Almost everywhere convergence of random set sequence on non-additive measure spaces *

Guiling Li¹ Jun Li^{1 †‡} Masami Yasuda²

 Department of Applied Mathematics, Southeast University Nanjing 210096, China
 Department of Mathematics & Informatics, Faculty of Science, Chiba University

Chiba 263-8522, Japan

November 4, 2004

ABSTRACT: In this paper, we investigate the convergence and the pseudo-convergence of sequence of set-valued mappings. Egoroff type theorem for random set sequence on monotone non-additive measure spaces is presented.

Keyword: Set-valued mapping; Random set; Non-additive measure; Egoroff's theorem

1 Introduction

The convergences of random set sequence on measure spaces were studied by Zhang ([10]), and some important convergence theorems in random set theory were obtained. Liu ([6]) discussed the convergence of sequence of random set (it is called measurable set-valued function in [6]) on fuzzy measure spaces and some results, such as Egoroff's theorem, Lebesgue's theorem and Riesz's theorem in fuzzy measure theory ([9]) have been adapted to set-valued case.

In this paper, we discuss the convergence and the pseudoconvergence of sequence of random set sequence on monotone non-additive measure spaces. Egoroff type theorem for random set sequence with respect to monotone non-additive measure is shown. It is a generalization of the related results obtained by authors [3, 4, 5].

2 Preliminaries

Let Ω be a non-empty set, \mathcal{A} be a σ -algebra of subsets of Ω , and let R^m be *m*-dimensional Euclidean space, and *d* a Euclidean metric on R^m . All concepts and signs not defined in this paper may be found in [1, 2, 10]

Definition 1 Let $\{A_n\}$ be a sequence of closed subsets of R^m . We say that the subset

$$\limsup_{n \to \infty} A_n = \{ x \in \mathbb{R}^m : \liminf_{n \to \infty} d(x, A_n) = 0 \}$$

is the upper limit of the sequence $\{A_n\}$ and that the subset

$$\liminf_{n \to \infty} A_n = \{ x \in \mathbb{R}^m : \lim_{n \to \infty} d(x, A_n) = 0 \}$$

is its lower limit. A subset *A* is said to be the set limit of the sequence $\{A_n\}$, denoted by $\lim_{n\to\infty} A_n = A$, if

$$\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = A$$

where $d(x,A_n) = \inf_{y \in A} d(x,y)$.

Definition 2 ([4]) A set function $\mu : \mathcal{A} \to [0, +\infty]$ is called *monotone non-additive measure*, if it satisfies the following properties:

(1) $\mu(0) = 0;$

(2) $\mu(A) \le \mu(B)$ whenever $A \subset B$ and $A, B \in \mathcal{A}$ (monotonicity).

When μ is a monotone non-additive measure, the triple $(\Omega, \mathcal{A}, \mu)$ is called monotone non-additive measure space.

A set function $\mu : \mathcal{A} \to [0, +\infty]$ is said to be *continuous from below*, if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ whenever $A_n \nearrow A$ ([7]); *strongly order continuous* ([4]), if $\lim_{n\to+\infty} \mu(A_n) = 0$ whenever $\{A_n\}_n \subset \mathcal{F}, A_n \searrow B$ and $\mu(B) = 0$; has *property* (S) (resp. *property* (PS)) ([8]), if for any $\{A_n\}_n$ with $\lim_{n\to\infty} \mu(A_n) = 0$ (resp. $\lim_{n\to\infty} \mu(A \setminus A_n) = \mu(A)$), there exists a subsequence $\{A_{n_i}\}_i$ of $\{A_n\}_n$ such that $\mu(\limsup_{n \to \infty} A_{n_i}) = 0$ (resp. $\mu(A \setminus \limsup_{n \to \infty} \mu(A)$).

Definition 3 ([10]) Let (Ω, \mathcal{A}) be a measurable space, and f a set-valued mapping from Ω to closed subsets of \mathbb{R}^m . If for every closed subset F of \mathbb{R}^m ,

$$f^{-1}(F) = \{ \omega \in \Omega : f(\omega) \cap F \neq \emptyset \} \in \mathcal{A},$$

then f is called random set (with respect to \mathcal{A}).

