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Abstract

In this paper, we consider the model that the information on the rewards
in vector-valued Markov decision processes includes imprecision or ambiguity.
The fuzzy reward model is analyzed as follows: The fuzzy reward is represented
by the fuzzy set on the multi-dimensional Euclidian space Rp and the infinite
horizon fuzzy expected discounted reward(FEDR) from any stationary policy
is characterized as a unique fixed point of the corresponding contractive op-
erator. Also, we fined a Pareto optimal policy which maximizes the infinite
horizon FEDR over all stationary policies under the pseudo order induced by
a convex cone Rp. As a numerical example, the machine maintenance problem
is considered.

Keywords: Multi-dimensional fuzzy reward model, Markov decision process,
Pareto optimal, fuzzy optimality equation.
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1. Introduction

In mathematical modeling in terms of Markov decision processes (MDPs, in short,
cf. [2, 6, 12, 15]), it often occurs that the information on the reward function includes
imprecision or ambiguity. As an example, the reward earned in a day is about 700
dollars or closed to 800 dollars. On the other hand, multi-criteria decision making
is typically involving flexible requirements for the optimality. In order to deal
with uncertain data and flexible requirements we can use a fuzzy set representation
(cf. [17]). In this paper, we consider the case that the Rp-valued rewards in standard
MDPs are specified by fuzzy sets on Rp, where Rp is a p-dimensional Euclidean space
(p ≥ 1).
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Recently, Kurano et al [10] has introduced a pseudo order 4K in the class of
fuzzy sets on Rp, which is a natural extension of fuzzy max order (cf.[5, 16]) in fuzzy
numbers on R and induced by a convex cone K in Rp. Under this pseudo order
4K , we fined a Pareto optimal policy which maximizes the infinite horizon fuzzy
expected discounted reward (FEDR) over all stationary policies. Associated with
each stationary policy is a corresponding contractive operator on fuzzy sets, whose
fixed point represents the infinite horizon FEDR. Moreover, the Pareto optimal
policies are characterized by maximal solutions of an optimal equation including
efficient fuzzy set functions. As a numerical example, the machine maintenance
problem is considered. For an interval or fuzzy treatment for MDPs with uncertain
transition matrices, see [8, 9, 11] in which the intervals or fuzzy sets are used to
describe uncertain transition matrices. Also, for the optimization of fuzzy dynamic
system refer to [7, 19].

This paper is organized as follows: In Section 2, we shall give some notations
needed for fuzzy treatments and a pseudo order relation of fuzzy sets on Rp is
reviewed referring to Kurano et al [10] and the expectation of discrete fuzzy random
variables is specified. In Section 3, we describe the fuzzy reward model and specify
the optimization problem. In Section 4, the infinite horizon FEDR from a stationary
policy is given as a fixed point of a corresponding operator, which is used to obtain
the optimality equation and characterize a Pareto optimal policy in Section 5.

2. Preliminaries

We write fuzzy sets on Rp by their membership functions s̃ : Rp → [0, 1] (see
Novák [13] and Zadeh [20]). The α-cut (α ∈ [0, 1]) of the fuzzy set s̃ on Rp is
defined as

s̃α := {x ∈ Rp | s̃(x) ≥ α} (α > 0) and s̃0 := cl{x ∈ Rp | s̃(x) > 0},

where cl denotes the closure of the set. A fuzzy set s̃ is called convex if

s̃(λx + (1− λ)y) ≥ s̃(x) ∧ s̃(y) x, y ∈ Rp, λ ∈ [0, 1],

where a ∧ b = min{a, b}.
Note that s̃ is convex if and only if the α-cut s̃α is a convex set for all α ∈

[0, 1]. Let F(Rp) be the set of all convex fuzzy sets whose membership functions
s̃ : Rp → [0, 1] are upper-semicontinuous and normal (supx∈Rp s̃(x) = 1) and have
a compact support. In the one-dimensional case p = 1, F(R) denotes the set of all
fuzzy numbers. Let C(Rp) be the set of all compact convex subsets of Rp. We note
that when p = 1, C(R) denotes the set of bounded and closed intervals in R.

