Almost everywhere convergence of random set sequence
on non-additive measure spaces
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ABSTRACT: In this paper, we investigate the conveiis its lower limit. A subsef is said to be the set limit of the

gence and the pseudo-convergence of sequence of set-vedegdencdA,}, denoted byimp . Aq = A, if
mappings. Egoroff type theorem for random set sequence on

monotone non-additive measure spaces is presented. lim supAn = liminf A, = A
Keyword: Set-valued mapping; Random set; Non-additive e
measure; Egoroff’s theorem whered(x,An) = infyead(X,Y).

Definition 2 ([4]) A set functiony: 4 — [0,+00] is called
monotone non-additive measuiié it satisfies the following

gro erties:
The convergences of random set sequence on measur

spaces were studied by Zhang ([10]), and some important con(- ) K '

vergence theorems in random set theory were obtained. {‘ié'zc)it ;I(A) < W(B) wheneverA C B andA,B€ A (mono-
([6]) discussed the convergence of sequence of random g h()e/n. is a monotone non-additive measure. the triole
(it is called measurable set-valued function in [6]) on fuzz H led ; dditi ’ P
measure spaces and some results, such as Egoroff's theoggﬁ,l’ W) is called monotone non-additive measure space.

Lebesgue’s theorem and Riesz's theorem in fuzzy measur@ set functionp: 4 — [0,+] is said to becontinu-

theory _([9]) have beer_1 adapted to set-valued case. ous from belowif limn_.. 1(Ay) = K(A) whenevera, /' A

In this paper, we discuss the convergence and the pseL([jﬂ); strongly order continuoug[4]), if liMn_.el(Ay) = 0
convergence of sequence of random set sequence on MMEnever{A.}n C F, A, \. B and u(B) = 0; has prop-
tone non-additive measure spaces. Egoroff type theoremgpfs, (S) (resp. property (PS) ([8]), if for any {An}n with
random set sequence with respect to monotone non—addiﬁipﬁ%_mo L(A) = 0 (resp. liMp_.. WA\ A) = p(A)), there ex-
measure is shown. It is a generalization of the related residig a subsequenddy, }i of {A,}n such thati(limsupA,, ) =0
obtained by authors [3, 4, 5]. (resp.u(A\ limsupAy, ) = p(A)).

1 Introduction

Definition 3 ([10]) Let (Q, 4) be a measurable space, and
a set-valued mapping frof to closed subsets &™. If for
every closed subsét of R™,

2 Preliminaries

Let Q be a non-empty setZ be ac-algebra of subsets
of Q, and letR™ be m-dimensional Euclidean space, atc
Euclidean metric oR™. All concepts and signs not defined in
this paper may be found in [1, 2, 10]

fLF) ={weQ: f(WNF #£0} € 4,
thenf is called random set (with respectf).

Definition 1 Let {A,} be a sequence of closed subset&Bf Let y[Q] denote the class of all random set defined®n

We say that the subset (with respect tad), and letf, (ne N), f € p(Q),E € 4. We
say that
limsupAn = {x€ R": liminfd(x,A,) = 0} (1) {fn} converges tof almost everywhere o, and de-
nN—oo

n—oo

noted byf, =% f on E, if there existsN € E N 4, such that
is the upper limit of the sequendé,,} and that the subset ~ K(N) = 0 and for everyw € E\N, limp_.., fn(w) = f(w) (in
the sense of Definition 1);
liminf Ay = {x € R™: lim d(x,A,) = 0} (2) {fn} converges uniformly té onE , denoted byf, LR
n—e e f onE, if for any & > 0 and any compact subsétof R™, there
&ists some positive integdle k), such that
(e.K)
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whenevemn > N k; By using the strong order continuity gf we have
(3) {fn} converges almost uniformly tbon E, denoted by

fo =% f onE, if there exists a sequend&,} of measurable lim p(X — En') =u(X—E)=0 (I >1).

sets ofE N 4 such thatim_... i(Em) = 0, and f, — f on

E\En(m=1,2...); Thus, there exists a subsequere\ Er(r',q)} of {X\ E,ﬂ)} sat-
(4) { .} converges tof pseude-almost everywhere of, isfying

denote byf, 225 f onE, if there existsN € EN .4, such that HX\ Em ) < % (V1 >1),

K(N) = H(E) and for everyw € E\ N, limp_e fn(w) = f(w);

(5) {fn} pseude-converges almost uniformly t6 on E,

denoted byf, 225 f onE, if there exists a sequeng&n,} of

measurilble sets &N 4 such thatimp_.. M(E \ Em) = H(E), By applying the property (S) g to the sequencéX \ Erln 1,

andfy — fonE\En(m=1,2...) (cf. [6], 9] and [10]). 0 there exists a subsequeroe\ Er'ﬁi} of {X\ Ep, } such
that

3 Egoroff’'s theorem for random set u(lim,sup(X\Er(#i)Q =0
1
sequence andl, < I, < .... On the other hand,

and hence
lim U(X \ ERY) =0.

