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Abstract.Aesthetics feature fascinates mathematician. Since ancient times, the Golden Ra-

tio (φ) has been keeping to give a profound influence in various fields. We will show typical

dynamic programming problems: Allocation problem, Linear-Quadratic control problem and

Multi-variate stopping problem. For these problems, there appears the Golden Ratio in the

solution of Bellman equation. This paper also considers a minimization problem of quadratic

functions over an infinite horizon. We show that the Golden trajectory is optimal in the optimiza-

tion. The Golden optimal trajectory is obtained through the corresponding Bellman equation,

which in turn admits the Golden optimal policy. For Multi-variate stopping problem with three

players on the unit interval [0, 1], its related expected value could be obtained as φ−1.

1. Introduction. The Golden Ratio (φ = 1.161803 · · · ) has been a profound influ-
ence since ancient times such as the Parthenon at Athens. The shape of the Golden Ratio
is supposed to be interesting in a graphic forms for their sculptures and paintings. The
beauty appears even in the ingredient of nature creatures. The most influential mathemat-
ics textbook by Euclid of Alexandria defines the proportion. These information presents
a broad sampling of φ−related topics in an engaging and easy-to-understand format.

The Fibonacci sequence (1,1,2,3,5,8,13,· · · ) is closely related to the Golden Ratio,
which is a limiting ratio of its two adjacent numbers. It is also known that the diagonal
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summation produces the Fibonacci sequence in the Pascal’s triangle. These repeated
procedure or iteration have something in common.

The principle of Dynamic Programming is said to ‘divide and conquer.’ In fact, if it is
not possible to work out directly, divide up a problem into smaller ones. The basic idea is
aiming to provide the original problem an effective family of sub-problems. The Bellman’s
curse of dimensionality conquers the computational explosion with the problem dimension
through the use of parametric representations. The more it’s in a complex, the more it
is divided. When a problem is in a multi-stage decision form, we should consider the
problem repeatedly. If this reduction procedure gives a self-similar one, the methodology
turns out to be effective. The Golden Ratio is created repeatedly by its own in a quite same
form. A recurrence relation is ubiquitous. Let us say that a beautiful continued fraction
represents the Golden number. It is interesting that this quite introductory problem of
Dynamic programming produces the basic mathematical aspects.

In the following sections, we treat typical dynamic programming problems; Alloca-
tion problem and Linear-Quadratic Control problem. However problems are in a simple
fashion, it figures out the essence of Dynamic Programming.

Let us consider a typical type of criterion in a deterministic optimization. We minimize
the next quadratic criteria :

(1.1) I(x) =
∞∑

n=0

[
x2

n + (xn − xn+1)2
]
,

and

(1.2) J(x) =
∞∑

n=0

[
(xn − xn+1)2 + x2

n+1

]
.

Let R∞ be the set of all sequences of real values :

R∞ = {x = (x0, x1, . . . , xn, . . .) |xn ∈ R1 n = 0, 1, . . . }.
First we take the quadratic criterion (1.1).

Now we consider a mathematical programming problem for any given initial value c :

MP1(c) : minimize I(x) subject to (i) x ∈ R∞, (ii) x0 = c.

Let us evaluate a few special trajectories :

Example 1. First all but on and after nothing y = {c, 0, 0, . . . , 0, . . .} yields
I(y) = 2c2.

Example 2. Always all constant z = {c, c, . . . , c, . . .} yields I(z) = ∞.

Example 3. A proportional (geometrical) w = {c, ρc, . . . , ρnc, . . .} yields

(1.3)
I(w) =

{
c2 + (1− ρ)2c2

} (
1 + ρ2 + · · ·+ ρ2n + · · · )

=
1 + (1− ρ)2

1− ρ2
c2 (0 < ρ < 1).

Since

min
0≤ρ<1

1 + (1− ρ)2

1− ρ2



GOLDEN OPTIMAL VALUE 3

is attained at ρ̂ = 2− φ, we have the minimum value

1 + {1− (2− φ)}2
1− (2− φ)2

= φ.

Example 4. The propotional û = {c, (2 − φ)c, . . . , (2 − φ)nc, . . .} , with ratio
(2− φ), yields

(1.4) I(û) = φc2.

Thus û = (ûn) gives a Golden optimal trajectory, because ûn+1 is always a Golden section
point of interval [0, ûn].

Next let us now consider a control process with an additive transition T (x, u) = x+u.

minimize
∞∑

n=0

(
x2

n + u2
n

)

subject to (i) xn+1 = xn + un, n ≥ 0
(ii) −∞ < un < ∞
(iii) x0 = c.