Let $\mu[\Omega]$ denote the class of all random set defined on Ω (with respect to \mathcal{A}), and let f_n $(n \in \mathbf{N}), f \in \mu(\Omega), E \in \mathcal{A}$. We say that

(1) $\{f_n\}$ converges to f almost everywhere on E, and denoted by $f_n \xrightarrow{a.e.} f$ on E, if there exists $N \in E \cap \mathcal{A}$, such that $\mu(N) = 0$ and for every $\omega \in E \setminus N$, $\lim_{n\to\infty} f_n(\omega) = f(\omega)$ (in the sense of Definition 1);

(2) $\{f_n\}$ converges uniformly to f on E, denoted by $f_n \xrightarrow{u} f$ on E, if for any $\varepsilon > 0$ and any compact subset K of \mathbb{R}^m , there exists some positive integer $N_{(\varepsilon,K)}$, such that

$$E(\triangle_{\varepsilon n}^{-1}(K)) \triangleq \{\omega \in A : [(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap K \neq \emptyset\} = \emptyset$$

 $^{^{*}\}mbox{Project}$ (10371017) supported by the National Natural Science Foundation of China.

[†]Corresponding author. Email address: lijun@seu.edu.cn

[‡]The author was supported by the China Scholarship Council.

whenever $n \ge N_{(\varepsilon,K)}$;

(3) $\{f_n\}$ converges almost uniformly to f on E, denoted by $f_n \xrightarrow{a.u} f$ on E, if there exists a sequence $\{E_m\}$ of measurable sets of $E \cap \mathcal{A}$ such that $\lim_{n\to\infty} \mu(E_m) = 0$, and $f_n \xrightarrow{u} f$ on $E \setminus E_m(m = 1, 2...);$

(4) $\{f_n\}$ converges to f pseudo-almost everywhere on E, denote by $f_n \xrightarrow{p.a.e.} f$ on E, if there exists $N \in E \cap \mathcal{A}$, such that $\mu(N) = \mu(E)$ and for every $\omega \in E \setminus N$, $\lim_{n\to\infty} f_n(\omega) = f(\omega)$;

(5) $\{f_n\}$ pseudo-converges almost uniformly to f on E, denoted by $f_n \xrightarrow{p.a.u} f$ on E, if there exists a sequence $\{E_m\}$ of measurable sets of $E \cap \mathcal{A}$ such that $\lim_{n \to \infty} \mu(E \setminus E_m) = \mu(E)$, and $f_n \xrightarrow{u} f$ on $E \setminus E_m(m = 1, 2...)$ (cf. [6], [9] and [10]).

3 Egoroff's theorem for random set sequence

In this section, we show Egoroff type theorem for random set sequence on monotone non-additive measure space.

Theorem 1 (Egoroff's theorem) Let μ be a monotone nonadditive measure on (Ω, \mathcal{A}) and $f_n(n \in \mathbb{N}), f \in \mu(\Omega)$ and $E \in \mathcal{A}$.

(1) If μ is strongly order continuous and has property (S), then on E

$$f_n \xrightarrow{a.e.} f \Longrightarrow f_n \xrightarrow{a.u} f.$$

(2) If μ is continuous from below and has property (PS), then on E

$$f_n \xrightarrow{p.a.e.} f \Longrightarrow f_n \xrightarrow{p.a.u} f.$$

Proof: (1) Let $0 < \varepsilon_l \downarrow 0$, and $R^m = \bigcup_{l=1}^{\infty} U_l$, where U_l is a bounded open subset of R^m , and its closure $\overline{U_l} \subset U_{l+1}(l = 1, 2, ...)$.

Since $f_n \xrightarrow{a.e.} f$, there exists $E \in \mathcal{A}$, such that $\mu(X - E) = 0$, and f_n converges to f everywhere on E.

For each l > 0, denote

$$E_m^{(l)} = \bigcup_{n=m}^{\infty} \left\{ \boldsymbol{\omega} \in X : \left[(f_n \setminus \boldsymbol{\varepsilon} f) \cup (f \setminus \boldsymbol{\varepsilon} f_n) \right] (\boldsymbol{\omega}) \cap \overline{U_l} = \boldsymbol{0} \right\},\$$

then $E_m^{(l)}$ is increasing in *n* for each fixed *l*, and we get $\bigcup_{m=1}^{\infty} E_m^{(l)} = E(l = 1, 2, ...)$. In fact, for any $\omega \in \bigcup_{m=1}^{\infty} E_m^{(l)}$, there exists m_0 , such that

$$\omega \in E_{m_0}^{(l)} = \bigcup_{n=m_0}^{\infty} \left\{ \omega \in X : [(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap \overline{U_l} = \emptyset \right\},\$$

