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Abstract. Concerning with the topics of fuzzy decision processes, a brief survey

on ordering of fuzzy numbers on R is presented and an extension to that of fuzzy

sets(numbers) on Rn are considered. This extension is a pseudo order 4
K

de�ned

by a non-empty closed convex cone K and characterized by the projection into

its dual cone K+. Especially a structure of the lattice is presented on the class

of rectangle-type fuzzy sets. Moreover, we study the convergence of a sequence of

fuzzy sets on Rn which is monotone w.r.t. the order 4
K
. Our study is carried out by

restricting the class of fuzzy sets into the subclass in which the order 4
K
becomes

a partial order so that a monotone convergence theorem is proved. This restricted

subclass of fuzzy sets is created and characterized in the concept of a determining

class. These results are applied to obtain the limit theorem for a sequence of fuzzy

sets de�ned by the dynamic fuzzy system with a monotone fuzzy relation. Several

�gures are illustrated to comprehend our results.

1 Introduction

Fuzzy set theory has made applications in many �elds of management science,

operations research and statistics (cf.[7], [13], [18]), in which order relation of

fuzzy sets is a fundamental problem in fuzzy optimization or fuzzy decision

making. Many methods of ordering fuzzy numbers have been proposed in

the literature. Among them a partial order on the set of fuzzy numbers on

R, called the fuzzy max order, introduced by Ram��k and �Rim�anek[16] is

very interesting in the concerns of pure mathematics because it is a natural

extension of the order over real numbers and includes many theoretical and

applicable potentials.

First, the fuzzy max order of fuzzy numbers on R (cf. [6], [16]) is brie
y

surveyed and extended to a pseudo order on a class of fuzzy sets de�ned on

R
n . The pseudo order for fuzzy sets on Rn is de�ned by a non-empty closed

convex cone K in Rn and characterized by the projection into its dual cone

K+. Also, the structure of a lattice is discussed for the class of rectangle-type

fuzzy sets (see [11]). For a lattice-structure of the fuzzy max order, see [1],

[25]. So, we can imagine the much wider application to the fuzzy optimization

problem. Our idea of the motivation originates from a set-relation in Rn given

by Kuroiwa, Tanaka and Ha[12], in which various types of set-relations in Rn

are used in set-valued optimizations.
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A convergence theorem for a sequence of fuzzy sets is also a fundamental

tool and mathematically interesting for sequential decision analysis in a fussy

environment. In fact, the limiting behavior of fuzzy states of dynamic fuzzy

system or sequential fuzzy decision process have been studied by developing

a suitable convergence theorem of a sequence of fuzzy sets. (c.f. [8], [9], [10],

[20], [21], [22], [23]) Also, the theory of metric space of fuzzy sets has been

developed by many authors (c.f. [2], [14], [19]), in which several convergence

theorems of fuzzy sets are given. On the other hand, in multiple criteria

decision making, the rewards from dynamic system are described in terms

of fussy sets and the model is often optimized under some order or pseudo

order relation among fuzzy sets. In this case, it is more important to study

the convergence theorem related to fuzzy order relation.

From this motivation, we study the convergence of a sequence of fuzzy

sets on R
n which is monotone w.r.t. a pseudo order 4K . Our procedure

is done by restricting the class of fuzzy sets into the subclass, in which 4K

becomes a partial order and a monotone convergence theorem is proved. This

restricted subclass of fuzzy sets is created and characterized in the concept

of a determining class. These results are applied to obtain the limit theorem

for a sequence of fuzzy sets de�ned by the dynamic fuzzy system with a

monotone fuzzy relation.

The outline for this paper is as follows. Section 2 contains some notations

and basic concepts of fuzzy set theory referring to the text books (cf. [3], [15]).

The fuzzy max order on R and its related topics are summarized in Section 3.

A pseudo order on the class of fuzzy sets on Rn is introduced as an extension

of the fuzzy max order in Section 4. Its characterization and the structure

of a lattice are considered for the rectangle-type fuzzy sets in Section 5. In

Section 6, we introduce a concept of determining class and give a convergence

theorem for a sequence of convex compact subclass of Rn . In Section 7, these

results are applied to obtain a monotone convergence theorem for fuzzy sets

on Rn . In Section 8, we consider the limit of a sequence of fuzzy sets de�ned

by the monotone dynamic fuzzy system. Several �gures are illustrated to

comprehend our results.

2 Notations and Basic Concepts

In this section we describe the notation and basic concepts of fuzzy set theory

(cf. [3], [7], [15], [24]).

Let R be the set of all real numbers and Rn an n-dimensional Euclidean

space. We write fuzzy sets on Rn by their membership functions es : Rn !

[0; 1] (see Nov�ak [15] and Zadeh [24]). The �-cut (� 2 [0; 1]) of the fuzzy setes on Rn is de�ned as

es� := fx 2 Rn j es(x) � �g (� > 0) and es0 := clfx 2 Rn j es(x) > 0g;
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where cl denotes the closure of the set. A fuzzy set es is called convex if

es(�x + (1� �)y) � es(x) ^ es(y) x; y 2 Rn ; � 2 [0; 1];

where a^ b = minfa; bg. Note that es is convex if and only if the �-cut es� is a

convex set for all � 2 [0; 1]. Let F(Rn ) be the set of all convex fuzzy sets whose

membership functions es : Rn ! [0; 1] are upper-semicontinuous and normal

(sup
x2Rn es(x) = 1) and have a compact support. In the one-dimensional case

n = 1, F(R) denotes the set of all fuzzy numbers.

Let C(Rn ) be the set of all compact convex subsets of Rn , and Cr(R
n ) be

the set of all rectangles in Rn . For es 2 F(Rn ), we have es� 2 C(Rn ) (� 2 [0; 1]).

We write a rectangle in Cr(R
n ) by

[x; y] = [x1; y1]� [x2; y2]� � � � � [xn; yn]

for x = (x1; x2; � � � ; xn); y = (y1; y2; � � � ; yn) 2 R
n with xi � yi (i =

1; 2; � � � ; n). For the case of n = 1, C(R) = Cr(R) and it denotes the set

of all bounded closed intervals. When es 2 F(Rn ) satis�es es� 2 Cr(R
n ) for

all � 2 [0; 1], es is called a rectangle-type. We denote by Fr(R
n ) the set of all

rectangle-type fuzzy sets on Rn . Obviously Fr(R) = F(R).

Here we give the extension principle introduced by Zadeh which provides

a general method for fuzzi�cation of non-fuzzy mathematical concepts.

