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Abstract. We shall discuss further regularity properties of null-additive
fuzzy measure on metric spaces following the previous results. Under the
null-additivity condition, some properties of the inner/outer regularity
and the regularity of fuzzy measure are shown. Also the strong regularity
of fuzzy measure is discussed on complete separable metric spaces. As an
application of strong regularity, we present a characterization of atom of
null-additive fuzzy measure.
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1 Introduction

Recently various regularities of a set function are proposed and investigated by
many authors ([2, 4–7, 9, 11, 12]). As it is seen, the regularities play an important
role in the nonadditive measure theory. In [4, 11] we discussed the regularity of a
null-additive fuzzy measure and proved Egoroff’s theorem and Lusin’s theorem
for fuzzy measures on a metric space.

In this paper, we shall continue to investigate further regularities of a fuzzy
measure on metric spaces following the results by [4, 11]. Explicitly, under the
null-additivity, the weekly null-additivity and the converse null-additivity condi-
tion, we shall discuss these relation among the inner regularity, the outer regu-
larity and the regularity of fuzzy measures. Also we define the strong regularity
of fuzzy measures and show our main result: the null-additive fuzzy measures
possess a strong regularity on complete separable metric spaces. By using strong
regularity we shall show a version of Egoroff’s theorem and Lusin’s theorem for
null-additive fuzzy measures on complete separable metric spaces, respectively.
Lastly, as an application of a strong regularity, we present a characterization of
atom of a null-additive fuzzy measure.

In preparation of the paper, authors are told two references [8] and [10] from
anonymous referee. We find that there is another characterization of atom of
null additive set functions in [10]. Also, in [8], a similar result of our main result
is discussed. However, these results are not completely consistent with ours.
? The first author wants to show his thanks to the China Scholarship Council.



2 Preliminaries

Throughout this paper, we assume that (X, d) is a metric space, and that O, C
and K are the classes of all open, closed and compact sets in (X, d), respectively.
B denotes Borel σ-algebra on X, i.e., it is the smallest σ-algebra containing O.
Unless stated otherwise all the subsets mentioned are supposed to belong to B.

A set function µ : B → [0, +∞] is said to be (i) continuous from below,
if limn→∞ µ(An) = µ(A) whenever An ↗ A; (ii) continuous from above, if
limn→∞ µ(An) = µ(A) whenever An ↘ A; (iii) strongly order continuous, if
limn→+∞ µ(An) = 0 whenever An ↘ B and µ(B) = 0; (iv)null-additive,
if µ(E ∪ F ) = µ(E) for any E whenever µ(F ) = 0; (v)weakly null-additive,
if µ(E ∪ F ) = 0 whenever µ(E) = µ(F ) = 0; (vi) converse-null-additive, if
µ(E − F ) = 0 whenever F ⊂ E and µ(F ) = µ(E) < +∞; (vii)finite, if
µ(X) < ∞.

Refer to these definitions and their relations between them in [3] etc. We
note here that, obviously, the null-additivity of µ implies weakly null-additivity.

Definition 1. A fuzzy measure on (X,B) is an extended real valued set func-
tion µ : F → [0, +∞] satisfying the following conditions:
(1) µ(∅) = 0;
(2) µ(A) ≤ µ(B) whenever A ⊂ B and A, B ∈ F (monotonicity).

We say that a fuzzy measure µ is continuous if it is continuous both from
below and from above. Our fundamental assumtion in this paper is that µ is a
“finite” fuzzy measure.

3 Regularity of fuzzy measure

Definition 2. ([12]) A fuzzy measure µ is called outer regular (resp. inner
regular), if for each A ∈ B and each ε > 0, there exists a set G ∈ O (resp. F ∈ C)
such that A ⊂ G, µ(G−A) < ε (resp. F ⊂ A, µ(A−F ) < ε). µ is called regular,
if for each A ∈ B and each ε > 0, there exist a closed set F ∈ C and an open set
G ∈ O such that F ⊂ A ⊂ G and µ(G− F ) < ε.

Obviously, if fuzzy measure µ is regular, then it is both outer regular and
inner regular.

Proposition 1. ([4]) If µ is weekly null-additive and continuous, then it is reg-
ular. Furthermore, if µ is null-additive, then for any A ∈ B,

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C }
= inf{ µ(G) | G ⊃ A, G ∈ O }

In the following we present some properties of the inner regularity and outer
regularity of fuzzy measure, their proofs can be easily obtained:

Proposition 2. If µ is weekly null-additive and strongly order continuous, then
both outer regularity and inner regularity imply regularity.



