(i),]), j)-



Together with (2.2), the above derives (2.3), as required. O

In order to discuss the uniqueness of solutions of (2.3), we need the following
assumption.

Assumption A. El[| ga(B(ck)) |] < oo for any v € P(S), r€ M and d € R.

Theorem 2.2. Suppose that Assumption A holds.
(1) It holds that, for any v € P(S), m € Il and d € R,

(2.4) Jim B [o(d + B(t), X)1{sx50] =0

where 14 is an indicator function of a set A.

(i1) The mapv : R x S — R satisfying (2.4) is uniquely determined by (2.3).

Proof. Let m € II. Let m{X;} € Il be such that v(d+B(t), X;) = vryx,}(d+
B(t), X;). Note that 7{X};} is depending on d+ B(t) and X; and its existence is
guaranteed by Lemma 2.1. We denote by 7(t) € TI the policy that uses 7 until
time ¢ and uses m{X;} from time ¢. Then,

(2.5) 57" lga(B(o))]
= FloalBor)Lox <ol + FElo(o + B0, X)Lir>n].

Under Assumption A,
. (1) T
Jim B [ga(Blox))] = EJ [9a(B(ox)))-

So as t = oo in (2.5), we get (i). The proof of (ii) is not particularly difficult,
but tedious. We omit the proof. a

The following results can be proved similarly as that of Theorem 3.3 in [12]
so it 1s omitted.

Theorem 2.3. Let #* = (xf, 7}, --) be any policy satisfying that for all
t>0
7 (A(B(t), X¢) | Hi) =1 on {ok > t}.

Then ©* is g-optimal w.r.t. o .

3 Optimal pairs

In this section we derive the optimality equation for the stopped decision model,
by which an optimal pair is characterized. Throughout this section, we assume
that the following conditions are satisfied.

Condition 1. The utility function g is differentiable and its derivative is weakly
bounded. That is, for any compact subset D of R, there exists a constant Lp
such that

|¢'(z) |[< Lp forallz € D.



Condition 2. The expectation of the utility function is upper bounded:

Ef[jglgf (B(t))] < oo

for all v € P(S) and w € TI.

For simplicity of the notations, let
®(v) = {F>7) | (m,0) € A, },
where F£”’°)(m) = PJ(B(o) < z) for (m,0) € A,. In order to describe an

optimality equation in the sequel, let us define

(3.1) Ulg)dicad) = swp [ ga(rlisa,d) +2) P(d2)
)

Fed(j

and

(3.2) Ug(d, 1) := max Zq” YU{g}(d,1,a,j)

foreach d € R, i,j € S and a € A(4). Tt is easily proved under Condition 1 that
the maximum in (3.2) is attainable. For v € P(S) and n > 1, let

Ap =A{(m,nVvo) | (m,0) € A}
where a Vb = max{a,b} for a,b € R. Define a conditional maximum by

9% = esSSUP z ey EL[9(B(0)) | Ful (n > 0),

where F,, = F(H,). Henceforth, for simplicity we write esssup by sup and
suppress v in 74 if not specified otherwise. The recursive relation concerning
{¥n} is described in the following.

Lemma 3.1. ([14]) For each n > 0, it holds
(i) v» = max{g(B(n)), Slelll‘)[ E 1 | Fal}
(1) sup B2 o] = U (B(n), Xo).

e

In order to obtain an optimal pair, it is convenient to introduce the following
notations:
—{(di) €R xS | g(d) > Uy(d,)} and
A*(d, i) = argmax,e 4(; Zq” YU{g}(d, 1, a,j)
JES

for each d € R and 7 € S.



Let
(3.3) o* = {the first time ¢ > 0 such that (B;, X;) € R}
and 7* = (7§, 7}, ) be any policy satisfying
(3.4) PT(A; € A*(B(t), X;)) =1 for all > 0.
The following lemma is given in [14].

Lemma 3.2. ([14]) Let 0*(n) := min{o*,n} (n > 0). Then the process
{(Yo+(n), Fn);n > 0} is a martingale.

Here, we can state the main theorem.

Theorem 3.1. Under Condition 1 and 2, we have the following results:
(i) If PT"(0* < o0) = 1, then the pair (7*,0*) is g-optimal.

(i) If g(B(n)) — —oo (as n — co0) PT -a.s. then PT (0* < oo) = 1.

Proof. From Lemma 3.2, EX [y] = Ef,r*['y,,*(n)] for all n > 1. Now, as
n — oo in the above, we get

E;,r* ['70* 1{0*<oo}] + E;,r* [h_mn—)oopyn 1{0*:00}]

Eff* [’70]

55 < -
< EZ: [’70*1{0*<oo}]+E'17/r [hmn—>oo7n1{cr*:oo}]~

If P (0* < o) =1, EF [v] = EF [Yo+]. On the other hand, by the def-
inition of o*, y,+ = g(B(c*)), which implies ET [vo] = ET [9(B(c*))]. Since
Ellg(B(a))] < EZ[vo] = E [y, it holds E [9(B())] < EJ [9(B(c*))] for all
(m,0) € Ay. This shows that the pair (7*,0*) is g-optimal. Thus the assertion
(i) has proved. The assertion (ii) follows from (3.5). O

4 Exponential utility functions
In this section, we consider the case of the exponential utility function
(4.1) gx(z) = sign(—A) exp(—Azx)

for a constant A # 0 and try to give the concrete characterization of the optimal
pair by the OLA-stopping time (refer to Ross[17] and Kadota et al[13]).

