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Abstract

This paper discusses an optimal stopping
problem of fuzzy systems with fuzzy rewards
in a class of fuzzy stopping times, which are
extended from usual stopping times. Some
properties regarding the optimal fuzzy stop-

ping times are presented.

0. Introduction

Multistage decision-making models under
fuzzy environment are first studied by Bell-
man and Zadeh [1]. Kacprzyk [6] introduced
a fuzzy stopping time, which is called fuzzy
termination time in the paper, and discussed
an optimization problem. By using a-cut
technique in Kurano et al. [9, 10, 11] stud-
ied a stopping problem which maximizes the
measure of the truth of the fuzzy stopped sys-
tem and in which we find an optimal fuzzy
stopping time in a class of fuzzy stopping
times. It is a fuzzy extension of stopping rule
in stopping problems ([Yoshida [15]) for dy-
namic fuzzy systems with fuzzy rewards. This
paper discusses the further properties of the
fuzzy stopping times for the fuzzy systems.

1 Fuzzy Stopping Times

In this paper, applying the idea of

Kacprzyk [5, 6], we formulate a stopping

problem for a dynamic fuzzy system ([9, 10])
with fuzzy rewards, which is thought of as
a natural fuzzification of non-fuzzy stopping
problems induced by determistic dynamic
And the validity of the approach
by a-cuts of fuzzy sets will be discussed in

systems.

constructing an optimal fuzzy stopping time.
In remainder of this section, we will give some
notations, by which a fuzzy stopping problem
is formulated in the following section.

Let E be a convex compact subset of some
Banach space. Throughout the paper, we
will denote a fuzzy set and a fuzzy relation

Let F(F)

be the set of all convex fuzzy sets, @, on F

by their membership functions.

whose membership functions are upper semi-
continuous and have compact supports and
the normality condition : sup,cp(z) = 1.
We denote by C(F) the collection of all com-
pact convex subsets of F/ and by pg the Haus-
dorff metric on C(F). Clearly, & € F(FE)
means the a-cut @, € C(£) for all a € [0, 1],
where

Uy :={z € F'|a(z) > a} (a>0)
and
g :=cl {z € I|a(z) >0},

where cl denotes the closure of a set.
Let R be the set of all real numbers. Es-
pecially, C(R) and F(R) are the set of all



bounded closed intervals in R and all upper
semi-continuous and convex fuzzy numbers
on R with compact supports, respectively.
The addition and the scalar multiplication
on F(R) are defined as follows (see Puri and
Ralescu [13]): For m,n € F(R) and A > 0,

(m4+n)(z) = sup {m(z1)An(z2)}
z1,22€ER: w14a2=x
(1.1)
(z € R) and
i) = { 7O 20 )
(z € R). And, hence
(M4 n)y = Mo+ 0s and (Am), = A,

(v € [0,1]), where A+ B :={z+y |z €
Ay e B}, M :={z |z € A}, A+0=
0+ A := A and A} := () for any non-empty
closed intervals A, B € (R).

We consider the fuzzy system (see Kurano
et al. [9, 10]) with fuzzy rewards, which is
characterized by the elements (5, ¢, 7) as fol-
lows:

Definition 1.

(i) The state space S is a convex compact
subset of some Banach space. In general,
the system is fuzzy, so that the state of
the system is called a fuzzy state and is
denoted by a element of F(S).

(ii) The law of motion and the fuzzy re-
ward for the system are denoted by time-
invariant fuzzy relations ¢ : S X S —
[0,1] and 7 : S x R +— [0,1] respec-
tively. We assume that ¢ € F(S x 5)
and 7 € F(S x R).

If the system is in a fuzzy state § € F(S),
a fuzzy reward R(S) is earned and the state
is moved to a new fuzzy state Q(5), where
Q:F(S)— F(S) and R: F(S) — F(R) are
defined by

Q(3)(y) == sup{3(z) A q(z,y)}

z€ES

(yes)
(1.3)

and

R(5)(z) :=sup{s(z) AT(z,2)}

zES

(z € R).

(1.4)

For the dynamic fuzzy system (S, ¢,7), if
we give an initial fuzzy state § € F(S), we can
define a sequence of fuzzy rewards { R(5;) }72,,
where a sequence of fuzzy states {8:}2, is

defined by

and

S = Q3 (t > 1).
(1.5)

In the following section, a fuzzy stopping
problem for {R(5;)}{2, is formulated.