The definitions of addition and scalar multiplication on F(Rp) are as follows:
For s̃, r̃ ∈ F(Rp) and λ ≥ 0,

(2.1) (s̃ + r̃)(x) := sup
x1,x2∈Rp

x1+x2=x

{s̃(x1) ∧ r̃(x2)},
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(2.2) (λs̃)(x) :=
{

s̃(x/λ) if λ > 0
1{0}(x) if λ = 0

(x ∈ Rp),

where 1{·}(·) is an indicator. By using set operations A+B := {x+y | x ∈ A, y ∈ B}
and λA := {λx | x ∈ A} for any non-empty sets A,B ⊂ Rp, the following holds
immediately.

(2.3) (s̃ + r̃)α = s̃α + r̃α and (λs̃)α = λs̃α (α ∈ [0, 1]).

Let ρ be the Hausdorff metric on C(Rp), that is, for A,B ∈ C(Rp),

ρ(A,B) = max{max
a∈A

d(a,B), max
b∈B

d(b, A)},

where d is a metric in Rp and d(x,D) = min
y∈D

d(x, y) for x ∈ Rp and D ∈ C(Rp).

Extending this ρ to F(Rp), we define, with abuse of notation, the Hausdorff metric
on F(Rp) by

(2.4) ρ(ũ, ṽ) = sup
α∈[0,1]

ρ(ũα, ṽα) for ũ, ṽ ∈ F(Rp),

where ũα and ṽα are α-cuts of ũ and ṽ respectively.
Then, the following facts are well known.

Lemma 2.1 (cf. [14]). The metric space (F(Rp), ρ) is complete.

Lemma 2.2 (cf. [3]). If ũ, ṽ, ũ′, ṽ′ and r̃ ∈ F(Rp), then

(i) ρ(λũ, λṽ) = λρ(ũ, ṽ) for all λ ≥ 0.

(ii) ρ(ũ + ũ′, ṽ + ṽ′) ≤ ρ(ũ, ṽ) + ρ(ũ′, ṽ′),

(iii) ρ(r̃ + ũ, r̃ + ṽ) = ρ(ũ, ṽ).

Here, we pick up a pseudo order relation introduced in Kurano et al [10], which
is necessary for our problem formulation in the sequel. The partial order relation
41 on C(R) is defined as follows: For any [c1, c2], [c′1, c

′
2] ∈ C(R), [c1, c2] 41 [c′1, c

′
2]

means that c1 ≤ c′1 and c2 ≤ c′2.
Let K be a non-empty cone of Rp. Using this K, we can define a pseudo order

relation 4K on Rp by x 4K y if and only if y−x ∈ K. By the pseudo order 4K on
Rp, a pseudo order 4K on F(Rp) is defined as follows.

For s̃, r̃ ∈ F(Rp), s̃ 4K r̃ means the following (F.a) and (F.b):

(F.a) For any x ∈ Rp, there exists y ∈ Rp such that x 4K y and s̃(x) ≤ r̃(y).

(F.b) For any y ∈ Rp, there exists x ∈ Rp such that x 4K y and s̃(x) ≥ r̃(y).
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When p = 1 and K = [0,∞), the 4K on F(R) is a partial order and called the
fuzzy max order (cf. [5, 16]) defined by 41. That is, for s̃, r̃ ∈ F(R), s̃ 41 r̃ means
that s̃L

α ≤ r̃L
α and s̃U

α ≤ r̃U
α for all α ∈ [0, 1], where the α-cuts of s̃ and r̃ are denoted

respectively by s̃α = [s̃L
α, s̃U

α ] and r̃α = [r̃L
α , r̃U

α ].
Define the dual cone of a cone K by

K+ := {a ∈ Rp | a · x ≥ 0 for all x ∈ K},

where x · y denotes the inner product on Rp for x, y ∈ Rp. For a subset A ⊂ Rp and
a ∈ Rp, we define

(2.5) a ·A := {a · x | x ∈ A} (⊂ R).