Proposition 3. Let µ be null-additive fuzzy measure.

(1) If µ is continuous from below, then inner regularity implies

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C }

for all A ∈ B;
(2) If µ is continuous from above, then outer regularity implies

µ(A) = inf{ µ(G) | A ⊂ G, G ∈ O }

for all A ∈ B.

Proposition 4. Let µ be converse-null-additive fuzzy measure.

(1) If µ is continuous from below and strongly order continuous, and for any
A ∈ B,

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C },
then µ is inner regular.

(2) If µ is continuous from above, and for any A ∈ B,

µ(A) = inf{ µ(G) | A ⊂ G, G ∈ O },

then µ is outer regular.

Definition 3. µ is called strongly regular, if for each A ∈ B and each ε > 0,
there exist a compact set K ∈ K and an open set G ∈ O such that K ⊂ A ⊂ G
and µ(G−K) < ε.

The strongly regularity implies regularity, and hence inner regularity and
outer regularity.

Proposition 5. Let µ be null-additive and continuous from below. If µ is strongly
regular, then for any A ∈ B,

µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K }.

Proposition 6. Let µ be null-additive and order continuous. If for any A ∈ B,

µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K },

then µ is strongly regular.

In the rest of the paper, we assume that (X, d) is complete and separable
metric space, and that µ is finite continuous fuzzy measure. In the following we
show the main result in this paper.

Theorem 1. If µ is null-additive, then µ is strongly regular.

To prove the theorem, we first prepare two lemmas.



Lemma 1. Let µ be a finite continuous fuzzy measure. Then for any ε > 0 and
any double sequence {A(k)

n | n ≥ 1, k ≥ 1} ⊂ B satisfying A
(k)
n ↘ ∅ (k → ∞),

n = 1, 2, . . ., there exists a subsequence {A(kn)
n } of {A(k)

n | n ≥ 1, k ≥ 1} such
that

µ

( ∞⋃
n=1

A(kn)
n

)
< ε (k1 < k2 < . . .)

Proof. Since for any fixed n = 1, 2, . . ., A
(k)
n ↘ ∅ as k → ∞, for given ε > 0,

using the continuity from above of fuzzy measures, we have limk→+∞ µ(A(k)
1 ) =

0, therefore there exists k1 such that µ(A(k1)
1 ) < ε

2 ; For this k1, (A(k1)
1 ∪A

(k)
2 ) ↘

A
(k1)
1 , as k →∞. Therefore it follows, from the continuity from above of µ, that

lim
k→+∞

µ(A(k1)
1 ∪A

(k)
2 ) = µ(A(k1)

1 ).

Thus there exists k2 (> k1), such that

µ(A(k1)
1 ∪A

(k2)
2 ) <

ε

2
.

Generally, there exist k1, k2, . . . , km, such that

µ(A(k1)
1 ∪A

(k2)
2 ∪ . . . A(km)

m ) <
ε

2
.

Hence we obtain a sequence {kn}∞n=1 of numbers and a sequence {A(kn)
n }∞n=1 of

sets. By using the monotonicity and the continuity from below of µ, we have

µ

(
+∞⋃
n=1

A(kn)
n

)
≤ ε

2
< ε.

This gives the proof of the lemma.

Lemma 2. If µ be continuous fuzzy measure, then for each ε > 0, there exists
a compact set Kε ∈ K such that µ(X −Kε) < ε.

Proof. Since (X, d) is separable, there exists a countable dense subsets {xi; i =
1, 2, . . .}. For any for any n, k ≥ 1, we put

Sk(xn) =
{

x : x ∈ X, d(x, xn) ≤ 1
k

}
,

then, for fixed k = 1, 2, · · ·, as m → +∞
m⋃

n=1

Sk(xn) ↗
∞⋃

n=1

Sk(xn) = X.

Thus, as m → +∞
X −

m⋃
n=1

Sk(xn) ↘ ∅,



for fixed k = 1, 2, · · ·. Applying Lemma 1 to the double sequence {X−⋃m
n=1 Sk(xn) |

m ≥ 1, k ≥ 1}, then there exists a subsequence {mk}k of the positive integers
such that

µ

(
+∞⋃

k=1

(
X −

mk⋃
n=1

Sk(xn)

))
< ε

Put

Kε =
+∞⋂

k=1

mk⋃
n=1

Sk(xn).

Thus, the closed set Kε is totally bounded. From the completeness of X, we
know that Kε is compact in X and satisfies

µ(X −Kε) = µ

(
+∞⋃

k=1

(
X −

mk⋃
n=1

Sk(xn)

))
< ε.