§1 =8

2 A fuzzy stopping problem

For the sake of brevity, we denote F :=
F(S). The metric p on F is given as p(@, 0) =
SUPu[0,1] £5 (o o) for @, 0 € F. Let B(F)
be the set of all Borel measurable subsets of
F with respect to p. Putting by Q; := F! the
t times product of F and by B; := B(F") the
set of Borel measurable subsets of F! with a
metric p' on F' defined by

p ({8} 1=1, {80} 1=1) = Z 2=(=1 (5, 3),

=1

(2.1)
{s}_ {8}, € F) for 1 <t < oo, we
can interpret {5:}{2; € Q, where {5;}2, is
defined by (1.5) with any given initial fuzzy
state §§ = § € F. Here, applying the idea of
fuzzy termination time in Kacprzyk [5, 6], we
will define a fuzzy stopping time. Let N be
the set of all natural numbers.

Definition 2. A fuzzy stopping time is a
fuzzy relation & : Q. x N — [0, 1] such that

(i) for each t > 1, &(-,t) is By-measurable,
and

(ii) foreach®@ € Q, (@, -) is non-increasing
and there exists {7 € N with (@,t) =0
for all ¢t > t5.

In the grade of membership of stopping
times, ‘0’ and ‘1’ represent ‘stop’ and ‘con-
tinue’ respectively. We denote by X the set
of all fuzzy stopping times.



Lemma 2.1. Let any ¢ € ¥. Define a map

0ot Qoo — N by

6,(@)=min{t > 1| 6(@,t) < a} (@€ )
(2.2)

for o € (0,1]. Then, we have:

(i) {6a<t}eB; (t>1);

(il) 6,(@) <oy @) (@E Q) fa>a;

(111) lima/Ta 5’0/(5) = 04 (w) (w € Qoo) ifa >
0.

In order to complete the description of an
optimal fuzzy stopping problem, we will spec-
ify a function which measures the system’s
performance when a fuzzy stopping time & €
3 and an initial fuzzy state § € F are given.

We define weo () : F = Qs by

Weo (8) := {8121, (2.3)

and {5;}{2, is defined by (1.5) with & = 3.
Let g : C(R) — R be a continuous and mono-
tone function. Using this g as a weighting
function (see Fortemps and Roubens [4]), the
scalarization of the total fuzzy reward will be

done by

G5:9) = [ 9(e(5,0).) da

_/ (aa 1 - )d (2.4)

where 6, = 0,(wee(8)) and ¢(§,0), =

7ol R(3:)s (We define 29 := {0}). Note
that ¢(5,0), € C(R) and the map a —
g(¢(3,8),) is left-continuous on (0, 1], so that
the right-hand integral of (2.4) is well-defined.
Now, our objective is to maximize (2.4) over
all fuzzy stopping times & € . for each initial
fuzzy state s € F.

Definition 3.
ping time ¢* is called $-optimal if G(8,5) <
G(3,6%) for all ¢ € ¥. If 5* is 5-optimal for
all § € F, 6* is called optimal.

For s € F, a fuzzy stop-

In the following section, the a-cuts of fuzzy
stopping time will be investigated, whose re-
sults are used to construct an optimal fuzzy
stopping time in Section 4.

3 The a-cut of fuzzy stopping times

First, we establish several notations that
Associated with
the fuzzy relations ¢ and 7, the correspond-

will be used in the sequel.

ing maps @, : C(S) — C(S) and R, : C(S) —
C(R) (« € [0,1]) are defined, respectively, as
follows: For D € C(S5),
(D
y€S|qr y) > « for somez € D}
fora >0
c{y € S| q¢(z,y) > 0 for somez € D}
for o = 0,
(3.1)
and
R,(D) :=
{zeR|7(z,z) > a for somez € D}
for o >0
c{z e R|7(z,2) >0 for somez € D}
for a = 0,
(3.2)

By ¢ € F(S x S) and 7 € F(S x R), the
maps (), and R, (o € [0, 1]) are well-defined.
The iterates QF, (¢t > 0) are defined by setting
Q% := I(identity) and iteratively,

Q" = QaQ),

In the following lemma, which is easily ver-

(t>0).

ified by the idea in the proof of Kurano et
al. [9, Lemma 1], the a-cuts of Q(5) and R(3)
defined by (1.3) and (1.4) are specified using
the maps @, and R,.

