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Abstract. This paper discusses the dual of infinite-variable quadratic minimization (primal)

problems from a view point of Golden ratio. We consider two pairs of primal and dual (maxi-

mization) problems. One pair yields the Golden duality. While the minimum value function is

Golden quadratic and the minimum point constitutes a Golden path, so is the maximum value

function and the maximum point does such another. The other yields the inverse-Golden du-

ality. While the minimum value function is inverse-Golden quadratic and the minimum point

constitutes the same Golden path, so is the maximum value function and the maximum point

does the same such another.

1. Introduction

The Golden ratio is one of the most beautiful numbers. The desire for optimality is

inherent for humans. One minimization leads to the other maximization, which arrives

at a duality. We direct our attention to both the Golden ratio and the duality. A duality

of fine features is shown.

In this paper, we are concerned with dynamic optimization problems of infinitely many

variables from a viewpoint of Golden duality. We take two typical quadratic minimization

(primal) problems with initial condition and associate each problem with a quadratic

maximization (dual) problem with transversality condition. The two pairs of primal and
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dual problems have interesting characteristics. As for the first pair, the minimum value

function is Golden quadratic and the minimum point constitutes a Golden path, while

so is the maximum value function and the maximum point does such another. As for

the second, the minimum value function is inverse-Golden quadratic and the minimum

point constitutes the same Golden path, while so is the maximum value function and the

maximum point does the same such another.

2. Duality

A real number

φ =
1 +
√
5

2
≈ 1.618

is called Golden number [3, 4, 17]. It is the larger of the two solutions to quadratic

equation (QE)

x2 − x− 1 = 0.(1)

Sometimes QE (1) is called Fibonacci or Golden. The Golden QE has two real solutions:

φ and its conjugate φ := 1− φ. We note that
φ+ φ = 1, φ ·φ = −1.

Further we have

φ−1 = φ− 1, (φ)−1 = −φ
φ−1 + (φ)−1 = −1, φ−1 ·(φ)−1 = −1

φ2 = 1 + φ, φ
2
= 2− φ

φ2 + φ
2
= 3, φ2 ·φ2 = 1.

A quadratic function v(x) = ax2 is called Golden (resp. inverse-Golden) if a = φ

(resp. φ−1). In this section, we consider two pairs of primal and dual problems. One pair
yields a duality for the Golden quadratic function. The other pair yields a duality for the

inverse-Golden quadratic function.

2.1. Golden duality

We take an interval [0, x], where x > 0. Let us consider the set of all divisions of

the interval [0, x]. Each division is specified by an inner point y ∈ [0, x], which splits the
interval [0, x] into two intervals [0, y] and [y, x]. A point (2− φ)x splits the interval into

two intervals [0, (2−φ)x] and [(2−φ)x, x]. A point (φ−1)x splits it into [0, (φ−1)x] and
[(φ−1)x, x]. In either case, the length constitutes the Golden ratio (2−φ) : (φ−1) = 1 : φ.
Thus both divisions are the Golden section [3, 4, 17].

Definition 1. [14] A sequence x : {0, 1, . . . }→ R1 is called Golden path if and only

if either
xt+1
xt

= φ− 1 or
xt+1
xt

= 2− φ.

Lemma 1. [14] A Golden path x is either

xt = x0(φ− 1)t or xt = x0(2− φ)t.
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Fig. 1 Golden paths x = c(φ− 1)t c = 1, 2, 3
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Fig. 2 Golden paths x = c(2− φ)t c = 1, 2, 3



4 S. IWAMOTO, A. KIRA AND M. YASUDA

We remark that

(φ− 1)t = φ−t, (2− φ)t = (1 + φ)−t

where

φ− 1 = φ−1 ≈ 0.618, 2− φ = (1 + φ)−1 ≈ 0.382

Let R∞ be the set of all sequences of real values :

R∞ = {x = (x0, x1, . . . , xn, . . . ) |xn ∈ R1 n = 0, 1, . . . }.
We consider a primal problem1 on R∞ :

minimize
∞X
n=0

£
x2n + (xn − xn+1)2

¤
(P1) subject to (i) x ∈ R∞

(ii) x0 = c

where c ∈ R1. A dual problem is a maximization problem of λ = (λ0, λ1, . . . , λn, . . . ) ∈
R∞:

Maximize c2 + cλ0 −
1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
(D1) subject to (i) λ ∈ R∞

(ii) lim
n→∞

λn = 0.