The extension principle (cf. Dubois and Prade [3]):

Let f be a map from R
n�n to Rn such that y = f(x1; � � � ; xn). It allows us to

induce a map through f from fuzzy sets esi(i = 1; 2; : : : ; n) on Rn to a fuzzy

set es on Rn such that

es(y) := sup
x1;��� ;xn2R

n

y=f(x1 ;��� ;xn)

minf es1(x1); � � � ;fsn(xn)g;
where es(y) := 0 if f�1(y) = �.

Applying the extension principle, the addition and the scalar multiplica-

tion on Rn are extended to those on F(Rn ) as follows:

For es; er 2 F(Rn ) and � � 0,

(es+ er)(x) := sup
x1;x22R

n

x1+x2=x

fes(x1) ^ er(x2)g; (2:1)

(�es)(x) := �es(x=�) if � > 0

1f0g(x) if � = 0
(x 2 Rn ); (2:2)

where 1f�g(�) is an indicator. By using set operations A+ B := fx+ y j x 2

A; y 2 Bg and �A := f�x j x 2 Ag for any non-empty sets A;B � R
n , the

following holds immediately:

(es+ er)� = es� + er� and (�es)� = �es� (� 2 [0; 1]): (2:3)
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Also, for es; er 2 F(R), gmaxfes; erg and gminfes; erg 2 F(R) are de�ned by

gmaxfes; erg(y) := sup
x1;x22R

y=max(x1;x2)

fes(x1) ^ er(x2)g (2:4)

and gminfes; erg(y) := sup
x1;x22R

y=min(x1;x2)

fes(x1) ^ er(x2)g: (2:5)

The images of gmaxfes; erg and gminfes; erg 2 F(R) are illustrated as follows:

1

es er

0

Figure 1: es and er 2 F(R)
1

gmaxfes; erggminfes; erg

0

Figure 2: gmaxfes; erg and gminfes; erg 2 F(R)
We need a representative theorem (cf. [3], [15]) which is a basic tool for

the fuzzy interval analysis.

The representative theorem:

(i) For any es 2 F(Rn ), es(x) = sup
�2[0;1]

f� ^ 1
es�
(x)g; x 2 Rn :
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(ii) Conversely, for a family of subsets fD� 2 C(R
n ) j 0 � � � 1g

with D� � D�0 for �0 � � and \�0<�D�0 = D�,

if we set es(x) := sup
�2[0;1]

f� ^ 1D�
(x)g; x 2 Rn

then es belongs to F(Rn ) and satis�es es� = D�; � 2 [0; 1].

The image of the equation (i) of the representative theorem is illustrated

in Figure 3.

es(x)
� ^ 1

es�
(x)

�

0

Figure 3: es(x) = sup
�2[0;1]

f� ^ 1
es�
(x)g; x 2 Rn

3 Fuzzy Max Order on F(R)

In this section, we review a fuzzy max order in F(R) which is extended to

F(Rn ) in the next section.

The following binary relation 4 has been formulated �rst by Ram��k and
�Rim�anek[16]. Let es and er be two fuzzy numbers in F(R). Then es 4 er if

and only if sup es� � sup er� and inf es� � inf er� for each � 2 [0; 1], wherees� and er� are �-cuts of es and er respectively and es� := [inf es�; sup es�] ander� := [inf er�; sup er�]. Obviously the binary relation 4 satis�es the axioms

of a partial order relation on F(R) and is called the fuzzy max order. Some

properties of the relation 4 are investigated in Ram��k and �Rim�anek[16].

Proposition 3.1. Let es; er be fuzzy numbers in F(R).

(i) The inequality es 4 er if and only if there exist m;n; t� 2 R

with m � t� � n, es(m) = er(n) = 1 and es(t) � er(t) for any t � t�

and es(t) � er(t) for any t > t�.

(ii) The following three conditions (a) to (c) are equivalent:

(a) es 4 er, (b) gmaxfes; erg = er, (c) gminfes; erg = es,
where gmin and gmax are de�ned in (2:4) and (2:5).



6 Masami Kurano et al.

For the fuzzy max order on F(R), Congxin and Cong [1] proved that the

bounded set of fuzzy numbers on F(R) must have supremum and in�mum.

The basic proof is as follows. For any sequence of fuzzy numbers fesng1n=1, let

D
�
:= lim

�0"�
sup
n�1

inf esn�0 and D� := lim
�0"�

sup
n�1

sup esn�0 , where esn� is the �-cut of

esn. Then, the family of closed subsets fD� := [D
�
; D�] j � 2 [0; 1]g satis�es

condition (ii) of the representation theorem, so that es de�ned by

es(x) := sup
�2[0;1]

f� ^ 1D�
(x)g (x 2 R) (3:1)

belongs to F(R) and es = sup
n�1

esn.
Similarly, the in�mum of fesng1n=1 is constructed. These results derived

the interesting mathematical fact that the continuous fuzzy-valued function

on a closed interval has a maximum and minimum. Also, the structure of

lattice for fuzzy numbers is discussed in Zhang and Hirota[25].

To be suitable for computations and treatments, a class of fuzzy numbers,

called an L-R-fuzzy number, is introduced in many text books.

Let L;R : [0;1)! [0; 1] be two non-increasing and not constant functions

with L(0) = R(0) = 1 and L(x0) = R(x0) = 0 for some x0 > 0. A fuzzy

number es is called an L-R-fuzzy number if there exist real numbersm;n(m �

n); �; �(�; � > 0) such that

es(x) =
8<
:
L(m�x

�
) for x � m;

1 for m � x � n;

R(x�n
�

) for n � x:
(3:2)

Given functions L, R with the properties in the above de�nition, the L-

R-fuzzy number speci�ed by m;n; �; � is denoted by an ordered tetradic

(m;n; �; �)L-R, which includes the triangular and trapezoidal fuzzy numbers.

Then, the fuzzy max order on the set of L-R-fuzzy numbers is characterized

by inequalities of the elements. (cf. [16]).

In particular, the symmetric fuzzy number es = (m;m;�; �)L-L is called

an L-fuzzy number and denoted by (m;�)L. Furukawa[4] extended the L-

fuzzy number (m;�)L with � > 0 to the case of � 2 R and proved that for

�� � 0 the fuzzy max order (m;�)L 4 (n; �)L if and only if x0j���j � n�m

where x0 is the zero point of L. Moreover Furukawa [4] introduced the linear

operations on the set of extended L-fuzzy numbers by

(m;�)L � (n; �)L = (m+ n; �+ �)L;

�(m;�)L = (�m; ��)L for any scalar � 2 R:

The fuzzy max order is proved to be adapted to the above operations.

Also Furukawa [5] introduced a parametric order relation on L-fuzzy numbers

which is an extension of the fuzzy max order and its total order relation. The

fuzzy optimization problems related to the fuzzy max order are dealed with

many authors; e.g., Furukawa[5], Kurano et al.[9], Yoshida[22] and others.
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4 A Pseudo Order on F(Rn)

In this section we extend the fuzzy max order on F(R) to a pseudo order on

F(Rn ) by the argument in [11].