Then the value function v satisfies Bellman equation :

(1.5) v(x) = min
−∞<u<∞

[
x2 + u2 + v(x + u)

]
.

Eq. (1.5) has a quadratic form v(x) = φx2.
Second we take the following quadratic criterion

J(x) =
∞∑

n=0

[
(xn − xn+1)2 + x2

n+1

]
.

We consider a problem of form:

MP2(c) : minimize J(x) subject to (i) x ∈ R∞, (ii) x0 = c.

Since J(x) = I(x)− c2, the minimum value is J(û) = (φ− 1)c2 at the Golden trajectory

û = {c, µc, . . . , µnc, . . .} ; µ = 2− φ.

In fact, a proportional w = {c, ρc, . . . , ρnc, . . .} yields

J(w) =
{
ρ2c2 + (1− ρ)2c2

} (
1 + ρ2 + · · ·+ ρ2n + · · · )

=
ρ2 + (1− ρ)2

1− ρ2
c2 (0 < ρ < 1).

Figure 1 in the Appendix shows that

min
0≤x<1

x2 + (1− x)2

1− x2

is attained at x̂ = 2− φ with the minimum value

(2− φ)2 + {1− (2− φ)}2
1− (2− φ)2

= φ− 1.
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2. An Illustrative Graph. Let us now describe a graph which has dual Golden

extremum points in the previous section. The graph is x = f(u) =
u2 + (1− u)2

1− u2
. See

Figure 1 in Appendix. For this function, it is seen that two equalities:

(2.1) min
0<u<1

f(u) = min
0<u<1

u2 + (1− u)2

1− u2
= −1 + φ

and max
1<u<∞

f(u) = max
1<u<∞

u2 + (1− u)2

1− u2
= −φ hold. Equivalently, the latter equality is

that

(2.2) min
1<u<∞

{−f(u)} = min
1<u<∞

u2 + (1− u)2

u2 − 1
= φ

The minimum in (2.1) attains iff û = 2−φ, and the minimum in (2.2) attains iff u∗ = 1+φ.

Thus we have the inequality

f(u) ≥ −1 + φ on (−1, 1) and f(u) ≤ −φ on (−∞,−1) ∪ (1,∞).

Refer to the shape for this graph in the Figure 1 of Appendix.

3. Dynamic Programming of the discrete-time system. The conceptual clus-
ter of Dynamic Programming are investigated throughout the mathematics. Not only
the analytical aspect of optimization method, but also the investigate problem with a
repeated structure. To give a useful explanation and an interesting implication, we show
some explicitly solvable problems.

First the general setting of Dynamic Programming problem are illustrated. It is com-
posed as (S,A, r, T ). Let S be a state space in the Euclidean space R and A = (Ax), Ax ⊂
R, x ∈ S means a feasible action space depending on a current state x ∈ S. The immedi-
ate reward is a function of r = r(x, a, t), x ∈ S, a ∈ Ax, t = 0, 1, 2, · · · . And the terminal
reward K = K(x), x ∈ S is given. The transition law from the current x to the new
y = m(x, a, t) by the action or decision a ∈ Ax at a time t. If the transition law m(x, a, t)
does not depend t, it is called a stationary m(x, a, t) and we treat it in this paper. Here
we consider additive costs and the optimal value of at will be depend on the decision
history. Assume its value at time t denoted by xt, which enjoy the following properties:

(a) The value of xt is observable at time t.

(b) The sequence {xt} follows a recurrence in time:

(3.1) xt+1 = m(xt, at, t).

It is termed that the function y = m(x, π(x, t), t) means a move from the current x to the
next y at t so the law of motion or the plant equation by adapting a policy a = π(x, t).

(c) The set of at may adopt depends on xt and t.

(d) The cost function Cπ(x, t) starting a state x at time-to-go Tt = T − t to optimize over
all policies π has the additive form;

(3.2) Cπ(x0, t0) =
T−1∑
t=t0

r(xt, at, t) + K(xT )
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with x0 = xt0 and

xt+1 = m(xt, π(xt, t), t), at = π(xt, t)

where T is a given finite planning horizon.

Let

F (x, t) = inf
π

Cπ(x, t).

It is well known that the sequence {F (·, t)} satisfies the optimality equation(DP equa-
tion):

(3.3) F (x, t + 1) = inf
a∈Ax

[r(x, a, t) + F (m(x, a, Tt), t)]

with the boundary F (x, T ) = K(x) where Tt = T − t for x ∈ S, 0 ≤ t < T .
All of these are referred from text books by Bertsekas [2], Whittle [15], Sniedovich [14],

etc.
The relation between The Golden ratio formula and Fibonacci sequence is known as [4]

etc. To produce the Fibonacci sequence, it is a good example in a recursive programming
[13]. Also the Fibonacci sequence are related with continued fraction. For the notation of
continued fraction, we adopt ourself to the following notations:

b0 +
c1

b1 +
c2

b2 +
c3

b3 +
c4

b4 + · · ·

= b0 +
c1

b1+
c2

b2+
c3

b3+
c4

b4+
· · · .

