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ABSTRACT: In this paper, we investigate the conver-
gence and the pseudo-convergence of sequence of set-valued
mappings. Egoroff type theorem for random set sequence on
monotone non-additive measure spaces is presented.

Keyword: Set-valued mapping; Random set; Non-additive
measure; Egoroff’s theorem

1 Introduction

The convergences of random set sequence on measure
spaces were studied by Zhang ([10]), and some important con-
vergence theorems in random set theory were obtained. Liu
([6]) discussed the convergence of sequence of random set
(it is called measurable set-valued function in [6]) on fuzzy
measure spaces and some results, such as Egoroff’s theorem,
Lebesgue’s theorem and Riesz’s theorem in fuzzy measure
theory ([9]) have been adapted to set-valued case.

In this paper, we discuss the convergence and the pseudo-
convergence of sequence of random set sequence on mono-
tone non-additive measure spaces. Egoroff type theorem for
random set sequence with respect to monotone non-additive
measure is shown. It is a generalization of the related results
obtained by authors [3, 4, 5].

2 Preliminaries

Let Ω be a non-empty set,A be aσ-algebra of subsets
of Ω, and letRm bem-dimensional Euclidean space, andd a
Euclidean metric onRm. All concepts and signs not defined in
this paper may be found in [1, 2, 10]

Definition 1 Let {An} be a sequence of closed subsets ofRm.
We say that the subset

limsup
n→∞

An = {x∈ Rm : liminf
n→∞

d(x,An) = 0}

is the upper limit of the sequence{An} and that the subset

liminf
n→∞

An = {x∈ Rm : lim
n→∞

d(x,An) = 0}
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is its lower limit. A subsetA is said to be the set limit of the
sequence{An}, denoted bylimn→∞ An = A, if

limsup
n→∞

An = liminf
n→∞

An = A

whered(x,An) = infy∈Ad(x,y).

Definition 2 ([4]) A set functionµ : A → [0,+∞] is called
monotone non-additive measure, if it satisfies the following
properties:

(1) µ( /0) = 0;
(2) µ(A) ≤ µ(B) wheneverA⊂ B andA,B ∈ A (mono-

tonicity).
When µ is a monotone non-additive measure, the triple

(Ω,A ,µ) is called monotone non-additive measure space.

A set function µ : A → [0,+∞] is said to becontinu-
ous from below, if limn→∞ µ(An) = µ(A) wheneverAn ↗ A
([7]); strongly order continuous([4]), if limn→+∞µ(An) = 0
whenever{An}n ⊂ F , An ↘ B and µ(B) = 0; has prop-
erty (S) (resp. property (PS)) ([8]), if for any {An}n with
limn→∞ µ(An) = 0 (resp. limn→∞ µ(A\An) = µ(A)), there ex-
ists a subsequence{Ani}i of {An}n such thatµ(limsupAni ) = 0
(resp.µ(A\ limsupAni ) = µ(A)).

Definition 3 ([10]) Let (Ω,A) be a measurable space, andf
a set-valued mapping fromΩ to closed subsets ofRm. If for
every closed subsetF of Rm,

f−1(F) = {ω ∈Ω : f (ω)∩F 6= /0} ∈ A ,

then f is called random set (with respect toA).

Let µ[Ω] denote the class of all random set defined onΩ
(with respect toA), and let fn (n∈ N), f ∈ µ(Ω),E ∈ A . We
say that

(1) { fn} converges tof almost everywhere onE, and de-
noted by fn

a.e.−→ f on E, if there existsN ∈ E∩A , such that
µ(N) = 0 and for everyω ∈ E \N, limn→∞ fn(ω) = f (ω) (in
the sense of Definition 1);

(2) { fn} converges uniformly tof onE , denoted byfn
u−→

f onE, if for any ε > 0 and any compact subsetK of Rm, there
exists some positive integerN(ε,K), such that

E(4−1
εn (K)) , {ω∈A : [( fn\ε f )∪( f \ε fn)](ω)∩K 6= /0}= /0
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whenevern≥ N(ε,K);
(3) { fn} converges almost uniformly tof on E, denoted by

fn
a.u−→ f on E, if there exists a sequence{Em} of measurable

sets ofE∩A such thatlimn→∞ µ(Em) = 0, and fn
u−→ f on

E \Em(m= 1,2. . .);
(4) { fn} converges tof pseudo−almost everywhere onE,

denote byfn
p.a.e.−→ f on E, if there existsN ∈ E∩A , such that

µ(N) = µ(E) and for everyω ∈ E \N, limn→∞ fn(ω) = f (ω);
(5) { fn} pseudo−converges almost uniformly tof on E,

denoted byfn
p.a.u−→ f on E, if there exists a sequence{Em} of

measurable sets ofE∩A such thatlimn→∞ µ(E \Em) = µ(E),
and fn

u−→ f onE \Em(m= 1,2. . .) (cf. [6], [9] and [10]).

3 Egoroff’s theorem for random set
sequence

In this section, we show Egoroff type theorem for random
set sequence on monotone non-additive measure space.

Theorem 1 (Egoroff ’s theorem) Letµ be a monotone non-
additive measure on(Ω,A) and fn(n∈ N), f ∈ µ(Ω) andE ∈
A .

(1) If µ is strongly order continuous and has property (S),
then onE

fn
a.e.−→ f =⇒ fn

a.u−→ f .

(2) If µ is continuous from below and has property (PS), then
onE

fn
p.a.e.−→ f =⇒ fn

p.a.u−→ f .