We note that both problems contain a common series
∞X
n=0

£
y2n + (yn − yn+1)2

¤
. In either

problem, we are concerned with the finite convergence case :

∞X
n=0

£
y2n + (yn − yn+1)2

¤
<

∞. This implies that lim
n→∞

yn = 0. In Section 3, we will see that the additional transver-

sality condition (ii) enables us to make dual of (P1) without difficulty. Therefore, the

transversality condition may be removed from the constraints.

Theorem 1. (Golden duality) (i) The primal problem (P1) has the minimum value

m = φc2 at the point

x̂ = c (1, (2− φ), . . . , (2− φ)n, . . . ) .
(ii) The dual problem (D1) has the maximum value M = φc2 at the point

λ∗ = 2φ−1c (1, (2− φ), . . . , (2− φ)n, . . . ) .

We make an observation about the two optimal solutions. Both the minimum point

and the maximum point constitute a Golden path and both the minimum value function

and the maximum value function are the identical Golden quadratic value function. What

1 As for corresponding finite variable problems see [8], and as for their dual and others see

[5, 6, 7, 8, 15].
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a beautiful duality this is! Thus, the duality is called Golden duality. The proof will be

given throughout the discussion in Section 3.

We see that the minimum solution of (P1) yields the maximum solution of (D1). Let

(P1) have the minimum value m = φc2 at the minimum point x̂. Then we have

Max

"
c2 + cλ0 −

1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i#

= Max
λ0

"
c2 + cλ0 −

1

4
min

{λn}n≥1

∞X
n=0

h
λ2n + (λn − λn+1)2

i#

= Max
λ0

∙
c2 + cλ0 −

1

4
φλ20

¸
= φc2 for λ0 = 2φ−1c

where the minimum is attained at³
λ̂1, λ̂2, . . . , λ̂n, . . .

´
= λ0

¡
2− φ, (2− φ)2, . . . , (2− φ)n, . . .

¢
.

Theorem 2. The functional equation

f(c) = Max
λ∈R1

∙
c2 + cλ− 1

4
f(λ)

¸
c ∈ R1

has the Golden quadratic maximum value function f(c) = φc2 for maximum point func-

tion λ̂(c) = 2φ−1c. This is a unique continuous function.

Proof. It is easily verified that f with λ̂ satisfies the functional equation. The uniqueness

is shown through the well known method in dynamic programming [1, Ch.4], because of¯̄̄̄
−1
4

¯̄̄̄
< 1 (see also [18]). ¥

Corollary 3. The functional equation

f(c) = Max
λ∈R1

∙
cλ+

1

4
λ2 − 1

4
f(λ)

¸
c ∈ R1

has the Golden quadratic maximum value function f(c) = φc2 for maximum point func-

tion λ̆(c) = 2φc. This is a unique continuous function.

Corollary 4. The functional equation

1

4
f(c) = Max

λ∈R1

£
λ2 + cλ− f(λ)

¤
c ∈ R1

has the Golden quadratic maximum value function f(c) = φc2 for maximum point func-

tion λ̃(c) =
φ

2
c.
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2.2. Inverse-Golden duality

Second we consider a primal problem

minimize

∞X
n=0

£
(xn − xn+1)2 + x2n+1

¤
(P2) subject to (i) x ∈ R∞

(ii) x0 = c

and a dual problem

Maximize cλ0 −
1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
(D2) subject to (i) λ ∈ R∞

(ii) lim
n→∞

λn = 0

where c ∈ R1. We note that a difference between (P1) and (P2) is constant :

∞X
n=0

£
x2n + (xn − xn+1)2

¤
= x20 +

∞X
n=0

£
(xn − xn+1)2 + x2n+1

¤
.

The difference x20 = c
2 is also preserved between (D1) and (D2). This enables us to obtain

a duality in terms of inverse-Golden number φ−1 = φ− 1 as follows.

Theorem 5. (Inverse-Golden duality) (i) The primal problem (P2) has the mini-

mum value m = φ−1c2 at the point

x̂ = c (1, (2− φ), . . . , (2− φ)n, . . . ) .