Note that the Golden number satisfies φ2 = 1 + φ. By using this relation repeatedly,

φ = 1 +
1
φ

= 1 +
1

1 +
1
φ

= 1 +
1

1+
1
φ

= 1 +
1

1+
1

1+
1
φ

= 1 +
1

1+
1

1+
1

1+
· · · . Similarly the

reciprocal (or sometimes called as a dual Golden number) is denoted φ−1 = 0.618 · · · =

φ− 1 =
1
φ

=
1

1+
1
φ

=
1

1+
1

1+
1
φ

=
1

1+
1

1+
1

1+
· · · .

This reproductive property suggests our fundamental claim for the following typical
example of Dynamic Programming. Before we solve the problem, let us induce a sequence
{φn} as

(3.4) φn+1 = 1 +
1

1 + 1/φn
= 1 +

1
1+

1
φn

(n ≥ 1), φ1 = 1.

Also let {φ̂n} as

(3.5)

φ̂n+1 =
1

1+
1

1+
φ̂n (n ≥ 1), φ̂1 = 1,

i.e.

φ̂−1
n+1 =

1

φ̂n+1

= 1 +
1

1 + φ̂n

= 1 +
1

1+
φ̂n (n ≥ 1).
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The sequence {φn} of (3.4) satisfies

φn+1 = 1 +
1

1+
1

1+
1

1+
1

φn−1

= 1 +
1

1+
1

1+
1

1+
1

1+
1

1+
1

φn−2

Similarly {φ̂n} of (3.5) satisfies
1

φ̂n+1

= 1 +
1

1+
1

1+
1

1+
φ̂n−1

= 1 +
1

1+
1

1+
1

1+
1

1+
φ̂n−2

From this definition, it is seen easily that

(3.6) lim
n→∞

φn = φ = (
√

5 + 1)/2

(3.7) lim
n→∞

φ̂n = 1/φ = (
√

5− 1)/2

4. Linear-Quadratic Control problem. The Linear Quadratic (LQ) control prob-
lem is to minimize the quadratic cost function over the linear system. If the state of system
{xt} moves on

(4.1) xt+1 = xt + at, t = 0, 1, 2, · · ·
with x0 = 1 by an input control {at,−∞ < at < ∞} . The cost incured is

(4.2)
T−1∑
t=0

(x2
t + a2

t ) + x2
T .

Then DP equation of LQ is

(4.3) vt+1(x) = min
a∈Ax

{r(a, x) + vt(a + x)}

where
r(a, x) = a2 + x2,

a ∈ Ax = (−∞,∞), x ∈ (−∞,∞)

Theorem 4.1. The solution of (4.3) is given by
{

v0(x) = φT x2

vt(x) = φT−tx
2, t = 1, 2, · · ·

using the Golden number related sequence {φn} by (3.4).

(Proof) The proof is immediately obtained by an elementary quadratic minimization and
then the mathematical induction. 2

5. Allocation problem. Allocation problem or sometime called as partition prob-
lem is of the form

(5.1) vt+1(x) = min
a∈Ax

{r(a, x) + vt(a)}
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for t = 0, 1, 2, · · · , T, where

r(a, x) = a2 + (x− a)2,
a ∈ Ax = [0, x], x ∈ (−∞,∞).

Theorem 5.1. The solution of (5.1) is given by using the dual golden number as
{

v0(x) = φ̂T x2

vt(x) = φ̂T−tx
2, t = 1, 2, · · ·

(Proof) Using the Schwartz inequality, the following holds immediately: For given positive
constants A and B with a fixed x,

min
0≤a≤x

{Aa2 + B(x− a)2} =
x2

1/A + 1/B
.

So the proof could be done inductively. 2

Remark 1 : We note here that the number φ−1 = 0.618 · · · of reciprocal of the Golden
number is called sometimes Dual Golden number. The above two problems are closely
related.

Remark 2 : It is seen that the same quadratic function of the form; v(x) = cx2 where
c is a constant, becomes a solution if the DP equation is, for Allocation and LQ,

(5.2) vt+1(x) = min
a∈Ax

{
r(a, x) + 2

∫ a

0

vt(y)/y dy

}

(5.3) vt+1(x) = min
a∈Ax

{
r(a, x) + 2

∫ a+x

0

vt(y)/y dy

}

respectively. Refer to [9].