that is,

$$\left[(f_n \setminus \varepsilon_l f) \bigcup (f \setminus \varepsilon_l f_n)\right](\omega) \bigcap \overline{U_l} = \emptyset$$

whenever $n \ge m_0$. Then for any $\varepsilon > 0$ and any compact subset K of R^m , there exists some positive integer $l_0(\varepsilon, K)$, such that $\varepsilon_{l_0} < \varepsilon, K \subset \overline{U_{l_0}}$, and $[(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap K = \emptyset$. So we have $\bigcup_{m=1}^{\infty} E_m^{(l)} = E(l = 1, 2, ...)$, and for each fixed l

$$X - E_m^{(l)} \searrow X - \bigcup_{m=1}^{\infty} E_m^{(l)} = X - E.$$

By using the strong order continuity of μ , we have

$$\lim_{m \to \infty} \mu(X - E_m^{(l)}) = \mu(X - E) = 0 \ (l \ge 1).$$

Thus, there exists a subsequence $\{X \setminus E_{m_l}^{(l)}\}$ of $\{X \setminus E_m^{(l)}\}$ satisfying

$$\mu(X \setminus E_{m_l}^{(l)}) \le \frac{1}{l} \ (\forall l \ge 1),$$

and hence

$$\lim_{l\to\infty}\mu(X\setminus E_{m_l}^{(l)})=0.$$

By applying the property (S) of μ to the sequence $\{X \setminus E_{m_l}^l\}$, then there exists a subsequence $\{X \setminus E_{m_l}^{l_i}\}$ of $\{X \setminus E_{m_l}^l\}$ such that

$$\mu\left(\limsup_{i}(X\setminus E_{m_{l_i}}^{(l_i)})\right)=0$$

and $l_1 < l_2 < \dots$ On the other hand,

$$\bigcup_{j=k}^{\infty} (X \setminus E_{m_{l_j}}^{(l_j)}) \searrow \limsup_{i} (X \setminus E_{m_{l_i}}^{(l_i)}) \quad (j \to \infty),$$

therefore, by using the strong order continuity of μ , we have

$$\lim_{k\to\infty}\mu\left(\bigcup_{j=k}^{\infty}(X\setminus E_{m_{l_j}}^{(l_j)})\right)=0.$$

Put $E_k = \bigcap_{j=k}^{\infty} E_{m_{l_j}}^{(l_j)}$, then $\lim_{n\to\infty} \mu(X \setminus E_k) = 0$.

Now we prove that f_n converges to f on E_k uniformly for any fixed k = 1, 2, ... In fact, for any $\varepsilon > 0$ and any compact subset K of \mathbb{R}^m , there exists some positive integer $l_{0(\varepsilon,K)}$ such that $\varepsilon_{l_0} < \varepsilon$ and $K \subset \overline{U_{l_0}}$. Therefore we have

$$E_k \subset E_{m_{l_0}}^{(l_0)} \subset \bigcap_{n=m_{l_0}}^{\infty} \{ \omega \in X : [(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap K = \emptyset \}$$

that is,

$$E_{k}(\triangle_{\varepsilon n}^{-1}(K))$$

$$= \{\omega \in X \mid [(f_{n} \setminus \varepsilon f) \cup (f \setminus \varepsilon f_{n})](\omega) \cap K \neq \emptyset\}$$

$$= \emptyset$$

whenever $n \ge N_{(\varepsilon,K)} = m_{l_0}$. This shows $f_n \xrightarrow{a.u} f$.

(2) Let
$$\varepsilon_l > 0$$
, $\varepsilon_l \downarrow 0$ and $R^m = \bigcup_{l=1}^{\infty} U_l$, where U_l is a bounded

open subset of \mathbb{R}^m , and its closure $U_l \subset U_{l+1}$ (l = 1, 2, ...).