We will review a vector ordering on Rn by a non-empty convex cone K �

R
n . Using this K, we can de�ne a pseudo order relation 4K on R by x 4K y

if and only if y � x 2 K. Let Rn+ be the subset of entrywise non-negative

elements in R
n . When K = R

n

+ , the order 4K will be denoted by 4n and

x 4n y means that xi � yi for all i = 1; 2; � � � ; n, where x = (x1; x2; � � � ; xn)

and y = (y1; y2; � � � ; yn) 2 R
n .

First we introduce a binary relation on C(Rn ), by which a pseudo order

on F(Rn ) is given. Henceforth we assume that the convex cone K � R
n is

given. We de�ne a binary relation 4K on C(Rn ) by abuse of notation. For

A;B 2 C(Rn ), A 4K B means the following (C.a) and (C.b) (cf. [12]):

(C.a) For any x 2 A, there exists y 2 B such that x 4K y.

(C.b) For any y 2 B, there exists x 2 A such that x 4K y.

Lemma 4.1. The binary relation 4K is a pseudo order on C(Rn ).

Proof. It is trivial that A 4K A for A 2 C(Rn ). Let A;B;C 2 C(Rn ) such

that A 4K B and B 4K C. We will check A 4K C by two cases (C.a) and

(C.b). Case(C.a): Since A 4K B and B 4K C, for any x 2 A there exists

y 2 B such that x 4K y and there exists z 2 C such that y 4K z. Since 4K

is a pseudo order on R
n , we have x 4K z. Therefore it holds that for any

x 2 A there exists z 2 C such that x 4K z. Case(C.b): Since A 4K B and

B 4K C, for any z 2 C there exists y 2 B such that y 4K z and there exists

x 2 A such that x 4K y. Since 4K is a pseudo order on Rn , we have x 4K z.

Therefore it holds that for any z 2 C there exists x 2 A such that x 4K z.

From the above (C.a) and (C.b), we obtain A 4K C. Thus the lemma holds.

ut
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Figure 4: The binary relation A 4K B on C(R2 )
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The conditions (C.a) and (C.b) of the binary relation A 4K B on C(R2 )

are illustrated in Figure 4.

When K = R
n

+ , the binary relation 4K on C(Rn ) will be written simply

by 4n and for [x; y]; [x0; y0] 2 Cr(R
n ), [x; y] 4n [x0; y0] means x 4n x0 and

y 4n y
0.

Next, we introduce a binary relation 4K on F(Rn ): Let es; er 2 F(Rn ).

The relation es 4K er means the following (F.a) and (F.b):

(F.a) For any x 2 Rn , there exists y 2 Rn such that x 4K y and es(x) � er(y).
(F.b) For any y 2 Rn , there exists x 2 Rn such that x 4K y and es(x) � er(y).

Note that the notation 4K denotes the binary relation on Rn , C(Rn ) and

F(Rn ) with some abuse of notation.

Lemma 4.2. The binary relation 4K is a pseudo order on F(Rn ).

Proof. It is trivial that es 4K es for es 2 F(Rn ). Let es; er; ep 2 F(Rn ) such

that es 4K er and er 4K ep. We will check es 4K ep by following two cases (F.a)

and (F.b). Case(F.a): Since es 4K er and er 4K ep, for any x 2 Rn there exists

y 2 Rn such that x 4K y and es(x) � er(y), and there exists z 2 Rn such that

y 4K z and er(y) � ep(z). Since 4K is a pseudo-order on Rn , we have x 4K z

and es(x) � ep(z). Therefore it holds that for any x 2 Rn there exists z 2 Rn

such that x 4K z and es(x) � ep(z). Case(F.b): Since es 4K er and er 4K ep, for
any z 2 Rn there exists y 2 Rn such that y 4K z and er(y) � ep(z), and there

exists x 2 Rn such that x 4K y and es(x) � er(y). Since 4K is a pseudo-order

on Rn , we have x 4K z. Therefore it holds that for any z 2 R
n there exists

x 2 Rn such that x 4K z and es(x) � ep(z). From the above (F.a) and (F.b),

we obtain es 4K ep. Thus the lemma holds. ut

The following lemma implies the correspondence between the pseudo or-

der on F(Rn ) for fuzzy sets and the pseudo order on C(Rn ) for the �-cuts.

Lemma 4.3. Let es; er 2 F(Rn ). es 4K er on F(Rn ) if and only if es� 4K er�
on C(Rn ) for all � 2 (0; 1].

Proof. Let es; er 2 F(Rn ) and � 2 (0; 1]. Suppose es 4K er on F(Rn ). Then,

two cases (a) and (b) are considered. Case(a): Let x 2 es�. Since es 4K er,
there exists y 2 Rn such that x 4K y and � � es(x) � er(y). Namely y 2 er�.
Case(b): Let y 2 er�. Since es 4K er, there exists x 2 R

n such that x 4K y

and es(x) � er(y) � �. Namely x 2 es�. Therefore we get es� 4K er� on C(Rn )

for all � 2 (0; 1] from the above (a) and (b).

On the other hand, suppose es� 4K er� on C(Rn ) for all � 2 (0; 1]. Then,

two cases (a') and (b') are considered. Case(a'): Let x 2 R
n . Put � = es(x).

If � = 0, then x 4K x and es(x) = 0 � er(x). While, if � > 0, then x 2 es�.
Since es� 4K er�, there exists y 2 er� such that x 4K y. And we have es(x) =
� � er(y). Case(b'): Let y 2 R

n . Put � = er(y). If � = 0, then x 4K x and
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es(x) � 0 = er(y). While, if � > 0, then y 2 er�. Since es� 4K er�, there exists
x 2 es� such that x 4K y. And we have es(x) � � = er(y).

Therefore we get es 4K er on F(Rn ) from the above Case (a') and (b').

Thus we obtain this lemma. ut

The conditions (F.a) and (F.b) of the binary relation es 4K er on F(R)

and F(R2 ) are illustrated in Figure 5.
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Figure 5: The binary relation es 4K er on F(R) and F(R2 )
For the case of K = R+ , Lemma 4.3 says that the order relation 41 on

F(R) (that is, n = 1) is the fuzzy max order mentioned in Section 3.

De�ne the dual cone of a cone K by

K+ := fa 2 Rn j a � x � 0 for all x 2 Kg;

where x � y denotes the inner product on R
n for x; y 2 R

n . For a subset

A � R
n and a 2 Rn , we de�ne

a �A := fa � x j x 2 Ag (� R
n ): (4:1)

The de�nition (4.1) means that a � A is the projection of A on the parallel

line with the vector a if a � a = 1. It is trivial that a �A 2 C(R) if A 2 C(Rn )

and a 2 Rn .
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Lemma 4.4. Let A;B 2 C(Rn ). A 4K B on C(Rn ) if and only if a�A 41 a�B

on C(R) for all a 2 K+.