Proof: (1) Let 0 < εl ↓ 0, andRm =
S∞

l=1Ul , whereUl is
a bounded open subset ofRm, and its closureUl ⊂Ul+1(l =
1,2, . . .).

Since fn
a.e.−→ f , there existsE ∈ A , such thatµ(X−E) = 0,

and fn converges tof everywhere onE.
For eachl > 0, denote

E(l)
m =

∞[
n=m

{
ω ∈ X : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩Ul = /0

}
,

then E(l)
m is increasing inn for each fixedl , and we getS∞

m=1E(l)
m = E(l = 1,2, . . .). In fact, for anyω ∈ ∪∞

m=1E(l)
m ,

there existsm0, such that

ω ∈ E(l)
m0 =

∞[
n=m0

{
ω ∈ X : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩Ul = /0

}
,

that is,
[
( fn\ εl f )

[
( f \ εl fn)

]
(ω)

\
Ul = /0

whenevern ≥ m0. Then for anyε > 0 and any compact
subsetKof Rm, there exists some positive integerl0(ε,K), such
thatεl0 < ε, K ⊂Ul0, and[( fn\ε f )∪( f \ε fn)](ω)∩K = /0. So

we have∪∞
m=1E(l)

m = E(l = 1,2, . . .), and for each fixedl

X−E(l)
m ↘ X−

∞[
m=1

E(l)
m = X−E.

By using the strong order continuity ofµ, we have

lim
m→∞

µ(X−E(l)
m ) = µ(X−E) = 0 (l ≥ 1).

Thus, there exists a subsequence{X \E(l)
ml } of {X \E(l)

m } sat-
isfying

µ(X \E(l)
ml )≤

1
l

(∀l ≥ 1),

and hence
lim
l→∞

µ(X \E(l)
ml ) = 0.

By applying the property (S) ofµ to the sequence{X \El
ml
},

then there exists a subsequence{X \El i
mli
} of {X \El

ml
} such

that

µ

(
limsup

i
(X \E(l i)

mli
)
)

= 0

andl1 < l2 < .. .. On the other hand,

∞[
j=k

(X \E
(l j )
ml j

)↘ limsup
i

(X \E(l i)
mli

) ( j → ∞),

therefore, by using the strong order continuity ofµ, we have

lim
k→∞

µ

(
∞[

j=k

(X \E
(l j )
ml j

)

)
= 0.

PutEk =
∞\

j=k

E
(l j )
ml j

, thenlimn→∞ µ(X \Ek) = 0.

Now we prove thatfn converges tof on Ek uniformly for
any fixedk = 1,2, . . .. In fact, for anyε > 0 and any compact
subsetK of Rm, there exists some positive integerl0(ε,K) such
thatεl0 < ε andK ⊂Ul0. Therefore we have

Ek⊂E(l0)
ml0

⊂
∞\

n=ml0

{ω ∈ X : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩K = /0}

that is,

Ek(4−1
εn (K))

= {ω ∈ X | [( fn\ ε f )∪ ( f \ ε fn)](ω)∩K 6= /0}
= /0

whenevern≥ N(ε,K) = ml0. This showsfn
a.u−→ f .

(2) Letεl > 0, εl ↓ 0 andRm =
∞[

l=1

Ul , whereUl is a bounded

open subset ofRm, and its closureUl ⊂Ul+1 (l = 1,2, . . .).
Since fn

p.a.e.−→ f on A, there existsE ∈ A∩A , such that
µ(E) = µ(A) and fn converges tof everywhere onE. For
eachl > 0, letting

E(l)
m =

∞\
n=m

{ω ∈ A : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩K = /0},

thenE(l)
1 ⊂ E(l)

2 ⊂ . . ., and
∞[

m=1

E(l)
m = E (l = 1,2, . . .). By us-

ing the continuity from below ofµ, we have

lim
m→∞

µ(E(l)
m ) = µ(E) = µ(A).



Thus there exists a subsequence{E(l)
ml }l of {E(l)

m ; l ,m≥ 1} sat-
isfying:
(i) if µ(A) < ∞, then

µ(A)−µ(E(l)
ml ) <

1
l
, ∀ l ≥ 1.

(2) if µ(A) = ∞, then

µ(E(l)
ml ) > l , ∀ l ≥ 1.

Therefore, we have

lim
l→∞

µ(E(l)
ml ) = µ(A).

By applying the property (PS) ofµ to the sequence{E(l)
ml },

then there exists a subsequence{E(l i)
mli
} of {E(l)

ml }, such that
l1 < l2 < .. . and

µ

(
∞[

k=1

∞\
i=k

E(l i)
mli

)
= µ(A).

It follows from the continuity from below ofµ that

lim
k→∞

µ

(
∞\

i=k

E(l i)
mli

)
= µ(A).

PutFk = A\
∞\

i=k

E(l i)
mli

(k = 1,2. . .), then

lim
k→∞

µ(A\Fk) = µ(A).

Now we prove thatfn converges tof onA\Fk uniformly for
any fixedk = 1,2, . . . In fact, for anyε > 0, and any compact
subsetK of Rm, there exists some positive integerl0(ε,K), such
thatεl0 < ε andK ⊂Ul0, So we have

A\ Fk ⊂
∞\

j=ml0

{ω ∈ A : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩K = /0}.

That is

A\Fk(4−1
εn (K))

= {ω ∈ A : [( fn\ ε f )∪ ( f \ ε fn)](ω)∩K 6= /0}
= /0

whenevern≥ N(ε,K) = ml0. Therefore, we havefn
p.a.u−→ f . 2
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