The definition (2.5) means the projection of A on the extended line of the vector a
if a · a = 1. It is trivial that a ·A ∈ C(R) if A ∈ C(Rp) and a ∈ Rp.

The pseudo order relation 4K on F(Rp) is characterized by 41 on F(R) through
the projection (2.5), where the proof is in [10].

Lemma 2.3 [10]. Let ũ, ṽ ∈ F(Rp). Then, ũ 4K ṽ on F(Rp) if and only if
a · ũα 41 a · ṽα on F(R) for all a ∈ K+ and α ∈ [0, 1].

Lemma 2.4 [10]. Let a sequence {ũl} ⊂ F(Rp) be such that ũ1 4K ũ2 4K · · · ,
and ũ = liml→∞ ũl ∈ F(Rp). Then, it holds that ũ1 4K ũ.

The following lemma is used in the sequel.

Lemma 2.5. Let A,B ∈ C(Rp) and a ∈ Rp. Then, we have:

(i) a · (A + B) = a ·A + a ·B,

(ii) a · (λA) = λ(a ·A) for all λ ≥ 0.

Proof. For A,B ∈ C(Rp), a · (A+B) ∈ C(R), so that, a · (A+B) = [a · (xL +yL), a ·
(xU + yU )] for some xL, xU ∈ A and yL, yU ∈ B. Since a · (xL + yL) = a ·xL +a · yL,
a · xL ∈ a · A and a · yL ∈ a · B, it holds a · (xL + yL) ∈ a · A + a · B. Similarly,
a · (xU + yU ) ∈ a ·A + a ·B. Thus, a · (A + B) ⊂ a ·A + a ·B. Conversely, if we set
a·A = [a·xL, a·xU ] and a·B = [a·yL, a·yU ], a·(A+B) = [a·(xL+yL), a·(xU +yU )],
which implies a ·A + a ·B ⊂ a · (A + B).

Also, (ii) clearly holds, as required. ¤

In order to formulate the optimization problem in the next section, we need the
concept of the expectation of discrete fuzzy random variables.

Let (Ω,B, P ) be a probability space and X̃ : Ω → F(Rp) a discrete fuzzy random
variable with its range {s̃1, s̃2, · · · , s̃l} ⊂ F(Rp). Then, we define the expectation
of X̃ by

(2.6) E[X̃] =
l∑

i=1

s̃i P (X̃ = s̃i).

4



Note that the expectation in (2.6) is defined in (2.1) and (2.2). The definition of
(2.6) is corresponding to the discrete case of the integral of a set-valued function
(cf. [1]) or the expectation of general fuzzy random variables (cf. [14]).

The following clearly holds.

Lemma 2.5. If X̃ and Ỹ are discrete fuzzy random variables whose ranges are
finite subsets of F(Rp), then

(i) E[X̃] ∈ F(Rp),

(ii) E[X̃ + Ỹ ] = E[X̃] + E[Ỹ ],

(iii) E[λX̃] = λE[X̃] for all λ ≥ 0.

3. The fuzzy reward model

In this section, we formulate MDPs with fuzzy rewards on Rp and specify our
optimization problem. Let S and A be finite sets denoted by S = {1, 2, · · · , n} and
A = {1, 2, · · · , k}. The sequential decision model consists of four objects:

(S,A, {qij(a); i, j ∈ S, a ∈ A}, r̃),

where S and A denote the state and action spaces respectively and r̃ = r̃(i, a) ∈
F(Rp) is a fuzzy reward function on S × A and {qij(a)} is the law of motion, i.e.,
for each (i, a) ∈ S ×A, qij(a) ≥ 0 and

∑
j∈S qij(a) = 1.

When the system is in state i ∈ S and we take action a ∈ A, the present state
moves to a new state j ∈ S selected according to the probability distribution qi·(a)
and we receive a fuzzy reward r̃(i, a) ∈ F(Rp). This process is then repeated from
the new state j ∈ S. The sample space is the product space Ω = (S × A)∞ such
that the projection Xt and ∆t on the t-th factor S and A describe the state and
the action at the t-th time of the process (t = 1, 2, . . .).