Thus the lemma has proved.

Now we will show the proof of Theorem 1 by using the previous lemmas.

Proof of Theorem 1. Let A ∈ B and given ε > 0. From Proposition 1 we
know that µ is regular. Therefore, there exist a sequence {F (k)}∞k=1 of closed
sets and a sequence {G(k)}∞k=1 of open sets such that for every k = 1, 2, . . .,
F (k) ⊂ A ⊂ G(k),

µ(G(k) − F (k)) <
1
k

.

Without loss of generality, we can assume that the sequence {F (k)}∞k=1 is increas-
ing in k and the sequence {G(k)}∞k=1 is decreasing in k. Thus, {G(k) − F (k)}∞k=1

is a decreasing sequence of sets with respect to k, and as k →∞

G(k) − F (k) ↘
∞⋂

k=1

(G(k) − F (k)).

Denote D1 =
⋂∞

k=1(G
(k) − F (k)), and noting that µ(D1) ≤ µ(G(k) − F (k)) <

1/k, k = 1, 2, . . ., then µ(D1) = 0.
On the other hand, from Lemma 2 there exists a sequence {K(k)}∞k=1 of

compact subsets in X such that for every k = 1, 2, . . .

µ(X −K(k)) <
1
k

,

and we can assume that {K(k)}∞k=1 is decreasing in k. Therefore, as k →∞

X −K(k) ↘
∞⋂

k=1

(X −K(k)).



Denote D1 =
⋂∞

k=1(X −K(k)), then µ(D1) = 0. Thus, we have

(X −K(k)) ∪ (G(k) − F (k)) ↘ D1 ∪D2

as k →∞. Noting that µ(D1 ∪D2) = 0, by the continuity of µ, then

lim
k→+∞

µ
(
(X −K(k)) ∪ (G(k) − F (k))

)
= 0.

Therefore there exists k0 such that

µ
(
(X −K(k0)) ∪ (G(k0) − F (k0))

)
< ε.

Denoting Kε = K(k0) ∩ F (k0) and Gε = G(k0), then Kε is a compact set and Gε

is an open set, and Kε ⊂ A ⊂ Gε. Since Gε−Kε ⊂ (X−K(k0))∪ (G(k0)−F (k0)),
we obtain

µ(Gε −Kε) ≤ µ(X −K(k0)) ∪ (G(k0) − F (k0)) < ε.

This shows that µ is strongly regular. q.e.d.

Corollary 1. If µ is null-additive, then for any A ∈ B the following statements
hold:

(1) For each ε > 0, there exist a compact set Kε ∈ K such that Kε ⊂ A and
µ(A−Kε) < ε;

(2) µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K }.
By using the strongly regular of fuzzy measure, similar to the proof of The-

orem 3 and 4 in [4], we can prove the following theorems. They are a version
of Egoroff’s theorem and Lusin’s theorem on complete separable metric space,
respectively.

Theorem 2. (Egoroff’s theorem) Let µ be null-additive continuous fuzzy mea-
sure. If {fn} converges to f almost everywhere on X, then for any ε > 0, there
exists a compact subset Kε ∈ K such that µ(X −Kε) < ε and {fn}n converges
to f uniformly on Kε.

Theorem 3. (Lusin’s theorem) Let µ be null-additive continuous fuzzy mea-
sure. If f is a real measurable function on X, then, for each ε > 0, there exists
a compact subset Kε ∈ K such that f is continuous on Kε and µ(X −Kε) ≤ ε.

4 Atoms of fuzzy measure

In this section, as an application of strongly regularity, we shall show a
characterization of atom of null-additive fuzzy measure on complete separable
metric space.

Definition 4. ([2]) A set A ∈ B with µ(A) > 0 is call an atom if for any B ⊂ A
then



(i) µ(B) = 0, or
(ii) µ(A) = µ(B) and µ(A−B) = 0 holds.

Consider a nonnegative real-valued measurable function f on A. The fuzzy
integral of f on A with respect to µ, denoted by (S)

∫
A

fdµ, is defined by

(S)
∫

A

fdµ = sup
0≤α<+∞

[α ∧ µ({x : f(x) ≥ α} ∩A)]

Theorem 4. Let µ be null-additive and continuous. If A is an atom of µ, then
there exists a point a ∈ A such that the fuzzy integral satisfies

(S)
∫

A

fdµ = f(a) ∧ µ({a})

for any non-negative measurable function f on A.

Proof. It is similar to the proof of Theorem 8 in [2]. q.e.d.

Acknowledgement: The authors should express their thanks to referee who
shows us two references [8] and [10].
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