Proof. Suppose A 4K B on C(Rn ). Consider the two cases (a) and (b).

Case(a): For any x 2 A, there exists y 2 B such that x 4K y. Then y�x 2 K.

If a 2 K+, then a � (y � x) � 0 and i.e. a � x � a � y. Case(b): For any y 2 B,

there exists x 2 A such that x 4K y. Then y � x 2 K. If a 2 K+, then

a � (y�x) � 0 and i.e. a �x � a � y. From the above cases (a) and (b), we have

that a � A 41 a � B.

On the other hand, to prove the inverse statement, we assume that A 4K

B on C(Rn ) does not hold. Then we have the following two cases (i) and

(ii). Case(i): There exists x 2 A such that y � x 62 K for all y 2 B. Then

B \ (x +K) = ;. Since B and x +K are closed convex, by the separation

theorem there exists a 2 R
n (a 6= 0) such that a � y < a � x + a � z for

all y 2 B and all z 2 K. Now, we suppose that there exists z 2 K such

that a � z < 0. Then �z 2 K for all � � 0 since K is a cone, and so we

have a � x + a � �z = a � x + �a � z ! �1 as � ! 1. This contradicts

a � y < a � x+ a � z. Therefore we obtain a � z � 0 for all z 2 K, which implies

a 2 K+. Especially taking z = 0 2 K, we get a � y < a � x for all y 2 B. This

contradicts a � A 41 a � B. Case(ii): There exists y 2 B such that y � x 62 K

for all x 2 A. Then we derive a contradiction in the similar way to the case

(i). Therefore the inverse statement holds from the results of the above (i)

and (ii). The proof of this lemma is completed. ut

The image of Lemma 4.4 is illustrated in Figure 6.

A 4KB

B

a 2 K+ � R
2

A

a � A 41 a �B

Figure 6: The image of Lemma 4.4

For a 2 Rn and es 2 F(Rn ), applying the representation theorem we de�ne

a fuzzy number a � es 2 F(R) by
a � es(x) := sup

�2[0;1]

f� ^ 1a�es�(x)g; x 2 R: (4:2)
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The following theorem gives the correspondence between the pseudo order

4K on F(Rn ) and the fuzzy max order 41 on F(R).

Theorem 4.1. For es; er 2 F(Rn ), es 4K er if and only if a � es 41 a � er for all

a 2 K+.

Proof. By (4.2) and the representative theorem, we have (a �es)� = a �es� for

all � 2 [0; 1]. On the other hand, from Lemmas 4.3 and 4.4, es 4K er if and

only if a � es� 41 a � er� for all a 2 K+. Thus, noting the de�nition of the max

order 41 on F(R), Theorem 4.1 follows. ut

The image of Theorem 4.1 is illustrated in Figure 7.

es 4K er
er

es

a � es a � er
a 2 K+ � R

2

a � es 41 a � er
Figure 7: The image of Theorem 4.1

5 A Pseudo Order on Fr(R
n)

In this section as a special case of the previous section, we shall investigate

the pseudo order 4K on Fr(R
n ) for a polyhedral cone K with K+ � R

n . To

this end, we need the following lemma.

Lemma 5.1. Let a; b 2 Rn+ and A 2 Cr(R
n ). Then for any scalars �1; �2 � 0,

it holds

(�1a+ �2b) �A = �1(a �A) + �2(b � A); (5:1)

where the arithmetic in (5.1) is de�ned in (4.1).

Proof. Let �1a � x+ �2b � y 2 �1(a �A) + �2(b � B) with x; y 2 A. It suÆces

to show that �1a � x+ �2b � y 2 (�1a+ �2b) �A. De�ne z = (z1; z2; � � � ; zn) by

zi :=

�
(�1aixi + �2biyi)=(�1ai + �2bi) if (�1ai + �2bi) > 0

xi if (�1ai + �2bi) = 0
(i = 1; � � � ; n):
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Then, clearly (�1a+ �2b) � z = �1a � x+ �2b � y. Since A 2 Cr(R
n ); z 2 A, so

that �1a � x+ �2b � y 2 (�1a+ �2b) � A. ut

Henceforth, we assume thatK is a polyhedral convex cone withK+ � R
n

+ ,

i.e., there exist vectors bi 2 Rn+ (i = 1; 2; � � � ;m) such that

K = fx 2 Rn j bi � x � 0 for all i = 1; 2; � � � ;mg:

Then, it is well-known (cf. [17]) that K+ can be written as

K+ = fx 2 Rn j x =

mX
i=1

�ib
i; �i � 0; i = 1; 2; � � � ;mg:

The above dual cone K+ is denoted simply by

K+ = conefb1; b2; � � � ; bmg;

where cone S denotes the conical hull of set S. The pseudo order 4K on

Cr(R
n ) is characterized by the pseudo order 41 on Cr(R).

Corollary 5.1. Let K+ = conefb1; b2; � � � ; bmg with bi 2 R
n
+ . Then, for

A;B 2 Cr(R
n ), A 4K B if and only if bi � A 41 b

i �B for all i = 1; 2; � � � ;m.

Proof. We assume that bi � A 41 bi � B for all i = 1; 2; � � � ;m. For any

a 2 K+, there exist �i � 0 with a =
P

m

i=1 �ib
i. From Lemma 4.1, we have:

a �A =

mX
i=1

�i(b
i
�A) 41

mX
i=1

�i(b
i
� B) = a �B:

Thus, by Lemma 4.4, A 4K B follows. By applying Lemma 4.4 again, the

`only if' part of Corollary holds. ut

Lemma 5.2. Let a; b 2 Rn+ and es 2 Fr(Rn ). Then, for any �1; �2 � 0,

(�1a+ �2b) � es = �1(a � es) + �2(b � es); (5:2)

where the arithmetic in (5.2) is given in (2.1), (2.2) and (4.2).