We denote by F the set of all functions from S to A. A policy π is a sequence
(f1, f2, . . .) of functions with ft ∈ F (t ≥ 1). Let Π be the class of policies. We
denote by f∞ the policy (f1, f2, . . .) with ft = f for all t ≥ 1 and some f ∈ F . Such
a policy is called stationary and denoted simply by f ∈ F . The set of all stationary
policies will be denoted by ΠF . Then, for each policy π ∈ Π and starting state
i ∈ S, we can define the probability measure P i

π on Ω in a usual way. Here, we
consider the expected fuzzy reward in which the future reward is discounted with a
factor β (0 < β < 1).

For any policy π ∈ Π and starting state i ∈ S, let

(3.1) φ̃T (i, π) =
T∑

t=1

βt−1Ei
π[r̃(Xt, ∆t)],

where Ei
π is the expectation with respect to P i

π and its expectation of fuzzy random
variable is defined by (2.6). We note from Lemma 2.5 that φ̃T (i, π) ∈ F(Rp) for
i ∈ S, π ∈ Π and T ≥ 1.
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In order to rewrite (3.1) by using vectors and matrices, we shall introduce some
notations. Let F(Rp)n be the set of all n-dimensional column vectors whose elements
are in F(Rp), i.e.,

F(Rp)n := {ũ = (ũ1, ũ2, . . . , ũn)′ | ũi ∈ F(Rp), 1 ≤ i ≤ n},

where d′ denotes the transpose of a vector d.
The Hausdorff metric ρ on F(Rp)n is defined (with abuse of notation) by

ρ(ũ, ṽ) = max
1≤i≤n

ρ(ũi, ṽi),

where ũ = (ũ1, ũ2, . . . , ũn)′, ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈ F(Rp)n and ρ(ũi, ṽi) is defined
in (2.4). Then, from Lemma 2.1, we observe that the metric space (F(Rp)n, ρ) is
complete.

For a n× n stochastic matrix Q = (qij) and ũ = (ũ1, ũ2, . . . , ũn)′ ∈ F(Rp)n, the
product Qũ ∈ F(Rp)n will be defined by

(3.2) (Qũ)i =
n∑

j=1

qij ũj (1 ≤ i ≤ n).

Here, we associate with each f ∈ F the n-dimensional column fuzzy vector r̃(f) ∈
F(Rp)n whose i-th element is r̃(i, f(i)) ∈ F(Rp) and the n × n stochastic matrix
Q(f) whose (i, j) element is qij(f(i)). For each policy π ∈ Π, let

φ̃T (π) = (φ̃T (1, π), φ̃T (2, π), . . . , φ̃T (n, π)) ∈ F(Rp)n (T ≥ 1).

Then, we have the following.

Lemma 3.1. For any π = (f1, f2, . . .) ∈ Π, we have:

(i) φ̃T (π) is described by the following matrix representation.

(3.3) φ̃T (π) = r̃(f1) + βQ1(π)r̃(f2) + · · ·+ βT−1QT−1(π)r̃(fT ) (T ≥ 1),

where Qt(π) = Q(f1) · · ·Q(ft) (t ≥ 1).

(ii) {φ̃T (π)}∞T=1 is a Cauchy sequence.

Proof. By the definition, for any t ≥ 0 we have that

Ei
π[r̃(Xt, ∆t)] =

∑

j∈S

P i
π(Xt = j)r̃(j, ft(j)) =

∑

j∈S

Qt(π)ij r̃(j, ft(j)),

which clearly leads to (3.3).
For any T > H, it holds from Lemma 2.2 that

ρ(φ̃T (π), φ̃H(π)) ≤ ρ(0̃,
T∑

t=H+1

βt−1Qt−1(π)r̃(ft))
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= βHρ(0̃,
T∑

t=H+1

βt−H−1Qt(π)r̃(ft)) ≤ βHρ(0̃, r̃)/(1− β),

where 0̃ ≡ 1{0}. This implies (ii), as required. ¤

By Lemma 3.1, the infinite horizon FEDR from π can be defined by

φ̃(π) = lim
T→∞

φ̃T (π).