(ii) The dual problem (D2) has the maximum value M = φ−1c2 at the point

λ∗ = 2φ−1c (1, (2− φ), . . . , (2− φ)n, . . . ) .

We remark that both optimal points constitute a Golden path and that both optimal

value functions are the same – the inverse-Golden quadratic value function –. This is

a Golden duality, too. The Golden paths x̂ and λ∗ are the same ones in (P1) and (D1),
respectively.

Further the minimum solution of (P2) yields the maximum solution of (D2). Let (P2)

have the minimum value m = φ−1c2 at the minimum point x̂. Then we have
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Max

"
cλ0 −

1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i#

= Max
λ0

"
cλ0 −

1

4
λ20 −

1

4
min

{λn}n≥1

∞X
n=0

h
(λn − λn+1)2 + λ2n+1

i#

= Max
λ0

∙
cλ0 −

1

4
λ20 −

1

4
φ−1λ20

¸
= φ−1c2 for λ0 = 2φ−1c

where the minimum is attained at³
λ̂1, λ̂2, . . . , λ̂n, . . .

´
= λ0

¡
2− φ, (2− φ)2, . . . , (2− φ)n, . . .

¢
.

Theorem 6. The functional equation

g(c) = Max
λ∈R1

∙
cλ− 1

4
λ2 − 1

4
g(λ)

¸
c ∈ R1

has the inverse-Golden quadratic maximum value function g(c) = φ−1c2 for maximum
point function λ̆(c) = 2φ−1c. This is a unique continuous function.

Corollary 7. The functional equation

g(c) = Max
λ∈R1

∙
−c2 + cλ− 1

4
g(λ)

¸
c ∈ R1

has the inverse-Golden quadratic maximum value function g(c) = φ−1c2 for maximum
point function λ̂(c) = 2φc. This is a unique continuous function.

Corollary 8. The functional equation

1

4
g(c) = Max

λ∈R1

£
−cλ− λ2 − g(λ)

¤
c ∈ R1

has the inverse-Golden quadratic maximum value function g(c) = φ−1c2 for maximum

point function λ̃(c) =
φ

2
c.

3. Lagrangean Method

In this section we show how the Lagrangean method derives a maximization (dual)

problem from the minimization (primal) problem.

Let us reconsider the primal problem

minimize
∞X
n=0

£
x2n + (xn − xn+1)2

¤
(P1) subject to (i) x ∈ R∞

(ii) x0 = c.
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We introduce a sequence of variables u = {u0, u1, . . . , un, . . . } by
uk = xk+1 − xk.

Then (P1) is formulated into a quadratic minimization under a linear constraint

minimize

∞X
n=0

¡
x2n + u

2
n

¢
(P01) subject to (i) xn+1 = xn + un n ≥ 0

(ii) x0 = c.

Let us now solve this problem through a Lagrangean multiplier’s method. We intro-

duce a sequence of variables λ = {λ0, λ1, . . . , λn, . . . } with the property lim
n→∞

λn = 0,

which is called a Lagrange multiplier. Let us construct the Lagrangean

L(x, u,λ) =
∞X
n=0

£
x2n + u

2
n − λn(xn+1 − xn − un)

¤
.

Then it has the partial derivatives

Lxn = 2xn + λn − λn−1 n ≥ 1

Lun = 2un + λn n ≥ 0

Lλn = xn+1 − xn − un n ≥ 0.
Here we notice that the Lagrangean is not one for a regular (a finite n variables with a

finite m constraints) extremal problem. The problem has a countably infinte variables

under a countably infinite linear constraints.

Lemma 2. Let (x, u) be an extremum point. Then there exists a λ satisfying the

condition that all the partial derivatives at point (x, u,λ) vanish:

Lxn = 0 n ≥ 1, Lun = Lλn = 0 n ≥ 0.(2)

Proof. Let x̂ = (x̂n)n≥0, û = (ûn)n≥0 be an extremum point for (P01). We take any large
positive integer N and consider a finite-truncated conditional minimization problem of

x = (xn)
N
0 , u = (un)

N
0 :

minimize
NX
n=0

¡
x2n + u

2
n

¢
(TN ) subject to (i) xn+1 = xn + un 0 ≤ n ≤ N − 1

(ii) x̂N+1 = xN + uN

(iii) x0 = c.