Proof. For any � 2 [0; 1], it follows from the de�nition and Lemma 5.1 that

((�1a+ �2b) � es)� = (�1a+ �2b) � es� = �1(a � es�) + �2(b � es�)
= �1(a � es)� + �2(b � es)� = (�1(a � es) + �2(b � es))�:

The last equality follows from (2.3). The above shows that (5.2) holds. ut

The main result in this section is given in the following.
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Theorem 5.1. Let K+ = conefb1; b2; � � � ; bmg with bi 2 R
n . Then, fores; er 2 Fr(Rn ),

es 4K er if and only if bi � es 41 bi � er for i = 1; 2; � � � ;m:

Proof. It suÆces to prove the `if' part of Theorem 5.1. For any a 2 K+,

there exist �i � 0 with a =
P

m

i=1 �ib
i. Applying Lemma 5.2, we have

a � es = mX
i=1

�i(b
i
� es) 41

mX
i=1

�i(b
i
� er) = a � er;

From Theorem 4.1, es 4K er follows. ut

1

2

3

x

0

1

2

3

y

0

0.25

0.5

0.75

1

z

2

3

1

2

3

y

gmaxfes; erg
er

es

Figure 8: gmaxfes; erg on Fr(R
2 )

Zhang and Hirota[25] described the structure of the fuzzy number lattice

(Fr(R);41 ). When K = R
n , K+ = R

n and K+ = conefe1; e2; � � � ; eng. So

that, by Theorem 5.1, we see that for es; er 2 Fr(Rn ), es 4n er means ei�es 41 e
i �er

for all i = 1; 2; � � � ; n. Therefore, by applying the same method as Zhang and

Hirota[25], we can describe the structure of the fuzzy set lattice (Fr(R
n );4n).

Figure 8 illustrates gmaxfes; erg for es; er 2 Fr(R2 ).
6 Sequences in C(Rn)

In this section, we introduce the concept of a determining class in which the

monotone convergence theorem for the sequences in C(Rn ) is proved.
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A closed cone K � C(Rn ) is said to be acute (c.f. [17]) if there exists an

a 2 Rn such that a � x > 0 for all x 2 K with x 6= 0.

We have the following lemma.

Lemma 6.1. Let K be a closed, acute convex cone and x0; y0 2 R
n with

x0 4K y0. Then, (x0 +K) \ (y0 �K) is nonempty and bounded.

Proof. By x0 4K y0, it follows that y0 2 (x0 + K) \ (y0 � K). Suppose

that (x0 + K) \ (y0 � K) is not bounded. Then, there exists a sequence

fz0
k
g � (x0 + K) \ (y0 � K) with k z0

k
k! 1 as k ! 1, where k � k is a

norm in Rn . Since z0
k
2 (x0 +K), for each k � 1, there exists zk 2 K with

z0
k
= x0 + zk. By acuteness of K, there exists a 2 Rn such that

a � zk > 0 for all k � 1: (6:1)

Also, from z0
k
2 y0�K, y0�x0� zk 2 K, which implies, together with (6:1),

that

a � (y0 � x0) > a � zk > 0 for all k � 1: (6:2)

It clearly holds that

inf
kzk=1;z2K

a � z = a � z0 > 0 for some z0 2 R
n :

From (6:2), we have

a � (y0 � x0)

k zk k
> a �

� zk

k zk k

�
� a � z0 > 0 for all k � 1:

As k zk k! 1 (k !1), the above inequality leads a contradiction. ut

Let �n be the Hausdor� metric on C(Rn ), that is, for A;B 2 C(Rn ),

�n(A;B) = max
a2A

d(a;B) _max
b2B

d(b; A); where d is a metric in Rn and d(x; Y ) =

min
y2Y

d(x; y) for x 2 Rn and Y 2 C(Rn). It is well-known that (C(Rn ); �n) is a

complete metric space. A sequence fD`g
1
`=1 � C(Rn ) converges to D 2 C(Rn )

w.r.t. �n if �n(D`; D)! 0 as `!1.

De�nition (Convergence of fuzzy set, [23]).

For fes`g1`=1 � F(Rn ) and er 2 F(Rn ), es` converges to er w.r.t. �n
if �n(es`;�; er�)! 0 as `!1 except at most countable � 2 [0; 1].

Lemma 6.2. Let feskg1k=1 � F(R) and es 2 F(R) such that esk 41 esk+1

(k � 1) and limk!1 esk = es. Then we have es1 41 es.
Proof. Trivial. ut

Lemma 6.3. Let feskg1k=1 � F(Rn ) and es 2 F(Rn ) such that esk 4K esk+1

(k � 1) and limk!1 esk = es. Then we have es1 4K es.
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Proof. From Theorem 4.1, for all a 2 K+ it holds that a � esk 41 a � esk+1

(k � 1). Also, since (a � esk)� = a � esk� from (4.2) and �1(a � esk�; a � es�) �
kak�n(esk�; es�) for all k � 1, we get limk!1 a � esk = a � es where kak is a norm
of a. By Lemma 6.2, it holds that a �es1 41 a �es for all a 2 K+. From Theorem

4.1, we have es1 4K es. ut

Let K be a convex cone. The sequence fD`g
1
`=1 � C(Rn ) is said to be

bounded w.r.t. 4K if there exists F;D 2 C(Rn ) such that F 4K D` 4K D

for all ` � 1 and said to be monotone w.r.t. 4K if D1 4K D2 4K � � � .

Let L � C(Rn ) and A � R
n . Then we say that A is a determining class for

L if a �D = a �F for all a 2 A and D;F 2 L implies D = F . For example, the

set of unit vectors fe1; e2; � � � ; eng in Rn is a determining class for Cr(R
n ),

which is the result of Theorem 5.1. Also, by the separation theorem, Rn is a

determining class for C(Rn ).

Two example are illustrated in Figure 9.

e2 2 R
2 b 2 R2

set in Cr(R
2 )

set in C(R2 )

e1 2 R
2 a 2 R2

Figure 9: The example of determining class

Theorem 6.1. Let K be a closed convex cone of Rn . Suppose that K+ is

a determining class for L � C(Rn ). Then, the pseudo order 4K becomes a

partial order in the restricted class L.

Proof. It suÆces to show that 4K is antisymmetric in L. Let D;F 2 L

satisfy that D 4K F and F 4K D. By Lemma 4.4, a � D 41 a � F and

a � F 41 a �D for all a 2 K+. Since 41 is a partial order, a � F = a �D for all

a 2 K+, which implies F = D from the determining property of K+. ut

As a simple application of Theorem 6.1, we have the following.

Corollary 6.1. Let K be a closed convex cone of Rn . Suppose that K+ is

a determining class for L. Then, any sequence fDlg � L which is monotone

w.r.t. 4K and satis�es Dl � X (l � 1) for some compact subset X of Rn

converges w.r.t. �n.

Proof. Let C(X) = fX \D j D 2 C(Rn )g. Then, C(X) is compact w.r.t. �n.

So, the sequence fDlg has at most one limiting point. Since 4K is a partial
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order from Theorem 6.1, all the limiting points are equal, which completes

the proof. ut

In order to continue a further discussion, we need the acuteness of the

ordering cone K. Then we have the following.

Lemma 6.4. Let K be a closed, acute convex cone and D;F;G 2 C(Rn )

with D 4K F 4K G. Let

X :=
[

x4
K
y

x2D;y2G

(x+K) \ (y �K): (6:3)

Then, it holds that F � X and X is bounded.