In order to specify our optimization problem, we extend the pseudo order 4K

on F(Rp) given in the preceding section to that on F(Rp)n as follows: For ũ =
(ũ1, ũ2, . . . , ũn)′, ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈ F(Rp)n, ũ 4K ṽ means ũi 4K ṽi for all
i (1 ≤ i ≤ n).

Then, our problem is to maximize the φ̃(π) ∈ F(Rp)n over all policies π ∈ Π
with respect to the pseudo order 4K .

4. Stationary policies and operators

In this section, the infinite horizon FEDR from a stationary policy is given as a
unique fixed point of a corresponding operator. Associated with each f ∈ F is a
corresponding operator Uf : F(Rp)n → F(Rp)n defined as follows: For ũ ∈ F(Rp)n,

(4.1) Uf ũ = r̃(f) + βQ(f)ũ,

where the arithmetics in (4.1) are defined in the preceding sections.
Since it holds that λ(c̃ + d̃) = λc̃ + λd̃ for any c̃, d̃ ∈ F(Rp) and λ ≥ 0, the

following lemma is easily proved.

Lemma 4.1. If Q is n × n stochastic matrix and ũ, ṽ ∈ F(Rp)n, then it holds
that

Q(ũ + ṽ) = Qũ + Qṽ.

For any policy π = (f1, f2, . . .), let π−l = (fl+1, fl+2, . . .) for each l ≥ 1. The
sequence {φ̃T (π)}∞T=1 is recursively described.

Lemma 4.2. For any policy π = (f1, f2, . . .), we have

(4.2) φ̃T (π) = Uf1Uf2 · · ·Ufl
φ̃T−l(π−l) for each l ≥ 1.

Proof. Since φ̃1(π−1) = r̃(f2), we have

φ̃2(π) = r̃(f1) + βQ(f1)r̃(f2) = Uf1 φ̃1(π).

For T = 3, from Lemma 4.1, we have that

φ̃3(π) = r̃(f1) + βQ(f1)r̃(f2) + β2Q(f1)Q(f2)r̃(f3)
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= r̃(f1) + βQ(f1)
(
r̃(f2) + βQ(f2)r̃(f3)

)
= Uf1 φ̃2(π−1).

By induction on T and l, we can easily prove (4.2). ¤

Here are some basic properties of Uf . The following lemma is easily proved from
Lemma 2.2.

Lemma 4.3. For f ∈ F , Uf is a contraction with modulus β, i.e.,

ρ(Uf ũ, Uf ṽ) ≤ βρ(ũ, ṽ), for ũ, ṽ ∈ F(Rp)n.

Lemma 4.4. Let K be a convex cone of Rp. Then, for f ∈ F , Uf is monotone
with respect to the pseudo order 4K on F(Rp)n, i.e., for any ũ, ṽ ∈ F(Rp)n with
ũ 4K ṽ, it holds that Uf ũ 4K Uf ṽ.

Proof. ¿From Lemma 2.3, it suffices to show that a · (Uf ũ)i,α 41 a · (Uf ṽ)i,α for all
a ∈ K, α ∈ [0, 1] and i = 1, 2, . . . , n, where (Uf ṽ)i,α is the α-cut of the i-th element
of Uf ṽ. Applying Lemma 2.5, we get

(4.2) a · (Uf ṽ)i,α = a · r̃(i, f(i))α + β
n∑

j=1

qij(f(i))(a · ũj,α).

Since ũ 4K ṽ implies from Lemma 2.3 that a · ũj,α 41 a · ṽj,α for all j = 1, 2, . . . , n,
(4.2) implies that a · (Uf ũ)j,α 41 a · (Uf ṽ)j,α. This completes the proof. ¤

By Lemma 4.2, φ̃T (f) = Uf φ̃T−1(f) for all T ≥ 2. As T → ∞ in the above,
φ̃(f) is a fixed point of Uf . Thus, noting Lemma 4.3, the characterization of φ̃(f)
is immediately formulated as a theorem.