Let
(i, a) = Z gij(a) exp(=Ar(i,a,j)).
Jjes
We need the following two conditions.

Condition A. For each a € A, nx(i,a) is non-decreasing in i € S if A > 0, and
alternatively, 7, (4, a) is non-increasing in i € S if A < 0.



Condition B. For each a € A, ¢;;(a) =0, if i > j and ¢;;(a) < L.
We note that Condition B is satisfied for Markov deteriorating system. Let
Ky:={(d,)) e R x S| wx(d,i) —gx(d) <0},
where vy (d, i) = mjux Z ¢ij(a) gx(d+ r(i,a,j)). Then, the K is characterized
a€

by the following.

Lemma 4.1. Under Condition A, for each A (A # 0), there exists an integer
iy € S such that Ky = R x {i€S|i>1iy}.

Proof. We observe that vy (d, i)—ga(d) = e_)‘d(l—minaeA(i) (i, a))if A > 0,
= e M (maxae () Ma(i,a) — 1) if XA < 0. So that, if XA > 0, vx(d, i) — ga(d) <0
means minge 4 N (¢, @) > 1. Observing that minge 4 7 (7, @) is non-decreasing in
i € S from Condition A, there exists an iy such that vy(d, ) — gx(d) < 0 if and
only if ¢ > 75. Similarly the case of A < 0 is proved, as required. a

Lemma 4.2. Under Condition A and B, the following holds:
(1) Ifi > i, then, for all a € A(i) and d € R,

(4.2) > qii(a) UfgaH(d i a,5) = > qij(a) ga(d + (i, a, )

jes jES

(i) Ifi < i, then gx(d) < Uy, (d, i) for all d € R.

Proof. Let i > iy, a € A(i), d € R and j € S with ¢;;(a) > 0. Then, for
any F' € <T>(j), from Condition B and Lemma 4.1 we see that { gx(d+7r(¢,a,j) +
B(n)), Fn, n=0,1,2,- -} is a super-martingale with respect to PT, where (7, o)
is a pair corresponding to F' and F,, = F(H,). Applying Theorem 2.2 of Chow,
Robbins and Siegmund[2], we get

Eflos(d+ .0 0)+ B(@))] = [ ar(d+ rliad) +2) F(d2)

< ga(d+r(i,a,j)),

which means U{gx}(d,4,a,j) < gx(d + r(i,a,7)). Thus (4.2) follows. For (ii),
let ¢ < ix. Then, for any d € R, since (d,i)¢ K there exists a; € A(7) such
that g(d) < des ¢ij(a1) gx(d + r(i,a1,7)). Thus, by the definition, clearly

g(d) < Uy, (d, 1), as required. ]

From Lemma 4.2, we find that the optimal stopping time o} defined by (3.3)
in Section 3 becomes

o} := the first time ¢t > 0 with X; € K,

which is ok, with the stopping region K and discussed in Section 2. Thus, to
seek the optimal policy 7*, we can apply the results in Section 2.



Let
v3 (i) := Optren B [exp{—AB(c3)}]

where “Opt” means “Maximum” if A < 0 and “Minimum” if A > 0. Then, by
Theorem 2.1 we have :

(4.3)
Optaeai) [ Z v3(7) gij(a) exp{—Ar(i,a, j)}
1<j<in
vy (1) = —}—Z q¢ij(a) exp{—=Ar(i,a,j)}|, for i< iy,
JZix

1, for 7> 1.

Let, for i (1 <i < 1y),
A* (i) := {a € A(3) | a realizes the opt on the RHS of (4.3) }

Then, the optimal pair (7}, ¢}) under exponential utility is given in the following
theorem.

Theorem 4.1. Let 6% = the first ¢ such that X; > iy and 7} = (7§, 77, --)
be such that mf{A*(X;) | H¢} =1 for 1 < X; <i5. Then, the pair (n5,0%}) is
g-optimal.

Proof. We can check that R and A*(d, i) in Section 3 is equal to R, and
A*(7) respectively. Thus, from Theorem 3.1, Theorem 4.1 follows. a

Here we give a numerical example to illustrate the theoretical results. Let
a countable state space S = {1,2,3,---}, a action space of a closed interval

A =11, 2] and .
(o)1~

————exp{—a/t j >
@ G- p{—a/i}, j=
0 J<i,
fori,7 € S and a € A.

For an inspection cost ¢ > 0, let (¢, a,j) = a/i—c (i,j € S, a € A). Then,
(i, a,j) = exp{—A(a/i — ¢)}, which satisfies Condition A. Simple calculations
yield the integer iy in Lemma4.1 is given as iy = [2/¢]+1, which is independent
of A, where [z] is the smallest integer greater than or equal to z. Also, by (4.3)
we find A*(i) = {2}, so that the optimal policy w5 = 2.

As another example, let r(i,a, j) = (a/7) |j—i|—c. Then, nx(i,a) = exp{Ac+
(a/7) (exp(—Aa/i)—1)}, which satisfies Condition A. The numerical value of each
integer i is given in Table 1.

Observing Table 1, we know that a risk-averse decision maker (A > 0) has a
tendency to stop earlier than a risk-seeking one(A < 0).

10



A 25| -2|-15|-11-0.5 056 1 |15 2 |25
i c=0.1 8 8 8 7 7 7 6 6 6 6
Ae=001 | 22 |21 [ 21 |21 21 20 | 20 | 20 | 19| 19
Table 1: The value of iy for ¢ = 0.1 and 0.01(X # 0).
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