Proof. From D 4K F 4K G, for any z 2 F , there exists x 2 D; y 2 G such

that x 4K z 4K y, which implies z 2 (x+K) \ (y �K).

Now, suppose that X is unbounded. Then, there exists a sequence fztg �

X with k zt k! 1 as t ! 1. By zt 2 X , there exists xt 2 D; yt 2 F

with xt 4K yt and zt 2 (xt + K) \ (yt � K). Noting that both D and F

are compact, there is no loss of generality in assuming that xt ! x 2 D and

yt ! y 2 F as t!1.

Since (xt+K)\(yt�K)! (x+K)\(y�K) as t!1, (x+K)\(y�K)

is unbounded. However, from Lemma 6.3, x 4K y, so that (x+K)\ (y�K)

is bounded by Lemma 6.1, which leads to a contradiction. ut

Theorem 6.2. Let K be a closed, acute convex cone of Rn and L � C(Rn ).

Suppose that K+ is a determining class for L. Then, any sequence fDlg
1
l=1 �

L which is bounded and monotone w.r.t. 4K converges w.r.t. �n.

Proof. By boundedness of the sequence fDlg, there exists D;G 2 C(Rn )

with D 4K Dl 4KG for all l � 1. By Lemma 6.4, there exists a compact

subset X of Rn such that Dl � X (l � 1). Thus, applying Corollary 6.1, the

proof is completed. ut

As applications of Theorem 6.2, we have the following Corollaries.

Corollary 6.2. For any a 2 Rn (a 6= 0), let Ka := f�a j � � 0g. Then, any

sequence of solid spheres in K+
a

with monotonicity and boundedness w.r.t.

4Ka
converges w.r.t. �n.

Corollary 6.3. Any sequence in Cr(R
n ) with monotonicity and boundedness

w.r.t. 4n converges w.r.t. �n.

For any D 2 C(Rn ) and " > 0, the "-closed neighborhood of D will be

denoted by

S"(D) := fx 2 Rn j d(x;D) � "g; (6:4)
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which is a compact convex subset of Rn . Note that

S"(D) = D + "U0; (6:5)

where U0 is the closed unit ball (cf. [2]).

The following lemma is useful in the sequel.

Lemma 6.5. The following (i) to (iii) hold.

(i) For any D;F 2 C(Rn ), if SÆ1(D) � SÆ2(F ) for some Æ1; Æ2 � 0,

then SÆ1+"(D) � SÆ2+"(F ) for any " � 0.

(ii) For any D 2 C(Rn ) and � > 0, S"(�D) = �S"=�(D).

(iii) For any sequence fDlg � C(Rn ) and D 2 C(Rn ), if Dl ! D as l!1,

then SÆ(Dl)! SÆ(D) as l !1 (Æ � 0).

Proof. For any D;F 2 C(Rn ) and Æ1; Æ2 � 0, SÆ1(D) � SÆ2(F ) means from

(6.5) that D+ Æ1U0 � F + Æ2U0, so that D + Æ1U0 + "U0 � F + Æ2U0 + "U0.

Since U0 is convex, Æ1U0+"U0 = (Æ1+")U0 and Æ2U0+"U0 = (Æ2+")U0, which

leads to SÆ1+"(D) � SÆ2+"(F ). Also, S"(�D) = �D+ "U0 = �(D+("=�)U0),

so that (ii) follows. For (iii), by the properties of the Hausdor� metric �n (cf.

[2]) �n(SÆ(Dl); SÆ(D)) = �(Dl; D), as required. ut

For any closed convex coneK � R
n , let L(K+) be the set of allD 2 C(Rn )

satisfying that for any x0 2 R
n and " > 0 with x0 62 S"(D) there exists

a 2 K+ (a 6= 0) such that

a � y � a � x0 for all y 2 S"(D):

The properties of L(K+) are stated in the following lemma.

Lemma 6.6. The following (i) to (iii) hold.

(i) K+ is a determining class for L(K+).

(ii) L(K+) is closed w.r.t. �n.

(iii) For any D 2 L(K+), �D + �D 2 L(K+) (�; � � 0).

Proof. For (i), suppose that there exist D;F 2 L(K+) such that a �D = a �F

for all a 2 K+ but there exists x0 with x0 62 D and x0 2 F . By x0 62 D,

x0 62 SÆ(D) for some Æ > 0. Then, there exists a 2 K+ such that a �x � a �x0
for all x 2 SÆ(D), so that a�x > a�x0 for all x 2 D, which implies a�D 6= a�F ,

in a contradiction.

Let L(K+) be the closure of L(K+) w.r.t. �n. For any D 2 L(K+), there

exists a sequence fDlg � L(K+) such that �n(Dl; D)! 0 as l!1.

Now, for each " > 0, let x0 62 S"(D). Obviously there exists Æ > 0 with

x0 62 S"+Æ(D). By the de�nition of the Housdor� metric �n, there exists L

(depending on Æ) for which Dl � SÆ(D) for all l � L. Applying Lemma 6.5(i),

S"(Dl) � S"+Æ(D), which implies x0 62 S"(Dl) for all l � L.
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Since Dl 2 L(K
+), by the de�nition there exists al 2 K+ such that

al � x � al � x0 for any x 2 S"(Dl): (6:6)

Without loss of generality, we can assume that k al k= 1 and al ! a 2 K+

as l!1. As l!1 in (6.6), from Lemma 6.5(iii), we get that

a � x � a � x0 for any x 2 S"(D): (6:7)

The above shows D 2 L(K+).

For (iii), observing that (� + �)D = �D + �D (�; � � 0), we only need

to show �D 2 L(K+) for any � > 0 and D 2 L(K+). For any x0 2 R
n and

" > 0 with x0 62 S"(�D), from Lemma 6.5(ii) it holds that ��1x0 62 S"=�(D).

That D 2 L(K+) implies that there exists a 2 K+ (a 6= 0) such that

a � x � a � (��1x0) for all x 2 S"=�(D): (6:8)

Obviously, (6.8) leads to a � x � a � x0 for any x 2 S"(�D), as required. ut

Noting that K+ = R
2
+ when K = R

2
+ in R2 , the sets included in L(R2+ )

are illustrated in Figure 10.

Figure 10: The example of sets in L(R2
+ )

We have the following.

Theorem 6.3. Let K be a closed, acute convex cone of Rn . Then, any

sequence fDlg
1
l=1 � L(K+) which is bounded and monotone w.r.t. 4K con-

verges w.r.t. �n.

Proof. From Lemma 6.3, K+ is a determining class for L(K+) and L(K+)

is closed. Thus, by applying Theorem 6.3, the result follows. ut
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7 Sequences in F(Rn)

In this section, the monotone convergence theorem for a sequence in F(Rn )

is given.