Theorem 4.1. For any stationary policy f ∈ F , φ̃(f) is a unique solution of the
following equation:

(4.3) ũ = Uf ũ, ũ ∈ F(Rp)n.

Note that (4.3) can be rewritten as the α-cut equation:

(4.4) ũα = r̃(f)α + βQ(f)ũα, α ∈ [0, 1],

where ũα = (ũ1,α, . . . , ũn,α)′ and r̃(f)α = (r̃(1, f(1))α, . . . , r̃(n, f(n))α)′ ∈ C(Rp)n.

¿From a contraction of Uf , the next corollary holds.

Corollary 4.1. For any stationary policy f ∈ F ,

φ̃(f) = lim
l→∞

U l
f ũ (ũ ∈ F(Rp)n).
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As a simple example, we consider a fuzzy treatment for a machine maintenance
problem dealt with in ([12], p.1, p.17-18).

a machine maintenance problem. A machine can be operated synchronously,
say, once an hour. At each period there are two states; one is operating(state 1),
and the other is in failure(state 2). If the machine fails, it can be restored to perfect
functioning by repair. At each period, if the machine is running, we earn the fuzzy
return of (2,3,4) dollars per period; the probability of being in state 1 at the next
step is 0.7 and the probability of moving to state 2 is 0.3 where for any a < b < c,
the fuzzy number (a, b, c) on R is defined by

(a, b, c)(x) =
{

(x− a)/(b− a) ∨ 0 if x ≤ b,
(x− c)/(b− c) ∨ 0 if b ≤ x.

If the machine is in failure, we have two actions to repair the failed machine; one is a
usual repair, denoted by 1, that yields the fuzzy reward (−2,−1, 0) dollars with the
probability 0.4 moving in state 1 and the probability 0.6 being in state 2; another
is a rapid repair, denoted by 2, that requires the fuzzy reward (−3,−2,−1) dollars
with the probability 0.6 moving in state 1 and the probability 0.4 being in state 2.

For the model considered, S = {1, 2} and there exist two stationary policies,
F = {f1, f2} with f1(2) = 1 and f2(2) = 2, where f1 denotes a policy of the usual
repair and f2 a policy of the rapid repair. The state transition diagrams and fuzzy
reward vector for two policies are shown in Figure 1.

0.7 0.3

0.6

0.4

1 2

r̃(f1) =

(
( 2, 3, 4)
(−2,−1, 0)

)

(a) Usual repair f1

0.7 0.3

0.4

0.6

1 2

r̃(f2) =

(
( 2, 3, 4)
(−3,−2,−1)

)

(b) Rapid repair f2

Figure.1 Transition diagrams and fuzzy rewards.

Applying Theorem 4.1, we obtain the infinite horizon FEDR as a unique solution
of (4.3). So, putting

φ̃(f1)α = ([x1
α, y1

α], [x2
α, y2

α])′,
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the α-cut interval equations (4.4) with β = 0.9 become:




x1
α = 2 + α + 0.9(0.7x1

α + 0.3x2
α)

y1
α = 4− α + 0.9(0.7y1

α + 0.3y2
α)

x2
α = −2 + α + 0.9(0.4x1

α + 0.6x2
α)

y2
α = −α + 0.9(0.4y1

α + 0.6y2
α)

After a simple calculation, we obtain

φ̃(f1)α =
(
[10α +

380
73

,
1840
73

− 10α], [10α− 20
73

,
1440
73

− 10α]
)′

,

which leads to

φ̃(f1) =
(
(
380
73

,
1110
73

,
1840
73

), (−20
73

,
710
73

,
1440
73

)
)′

.

5. Pareto optimality

Here, we confine our attention to the class of stationary policies, which simplifies
our discussion in the sequel. Let K be a convex cone in Rp. A policy f∗ ∈ ΠF is
called Pareto optimal if there does not exist f ∈ ΠF such that φ̃(f∗) 4K φ̃(f). In
this section, we derive the optimal equation, by which Pareto optimal policies are
characterized.