This has (2N + 1) variables x1, . . . , xN , u0, . . . , uN and (N + 1) linear constraints. Let

us construct the Lagrangean LN by

LN (x, u,λ) =

N−1X
n=0

£
x2n + u

2
n − λn(xn+1 − xn − un)

¤
+ x2N + u

2
N − λN (x̂N+1 − xN − uN ) for λ = (λn)

N
0 .
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Then the point (x̂n)
N
1 , (ûn)

N
0 is also an extremum point for the truncated problem. It

satisfies the linear independent constraint qualification [16]. Therefore, Lagrange Mul-

tiplier Theorem (for a regular problem) implies that there exists a (λ∗n)
N
0 such that

(x̂n)
N
1 , (ûn)

N
0 ; (λ

∗
n)
N
0 satisfies

LNxn = 0 1 ≤ n ≤ N, LNun = LNλn = 0 0 ≤ n ≤ N.
Thus we have

2x̂n + λ∗n − λ∗n−1 = 0 1 ≤ n ≤ N

2x̂n + λ∗n = 0 0 ≤ n ≤ N

x̂n+1 − x̂n − ûn = 0 0 ≤ n ≤ N.
SinceN is arbitrarily large, we conclude that there exists a (λ∗n)n≥0 such that (x̂n)n≥1, (ûn)n≥0
; (λ∗n)n≥0 satisfies (2). This completes the proof. ¥
Then (2) is equivalent to

2xn = −(λn − λn−1) n ≥ 1
2un = −λn n ≥ 0
un = xn+1 − xn n ≥ 0.

Now we solve this equivalent system in the following. Deleting u and λ, we get a system

of linear equations:

x0 = c
(3)

xn−1 − 3xn + xn+1 = 0 n ≥ 1.
Thus we have

un = xn+1 − xn
(4)

λk = −2(xn+1 − xn).

We see that Eq.(3) has the solution2

xn = c(2− φ)n n ≥ 0.(5)

where φ is the Golden number (ratio). Thus we have

un = −
c

φ
(2− φ)n

(6)

λn =
2c

φ
(2− φ)n.

Lemma 3. The solution (x, u) in (5),(6) is a minimum point for (P01). Hence, x is a
minimum point for (P1).

2 A general solution of (3) is xn = A(2 − φ)n + B(1 + φ)n, where A + B = c. The case

A = c, B = 0 attains a minimum value for (P1).
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Proof. We show that the (x, u) is a minimum point. Let (X, U) be any solution satis-

fying

Xn+1 = Xn + Un n ≥ 0
X0 = c.

Here we take the λ in (6). First we see that for any n-stage process
nX
k=0

¡
x2k + u

2
k

¢
=

nX
k=0

£
x2k + u

2
k − λk(xk+1 − xk − uk)

¤
= c2 + cλ0 − λ0x1 +

n−1X
k=1

£
x2k − λn(xk+1 − xk)

¤
+ x2n + λnxn

+
nX
k=0

¡
u2k + λkuk

¢
− λnxn+1

= c2 + cλ0 +

nX
k=1

£
x2k + (λk − λk−1)xk

¤
+

nX
k=0

¡
u2k + λkuk

¢
− λnxn+1

= c2 + cλ0 −
1

4

nX
k=1

(λk − λk−1)2 −
1

4

nX
k=0

λ2k − λnxn+1

+
nX
k=1

∙
xk +

1

2
(λk − λk−1)

¸2
+

nX
k=0

µ
uk +

1

2
λk

¶2
.(7)

We may consider the set of all feasible x satisfying lim
n→∞

λnxn+1 = 0 in (P1), because

of the quadratic minimization and lim
n→∞

λn = 0. This set in turn includes the set of all

feasible x satisfying lim
n→∞

xn = 0. Thus letting n→∞ in (7), we have

∞X
n=0

¡
x2n + u

2
n

¢
= c2 + cλ0 −

1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
+
∞X
n=1

∙
xn +

1

2
(λn − λn−1)

¸2
+
∞X
n=0

µ
un +

1

2
λn

¶2
.(8)