Let eL � F(Rn ) and A � R
n . Then we call A a determining class for eL if

a � es = a � er for all a 2 A and es; er 2 eL implies es = er.
A natural extension of Theorem 6.1 to fuzzy sets will be given in the

following theorem.

Theorem 7.1. Let K be a closed convex cone of Rn and eL � F(Rn ).

Suppose that K+ is a determining class for eL. Then, a pseudo order 4K is a

partial order in eL.
Proof. Let us show that 4K is antisymmetric in eL. For any es; er 2 eL withes 4K er and er 4K es, by Theorem 4.4 it holds that a �es 41 a �er and a �er 41 a �es
for all a 2 K+.

Noting (a � es)� = a � es�, we have a � es� 41 a � er� and a � er� 41 a � es� for all

a 2 K+. Since 41 is a partial order on C(R), a � es� = a � er� for all a 2 K+,

which means a �es = a �er for all a 2 K+. Thus, that K+ is a determining class

leads to es = er. ut

LetK be a convex cone. The sequence feslg � F(Rn ) is said to be bounded

w.r.t. 4K if there exists eu; ev 2 F(Rn ) such that eu 4K esl 4K ev for all l � 1

and said to be monotone w.r.t. 4K if es1 4K es2 4K � � � .

In order to obtain the convergence theorem, we need the concept of di-

rectionality given in [23]. Denote the surface of the unit ball by U := fx 2

R
n jk x k= 1g. Let V � U . Then, for D;D0 2 C(Rn ) with D � D0, we call D0

V -directional to D (written by D0 �V D) if there exists a real � > 0; y 2 D

and z 2 D0 such that

(i) d(z; y) = �n(D
0; D) and (ii) z � y = �v for some v 2 V .

De�nition (V -directional). Let V � R
n . For es 2 F(Rn ), es is called V -

directional if es� �V es�0 for 0 � � � �0 � 1.

Corollary 7.1. Let K be a closed convex cone of Rn and eL � F(Rn ).

Suppose that K+ is a determining class for eL. Let a sequence feslg � F(Rn )

be satis�ed that

(a) feslg is bounded and monotone w.r.t. 4K ,

(b) each esl is V -directional for a �nite set V � R
n and

(c) there exists a compact subset D of Rn such that esl0 � D for all l � 1,

where esl0 is the support or 0-cut of esl.
Then the sequence feslg converges w.r.t. �n.
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Proof. In view of (a) and (c), by the argument similar to the proof of

Corollary 6.1, we have that for each � 2 [0; 1]; esl� ! es� 2 C(Rn ) as l ! 1,

where esl� is the �-cut of esl.
We de�ne fes+

�
g by es+

�
:= \�0<�es�0 if � 2 (0; 1] and es+0 := es0. Obviously,

the family fes+�g satis�es the condition (ii) of the representative theorem in

Section 2. So, if es(x) = sup
�2[0;1]f� ^ 1

es
+
�

(x)g for all x 2 R
n , it holds es 2

F(Rn ).

Also, by the same discussion as that in the proof of Lemma 3.2 in [23],

we get that es+
�
�V es� for all � 2 [0; 1] and f� 2 [0; 1] j es+

�
6= es�g is at most

countable, which implies that esl ! es as l !1, as required. ut

The following monotone convergence theorem is thought of as an exten-

sion of Theorem 6.2 to fuzzy sets.

Theorem 7.2. Let K be a closed, acute convex cone of Rn and eL � F(Rn ).

Suppose thatK+ is a determining class for eL. Then, any sequence feslg1l=1 �
eL

which satis�es (a) and (b) in Corollary 7.1 converges w.r.t. �n.

Proof. From the de�nition of boundedness of feslg, there existsD;G 2 C(Rn )

such that D 4K esl0 4K G for all l � 1.

By Lemma 6.4, there exists a compact subset X of Rn with esl0 � X for

all l � 1, which implies that the condition (c) in Corollary 7.1 holds. Thus,

applying Corollary 7.1, Theorem 7.2 follows. ut

Now, for any closed convex cone K, we de�ne eL(K+) by

eL(K+) := fes 2 F(Rn ) j es� 2 L(K+) for all � 2 [0; 1]g:

The previous Lemma 6.6 is extended to that for F(Rn ) in the following

lemma, whose proof is easily done by �-cuts of the corresponding fuzzy sets

and leaved to a reader.

Lemma 7.1. The following (i) to (iii) hold.

(i) K+ is a determining class for eL(K+).

(ii) eL(K+) is closed w.r.t. the convergence de�ned in Section 6.

(iii) For any es 2 eL(K+), �es+ �es 2 eL(K+) (�; � � 0).

We have the following.

Theorem 7.3. Let K+ be a closed, acute convex cone of Rn . Then, any

sequence feslg1l=1 �
eL(K+) which satis�es (a) and (b) in Corollary 7.1 con-

verges.

Proof. From Lemma 7.1, K+ is a determining class for eL(K+) and eL(K+)

is closed. So, applying Theorem 7.2, the results follow. ut
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8 Applications to Monotone Dynamic Fuzzy Systems

In this section, as an application of the results obtained in the preceding

section, we consider a limit theorem for a sequence of fuzzy states de�ned by

the dynamic fuzzy system (cf. [9], [10], [20], [21], [22], [23]) with a monotone

fuzzy relation.

Let eq : Rn �Rn ! [0; 1] be a continuous fuzzy relation such that eq(x; �) 2
F(Rn ) for each x 2 Rn and eq(�; �) is convex, that is,

eq(�x1 + (1� �)x2; �y1 + (1� �)y2) � eq(x1; y1) ^ eq(x2; y2) (8:1)

for any x1; x2; y1; y2 2 Rn and � 2 [0; 1]. From this fuzzy relation eq, we de�neeq : F(Rn )! fthe set of fuzzy sets on Rng as follows.

eq(eu)(y) := sup
x2Rn

feu(x) ^ eq(x; y)g; 2 Rn ; (8:2)

where a ^ b = minfa; bg. Also, for any � 2 [0; 1], eq� : C(Rn ) ! 2R
n

will be

de�ned by

eq�(D) :=

�
f y j eq(x; y) � � for some x 2 Dg; for � > 0; D 2 C(Rn )

clf y j eq(x; y) > 0 for some x 2 Dg; for � = 0; D 2 C(Rn );

(8:3)

where cl denotes the closure of a set and 2R
n

the set of all closed subsets of

R
n . For simplicity, we put eq(x) := eq(fxg) for x 2 Rn .
The following facts are well-known (cf. [8], [9], [23]).

Lemma 8.1 The following (i) to (iii) hold.