Since $f_n \xrightarrow{p.a.e.} f$ on A, there exists $E \in A \cap \mathcal{A}$, such that $\mu(E) = \mu(A)$ and f_n converges to f everywhere on E. For each l > 0, letting

$$E_m^{(l)} = \bigcap_{n=m}^{\infty} \{ \omega \in A : [(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap K = \emptyset \},\$$

then $E_1^{(l)} \subset E_2^{(l)} \subset \ldots$, and $\bigcup_{m=1}^{\infty} E_m^{(l)} = E \ (l = 1, 2, \ldots)$. By using the continuity from below of μ , we have

$$\lim_{m\to\infty}\mu(E_m^{(l)})=\mu(E)=\mu(A).$$

Thus there exists a subsequence $\{E_{m_l}^{(l)}\}_l$ of $\{E_m^{(l)}; l, m \ge 1\}$ satisfying:

(i) if $\mu(A) < \infty$, then

$$\mu(A) - \mu(E_{m_l}^{(l)}) < \frac{1}{l}, \ \forall \ l \ge 1$$

(2) if $\mu(A) = \infty$, then

$$\mu(E_{m_l}^{(l)}) > l, \ \forall \ l \ge 1$$

Therefore, we have

$$\lim_{l \to \infty} \mu(E_{m_l}^{(l)}) = \mu(A)$$

By applying the property (PS) of μ to the sequence $\{E_{m_l}^{(l)}\}$, then there exists a subsequence $\{E_{m_l_i}^{(l_i)}\}$ of $\{E_{m_l}^{(l)}\}$, such that $l_1 < l_2 < \ldots$ and

$$\mu\left(\bigcup_{k=1}^{\infty}\bigcap_{i=k}^{\infty}E_{m_{l_i}}^{(l_i)}\right)=\mu(A).$$

It follows from the continuity from below of μ that

$$\lim_{k\to\infty}\mu\left(\bigcap_{i=k}^{\infty}E_{m_{l_i}}^{(l_i)}\right)=\mu(A)$$

Put $F_k = A \setminus \bigcap_{i=k}^{\infty} E_{n_i}^{(l_i)}$ (k = 1, 2...), then

$$\lim_{k\to\infty}\mu(A\setminus F_k)=\mu(A)$$

Now we prove that f_n converges to f on $A \setminus F_k$ uniformly for any fixed k = 1, 2, ... In fact, for any $\varepsilon > 0$, and any compact subset K of \mathbb{R}^m , there exists some positive integer $l_{0(\varepsilon,K)}$, such that $\varepsilon_{l_0} < \varepsilon$ and $K \subset \overline{U_{l_0}}$, So we have

$$A \setminus F_k \subset \bigcap_{j=m_{l_0}}^{\infty} \{ \omega \in A : [(f_n \setminus \varepsilon f) \cup (f \setminus \varepsilon f_n)](\omega) \cap K = \emptyset \}.$$

That is

$$A \setminus F_k(\Delta_{\varepsilon_n}^{-1}(K))$$

= {\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overlin}\overlin{\overline{\overlin}\overlin{\overlin{\verlin}\overlin{\overlin{\verlin}\verlin{\overlin{\verlin}\overlin{\verlin}\overlin{\verlin}\overlin{\verlin}\verlin{\verlin{\verlin}\verlin{\verlin}\verlin{\verlin}\verli

whenever $n \ge N_{(\varepsilon,K)} = m_{l_0}$. Therefore, we have $f_n \xrightarrow{p.a.u} f$. \Box

REFERENCES

- R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 121 (1965) 1–12.
- [2] P. Diamond, P. Kloeden, Metric Space of Fuzzy Sets – Theory and Applicatuions, World Scientific, Singapore, 1994.
- [3] J. Li, On Egoroff's theorems on fuzzy measure space, *Fuzzy Sets and Systems*, 135 (2003) 367–375.

- [4] J. Li, M. Yasuda, Egoroff's theorems on monotone non-additive measure space, *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems* 12 (2004) 61-68.
- [5] J. Li, Y. Ouyang, M. Yasuda, Pseudoconvergence of measurable functions on Sugeno fuzzy measure spaces, *Proceedings of 7th Joint Conference on Information Science*, North Corolina, USA, September 26-30, pp. 56-59.
- [6] Y. Liu, Convergence of measurable set-valued function sequence on fuzzy measure space, *Fuzzy Sets and Systems* 112 (2000) 241–249.
- [7] E. Pap, *Null-additive Set Functions*, Kluwer, Dordrecht, 1995.
- [8] Q. Sun, Property (s) of fuzzy measure and Riesz's theorem, *Fuzzy Sets and Systems* 62 (1994) 117–119.
- [9] Z. Wang and G. J. Klir, *Fuzzy Measure Theory*, Plenum, New York, 1992.
- [10] W. Zhang, Set-Valued Measure Theory and Random Sets, Xian Jiaotong University, 1987 (in Chinese).