Similarly, we have for (X, U)
∞X
n=0

¡
X2
n + U

2
n

¢
= c2 + cλ0 −

1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
+
∞X
n=1

∙
Xn +

1

2
(λn − λn−1)

¸2
+
∞X
n=0

µ
Un +

1

2
λn

¶2
.(9)

Since (x, u) satisfies

xn +
1

2
(λn − λn−1) = 0, un +

1

2
λn = 0, lim

n→∞
λn = 0

a comparison between (8) and (9) yields
∞X
n=0

¡
x2n + u

2
n

¢
≤
∞X
n=0

¡
X2
n + U

2
n

¢
.
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This completes the proof. ¥
From (9) we have a basic inequality as follows.

Lemma 4. It holds that
∞X
n=0

¡
x2n + u

2
n

¢
= c2 + cλ0 −

1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
+
∞X
n=1

∙
xn +

1

2
(λn − λn−1)

¸2
+
∞X
n=0

µ
un +

1

2
λn

¶2
(10)

≥ c2 + cλ0 −
1

4

∞X
n=0

h
λ2n + (λn − λn+1)

2
i

for any (x, u) satisfying (i), (ii) and any λ satisfying lim
n→∞

λn = 0. The equality holds if

and only if

2xn = −(λn − λn−1) n ≥ 1 and 2un = −λn n ≥ 0.
This lemma states that

L(x̂, û : λ) ≤ L(x̂, û : λ∗) ≤ L(x, u : λ∗)(11)

where

L(x, u : λ) =
∞X
n=0

£
x2n + u

2
n − λn(xn+1 − xn − un)

¤
and

x̂n = c(2− φ)n

ûn = −
c

φ
(2− φ)n n ≥ 0

λ∗n =
2c

φ
(2− φ)n.

In fact, we have the equality between left-hand side and middle side:

L(x̂, û : λ) = L(x̂, û : λ∗) ∀λ ; lim
n→∞

λn = 0.

Hence we have a maximization problem for λ = (λ0,λ1, . . . ,λn, . . . ) as follows:

Maximize c2 + cλ0 −
1

4

∞X
n=0

h
λ2n + (λn − λn+1)2

i
(D1) subject to (i) λ ∈ R∞

(ii) lim
n→∞

λn = 0.

Thus we have derived the desired dual problem together with the optimum solution.

Lemma 5. The point λ∗ with λ∗n =
2c

φ
(2 − φ)n is a maximum point for (D1). It

yields the maximum value M = φc2.
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4. Dynamic Programming

This section discusses a dynamic programming aspect of the two primal problems

[1, 2, 8, 10]. It is shown that both optimal value function and optimum point function

are Golden. The optimal value function is Golden quadratic. The optimum point yields

what we call Golden section.

Let f(c) be the minimum value of (P1) for c ∈ R1. Then we have the following results.
Theorem 9. The minimum value function f satisfies the Bellman equation⎧⎪⎨⎪⎩

f(0) = 0

f(c) = min
x∈R1

£
c2 + (c− x)2 + f(x)

¤
.

This has the Golden quadratic minimum value function f(c) = φc2 for a minimum point

function x̂(c) = φ−2c.

Let g(c) be the minimum value of (P2) for c ∈ R1. Then we have the following results.
Theorem 10. The minimum value function g satisfies the Bellman equation⎧⎪⎨⎪⎩

g(0) = 0

g(c) = min
x∈R1

£
(c− x)2 + x2 + g(x)

¤
.

This has the inverse-Golden quadratic minimum value function g(c) = φ−1c2 for a min-
imum point function x̂(c) = φ−2c.

We remark that the minimum point function x̂(c) = φ−2c is called a Golden decision
function. Because it divides an interval [0, c] into [0, x̂(c)] = [0, (2 − φ)c] and [x̂(c), c] =

[(2− φ)c, c], which is the so-called Golden section. Thus x̂ is Golden (and) optimal. The
Golden (Golden optimal) decision function leads to the Golden (Golden optimal) policy

in dynamic programming. Recently the Golden optimal policy for dynamic optimization

problems has been discussed in [9, 11, 12, 14]. It has a strong connection with duality, as

we have shown in this paper.
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