(i) eq�(D) 2 C(Rn ) for any D 2 C(Rn ) and eq�(�) is continuous in C(Rn ) for

each � 2 (0; 1].

(ii) eq(eu) 2 F(Rn ) for any eu 2 F(Rn ).
(iii) eq(eu)� = eq�(eu)� for any eu 2 F(Rn ) and � 2 [0; 1], where eq(eu)� is the

�-cut of eq(eu).
The sequence of fuzzy states, festg1t=1 � F(Rn ), for the dynamic system

with fuzzy transition eq is de�ned as follows.

est+1 = eq(est) (t � 1); (8:4)

where es1 2 F(Rn ) is the initial fuzzy state.

The problem in this section is to consider a convergence of the sequence

festg1t=1 de�ned by (8.4), so that we derive the monotone property of the

fuzzy relation eq w.r.t. the pseudo order 4K de�ned by the ordering cone K

in Rn .
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De�nition (4K-monotone). The fuzzy relation eq is called 4K-monotone

if x1 4K x2 (x1; x2 2 Rn ) means eq(x1; �) 4K eq(x2; �).
Remark. Yoshida et al [23] has introduced a monotone property concerning

the fuzzy relation eq whose de�nition is as follows: eq�(y) � eq�(x) + `(x; y) for

x; y 2 Rn , where `(x; y) := f
(y� x) j 
 � 0g. Obviously, if eq is monotone in

the sense of [23], then eq is 4n-monotone, but the converse is not necessarily

true.

The following lemma is useful for our further discussion.

Lemma 8.2. Suppose that eq is 4K-monotone. Then, for any eu; ev 2 F(Rn )
with eu 4K ev, it holds that eq(eu) 4K eq(ev).
Proof. By Lemma 8.1(iii), for any a 2 K+, a�eq(eu)� = a�eq�(eu�) 2 C(R1 ): So,
we write it by the closed interval as follows, a�eq�(eu�) := [min a�eq�(eu�);maxa�eq�(eu�)] and a � eq�(ev�) := [min a � eq�(ev�);max a � eq�(ev�)]:

Obviously, for each � 2 [0; 1], there exists y1 2 ev� such that min a �eq�(y1) = min a � eq�(ev�). From Lemma 4.3, eu 4K ev means eu� 4K ev� for all

� 2 [0; 1], so that there exists x1 2 eu� with x1 4K y1. By 4K-monotonicity ofeq, we have eq�(x1) 4K eq�(y1), which from Lemma 6.5 implies min a � eq�(x1) �
min a � eq�(y1). This leads to min a � eq�(eu�) � min a � eq�(ev�).

Now, by taking x2 2 eu� with maxa �eq�(x2) = maxa �eq�(eu�), we can show

by the same way as the above that maxa � eq�(eu�) � max a � eq�(ev�).
Then, we have a � eq�(eu�) 41 a � eq�(ev�) (� 2 [0; 1]): Applying Lemma 4.3,

we get eq(eu) 4K eq(ev), as required. ut

Assumption A. The following (i) to (iii) hold.

(i) The ordering cone K is a closed, acute convex one in Rn .

(ii) The fuzzy relation eq is 4K-monotone.

(iii) There exists a �nite subset V � U such that, for anyD;D0 2 C(Rn ) (D0 �

D), if D0 �V D then eq�0(D0) �V eq�(D) for all �; �0 (0 � �0 � � � 1)).

For any given eu 2 F(Rn ), putting es1 := eu, we de�ne the sequence festg1t=1

by (8.4). Then, we have the following.

Theorem 8.1. In addition to Assumption A, suppose that the following

(iv) to (vi) hold.

(iv) eu 2 eL(K+) and eu 4K eq(eu).
(v) eu�0 �V eu� for all �; �0 (0 � �0 � � � 1)), where V is as in Assumption

A(iii).

(vi) festg � eL(K+) and bounded from above.
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Then, the sequence festg converges and the limit es := limt!1 est satis�es the
following fuzzy relational equation:

es = eq(es): (8:5)

Proof. From Lemma 8.2 and Assumption, we observe that the sequence festg
is bounded and 4K-monotone. Also, we can check that all the assumption in

Theorem 7.3 are satis�ed. Thus, from Theorem 7.3, we can prove the theorem.

ut

Theorem 8.2. In addition to Assumption A, suppose that the following

(iv'), (v) and (vi') hold.

(iv') eu 2 eL(K+) with eu0 � K and eq(eu) 4K eu.
(v) eu�0 �V eu� for all �; �0 (0 � �0 � � � 1)), where V is as in Assumption

A(iii).

(vi') festg � eL(K+).

Then, the sequence festg converges and the limit es := limt!1 est satis�es the
fuzzy relational equation (8.5).

Proof. From Lemma 8.2, est+1 4K est and 1f0g 4K est 4K es1 for all t � 1.

Applying Theorem 7.3 to the 4K-decreasing case, we can prove the theorem.

ut

As an example of 4K-monotone fuzzy relation, we put the fuzzy relationeq by eq(x; y) := er(y) + �1fxg (x; y 2 Rn ); (8:6)

where er 2 eL(k+) with er�0 �V er� for some �nite set V � U and �; �0 (0 �

�0 � � � 1) and 0 < � < 1.

Obviously, Assumption A is satis�es for eq of (8.6). Also, we observe from
Lemma 7.1 that the assumptions (iv) to (vi) in Theorem 8.1 hold for eu = er.
So that by Theorem 8.1, the sequence festg de�ned by (8.4) with es1 = er
converges.

Remark. Note that the fuzzy relation eq of (8.6) satis�es the contraction

property introduced in [8]. Thus, we see that the limit es = limt!1 est is

a unique solution of the fuzzy relational equation (8.5) and given by es =

(1� �)�1er.
Example. We give a one-dimensional numerical example whose fuzzy rela-

tion eq is given by

eq(x; y) = (1� 2jy � (3� x�2)j) _ 0 (x > 0):
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For � 2 [0; 1], it holds that by (8.3)

eq�(x) = [3� (1� �)2�1
� x�2; 3 + (1� �)2�1

� x�2]:

This is illustrated in Figure 11. So, we observe that eq is 41-monotone in

(0;1)� (0;1), also that 1f1g 41 eq(1f1g) and eq(x; �) 41 1f7=2g(x).

Applying Theorem 8.1, the sequence fest(x)g de�ned by (8.4) with es1(x) =
1f1g(x) converges. The convergence is shown in Figure 11 and 12 with the

limit es(x) = limt!1 est(x), where the �-cut es� of the limit es(x) for � =

0 and � = 1 are min es0 = 2:313099034, max es0 = 3:414213562 and es1 =

2:879385242.

0
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Figure 11: eq�(x) and the limit es(x) of fest(x)g
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Figure 12: The sequence fest(x)g
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