6. Monotone Stopping Game. A monotone rule is introduced to sum up indi-
vidual declarirations in a multi-variate stopping problem [16]. The rule is defined by a
monotone logical function and is equivalent to the winning class of Kadane [12]. There
given p-dimensional random process {Xn;n = 1, 2, · · · } and a stopping rule π by which
the group decision determined from the declararion of p players at each stage. The stop-
ping rule is p-variate {0, 1}-valued monotone logical function. We consider two cases of
rules with p = 3 as follows:

(6.1) π(x1, x2, x3) = x1 + x2

and

(6.2) π(x1, x2, x3) = x1x2 + x1x3.

That is, in case of the case (6.1), if either of player 1 and 2 declares stop, then the
system stops neglecting of x3. In case of (6.1), we have the system stops when either
of player 1 and 2 declares stop accompanying with player 1. Without loss of generality,
we can assume that each Xn takes the uniformly distribution on [0, 1]. Then equilibrium
expected values for each player is given as
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x1 x2 π(x1, x2, x3)
0 0 0
0 1 1
1 0 1
1 1 1

Figure 1. π(x1, x2, x3) = x1 + x2 for any x3

x1 x2 x3 π(x1, x2, x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 2. π(x1, x2, x3) = x1x2 + x1x3

Player 1 Player 2 Player 3

π(x1, x2, x3) = x1 + x2

√
5− 1
2

√
5− 1
2

0.5

π(x1, x2, x3) = x1x2 + x1x3 1
√

5− 1
2

√
5− 1
2

Table 1. The equilibrium expected value for each players.

In order to derive the value φ−1 =
√

5− 1
2

, we consider an equilibrium stopping

strategy of threshold type in the form {Xn > a} for some a. Bellman type equation for
this game version will be given as [16]. That is, each player declares “stop” or “continue”
if the observed value exceeds some a or not. The event of the occurence is denoted by
Di

n = {Player i declares stop}. Two trivial cases are the whole event Ω and the empty
event ∅.

In generally a logical function is assumed “monotone” so its function can be written
as

π(x1, · · · , xp) = xi · π(x1, · · · ,
i
1, · · ·xp) + xi · π(x1, · · · ,

i
0, · · ·xp) xi ∈ {0, 1} ∀i

where xi = 1− xi. Corresponding to this expression,

Π(D1, · · · , Dp) = Di ·Π(D1, · · · ,
i

Ω, · · ·Dp) + Di ·Π(D1, · · · ,
i

∅, · · ·Dp)

where Di is the complement of the event Di. The general equation for the expected for
player i equals

(6.3) E

[
(Xi

n − vi)+1
Π(D1

n,··· , i
Ω,···Dp

n)

]
+ E

[
(Xi

n − vi)−1
Π(D1

n,··· ,
i

∅,···Dp
n)

]

where Di
n = {Xi

n ≥ vi} and (x)+ = max{x, 0}, (x)− = min{x, 0}. If we assume an
independence case between player’s random variable Xi

n for each i. The equation (6.3)
becomes as

(6.4) βΠ(i)
n E

[
(Xi

n − vi)+
]
+ αΠ(i)

n E
[
(Xi

n − vi)−
]
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where rule(a)Our objection is to find an equilibrium strategy and values of playes for a
given monotone rule as the rule (6.1) and (6.2). A sequence of expected value (a net gain)
under the situation formulated in the section is obtained as

(6.5) vi
n+1 = vi

n + βΠ(i)
n E

[
(Xi

n − vi
n)+

]
+ αΠ(i)

n E
[
(Xi

n − vi
n)−

]

for player i = 1, · · · , p and n denotes a time-to-go. The details refer to Theorem 2.1 in
YKN [16]. Under these derivation, now we are able to calculate the optimal (equilibrium)
value vi = limn vi

n for player i = 1, 2, 3 for the rule (6.1) and (6.2) in the table .
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7. Apppendix.

f(u) =
u2 + (1− u)2

1− u2

f ′(u) = (−2)
u2 − 3u + 1
(u2 − 1)2

f ′′(u) = 2
2u3 − 9u2 + 6u− 3

(u2 − 1)3

The golden ratio

1 + φ

−(−φ)
=
−1 + φ

2− φ
=

φ

1

−(−φ)
1

=
1

−1 + φ
=

φ

1

u

x

→

↑

•
O

·

·

·

·

· ·

· ·

•
2− φ

+
−1

+
1

+
3/2

+
2

+
3

F

•
1 + φ

F

•−1 + φ

1

2

•

•

•

+

•−2

−φ

Figure 1. The curve x = f(u) has dual golden extremum points with a marked F.
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