The following important result is crucial to the development in the characteri-
zation of Pareto optimality.

Lemma 5.1. For any f, g ∈ F , suppose that

(5.1) φ̃(f)
{4K

≺K

}
Ugφ̃(f).

Then, it holds that

(5.2) φ̃(f)
{4K

≺K

}
φ̃(g).

Proof. Suppose that φ̃(f) {4K
≺K
} Ugφ̃(f). Then, we have from Lemma 4.3 that

φ̃(f)
{4K

≺K

}
Ugφ̃(f) 4 U l

gψ̃(f) (l ≥ 2),

So, taking the limit in the above as l → ∞, (5.2) follows from Corollary 4.1 and
Lemma 2.4. ¤

Let D be an arbitrary subset of F(Rp)n. A point ũ ∈ D is called an efficient
element of D with respect to 4K on F(Rp)n if and only if it holds that there
does not exist ṽ ∈ D such that ũ ≺K ṽ. We denote by eff(D) the set of all
elements of D efficient with respect to 4K on F(Rp)n. For any ũ ∈ F(Rp)n, let
U(ũ) := eff({Uf ũ | f ∈ F}). Note that U(ũ) ⊂ F(Rp)n.
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Here, we consider the following fuzzy equation including efficient fuzzy functions
U(·) on F(Rp)n:

(5.3) ũ ∈ U(ũ), ũ ∈ F(Rp)n.

The equation (5.3) is called an optimality equation, by which Pareto optimal policies
are characterized. A solution ũ of (5.3) is called maximal if there does not exist any
solution ũ′ of (5.3) such that ũ ≺K ũ′. Pareto optimal policies are characterized by
maximal solutions of the optimality equation (5.3).

Theorem 5.1. A policy f is Pareto optimal if and only if a fixed point of the
corresponding Uf , φ̃(f), is a maximal solution to the optimal equation (5.3).

Proof. The proof of “only if ”part is easily obtained from Lemma 5.1. In order to
prove “if ”part, suppose that φ̃(f) is a maximal solution of (5.3) but f is not Pareto
optimal. Then, there exists f (1) ∈ F such that φ̃(f) ≺K φ̃(f (1)).

Now, suppose that φ̃(f (1)) 6∈ eff(φ̃(f (1))). This assumption assures that there
exists f (2) ∈ F satisfying φ̃(f (1)) ≺K Uf (2) φ̃(f (1)), which implies from (5.1) that
φ̃(f (1)) ≺K φ̃(f (2)). By repeating this method successively, we come to the conclu-
sion that there exists f (l) ∈ F such that φ̃(f) ≺K φ̃(f (l)) and φ̃(f (l)) satisfies (5.3),
which contradicts that φ̃(f) is maximal, as required. ¤

Remark. For vector-valued discounted MDPs, Furukawa[4] and White[18] had de-
rived the optimality equation including efficient set-function on Rp, by that Pareto
optimal policies are characterized. The form of the optimal equation (5.3) is corre-
sponding to a fuzzy version of MDPs.

For the machine maintenance problem given in Section 4, we find that

Uf2 φ̃(f1) =
(
(
380
73

,
1110
73

,
1840
73

), (−21
73

,
709
73

,
1439
73

)
)′

,

Recall that

Uf1 φ̃(f1) = φ̃(f1) =
(
(
380
73

,
1110
73

,
1840
73

), (−20
73

,
710
73

,
1440
73

)
)′

,

which satisfies Uf2 φ̃(f1) ≺1 φ̃(f1), where ≺1 is the fuzzy max order on F(R)2 and
corresponding to 4K in case of K = [0,∞).

Thus, φ̃(f1) ∈ eff({Uf φ̃(f1) | f ∈ F ), so that from Theorem 5.1 f1 is Pareto
optimal. In fact, we can find, by solving (4.3) or (4.4) for f2, that

φ̃(f2) =
(
(
470
91

,
1380
91

,
2290
91

), (−30
91

,
880
91

,
1790
91

)
)′

, and φ̃(f2) ≺1 φ̃(f1).
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