In this section, we show Egoroff type theorem for random
set sequence on monotone non-additive measure space.

O X\E \I|msup(X\Em ) (j — ),

Theorem 1 (Egoroff’s theorem) Lept be a monotone non-therefore, by using the strong order continuityupfve have

additive measure ofQ, 4) and f,(ne N), f € u(Q) andE € ©
A. lim X\EWN | =o.
(1) If pis strongly order continuous and has property (S), H <]~L=Jk( \ m )

then onkE
fo 2% f = f, 25 f. A . _

(2) If pis continuous from below and has property (PS), then j=k )

onE Now we prove thatf, converges tdf on Ex uniformly for
f, Pae pae . f, P2y pau o any fixedk=1,2,.... In fact, for anye > 0 and any compact

subseK of R™, there exists some positive intedgk «) such
Proof: (1) LetO< g |0, andR™ = JZ,U;, whereU, is thatg, < € andK C Uj,. Therefore we have
a bounded open subset BF, and its closuréJ; C Uy, 1(I =

1,2,...). E _
& kCE C {we X [(fa\ef)u(f\efy)](w)NK =0}
Sincef, 2% f, there exist€ € 4, such thafu(X —E) =0, nrnlo " "
and f,, converges td everywhere ork. _
For eacH > 0, denote that is,
Ex(Aen (K))

E#J:O{wex:[(fn\sf)u(f\sfn w)NU =0},

n—m = {weX|[(fa\ef)U(f\efn)](w)NK £ 0}
then E,(TP is increasing inn for each fixedl, and we get 0
()

US1EW = E( = 1,2....). In fact, for anyw e Un-1Em’  wheneven > N ) = my. This showsf, > f.
there existsng, such that

o (2) Letg >0,¢ | 0andR™ = | JU;, whereU, is a bounded
oer U {wex fn\sf)u(f\afn)](w)mu|:0}, =1
open subset dR™, and its closur®);, cUj;1 (1 =1,2,...).
Since f, P4¢ ¢ on A, there existsE € AN 4, such that
M(E) = u(A) and f, converges tof everywhere orE. For

[(fn\af)U \ & fn} )0 = 0 eachl > 0, letting

that is,

(1 _
whenevem > mo. Then for anye > 0 and any compact ~ Em = ﬂ {weA:[(fn\ef)u(f\efn)](w)NK =0},
subseKof R™, there exists some positive intedg(e, K), such n=m
thate, <&, K c Uy, and[(fo\ef)U(f\efy)](w)NK =0. So

(1)

. hene!) c EY) ... EV=E(1=12...). Byus-
we haveuy _Em’ =E(I =1,2,...), and for each fixetl thenk, " c &7 ¢ ,andU m ( 2,---)- By us

m=1
N ing the continuity from below oft, we have
_gW0 _ ) _w_
X—Em X~ |JEn =X-E lim WER) = W(E) = HA).

m=1 m—oo



Thus there exists a subsequepﬁE&)h of {Er(r'f; [,m>1} sat-
isfying:
(i) if W(A) < oo, then

(2) if W(A) = oo, then
WEW) >1, VI>1.

Therefore, we have

lim p(Em) = H(A).

| -0

By applying the property (PS) qfto the sequenceE,g])},
then there exists a subsequer{ﬁ,'{i)} of {Er%)}, such that
lh<lh<...and

u(U E##R) —H(A).
k=1i=k

It follows from the continuity from below of that
. 2 li
lim (ﬂ Er(ni)> = (A).
i=k

PutR = A\ ﬂ E'(‘I1ii) (k=1,2...),then
i=k

lim J(A\ R = H(A).

Now we prove thaf, converges td on A\ K uniformly for
any fixedk = 1,2, ... In fact, for anye > 0, and any compact
subseK of R™, there exists some positive intedgt k), such
thate, < € andK c Uy, So we have

A\ K C ﬁ {we A:[(fa\ef)U(f\efy)](w)NK =0}.
j=myq

That is

A\Fu(L (K))

{weA:[(fa\ef)u(f\efn)](w)NK # 0}

=0

wheneven > N ) = my,. Therefore, we havé, ° f. O
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