Lemma 3.1 ([9, 10]).
S € F, we have:

() Q(5)a = Qal5a);
(i) R(5)a = Ra(5a);
(i) 80 =QL ' (52) (t>1),
and {5,}52, is defined by

For any o € [0, 1] and

where 3 o 1= (5¢)q
(1.5) with 5 = s.

Here we need the following assumption
which is assumed to hold henceforth.

Assumption A (Lipschitz condition).
There exists a constant K > 0 such that

p5(Qa(D1), Qa(D2)) < Kps(Dy, Da) (3.3)

for all @ € [0,1] and Dy, Dy € C(S5).



Theorem 3.1. Let a fuzzy stopping time
& € X. Then, the map &'(-,-) : F x N — [0, 1]
defined by &'(5,t) := d(wso(8),t) (8 € F,t €
N) has the following properties (i) and (ii):

(i) &'(-,t) is B(F)-measurable for each t > 1.

(ii) For each § € F, ¢'(8,-) is non-increasing
and there exists t; € N such that
&'(5,t) =0 for all t > t;.

Observing (2.4) and the form of the objec-
tive function G(8,d) for our stopping prob-
lem, we can confine ourselves to the class of
fuzzy stopping times &'(-,-) : F x N — [0, 1]
satisfying (i) and (ii) in Theorem 3.1, and
so the class of such fuzzy stopping times will
be denoted by ¥'. The following theorem is
useful in constructing an optimal fuzzy time
which is done in Section 4.

Theorem 3.2. Suppose that, for each o €
[0, 1], there exists a B(C(S))-measurable map
0o : C(S) = N. Using this family {04 }ae[o,1);
define the map ¢ : F x N — [0, 1] by

a(5,t) = sup {aAl(, Ga)>01 )y S € F, 2> 1.

a€l0,1]
(3.4)
Then, if for each 3 € F, 0,(5,) is non-
increasing and left-continuous in o € [0,1],
it holds that

(i) 6 € ¥, and

(i) 04(3,) = min{t > 1] 6(5,t) < a}
(o € (0,1]).

4 Optimal fuzzy stopping times

In this section, we try to construct an op-
timal fuzzy stopping time, by applying an
approach by a-cuts. Now, we define a non-
fuzzy stopping problem specified by C(S), Q.
and R, (o € [0,1]), associated with the fuzzy
stopping problem considered in the preceding
section. For each a € [0,1] and any initial
subset ¢ € C(9), a sequence {¢;}2 C C(9) is
defined by

and

ci=c Cir1 = Qaler) (E>1). (4.1)

Let 3¢ be the family of all maps o : C(S) — N
such that

{o =t} € B(C(S)) foreacht>1. (4.2)

Using this sequence {c¢;};2; given by (4.1)
with ¢1 := ¢, let

@ (c,t) = Z_:Ra(q) for c € C(S). (4.3)
=1
Note that v*(c,0(c)) =

797 R(QL(¢) € C(R) for all o € 5.
The non-fuzzy stopping problem considered
here is to maximize g(¢“(c,0(c))) over all
o € ¥, where g is the weighting function
given in Section 2. A map 7, € ¥ is called
an a-optimal stopping time if

9(¢% (e, 7a(c))) 2 g(#% (e, 0(c)))

In order to characterize a-optimal stopping
times, let

71 (c) == sup g(¢*(c, 0(c))) (4.4)

oEY:
fort > 1 and ¢ € C(9), where ¥, := {o V1|
o € Y1} (t > 1). Then, the next lemma is
given as deterministic versions of the results
for stochastic stopping problems in Chow et

al. [3].

Lemma 4.1

holds that

(cf. [3, Theorems 4.1]). It

¢ (¢) = max{g(¢”(c, 1)), vi41(c)}
(t>1,ceC(S)).

For ¢ € C(S), let 7%(c) be the first time
t > 1 such that g(o%(c, 1)) > 77 (c).

Lemma 4.2 (c.f. [3, Theorem 4.5]). Let

€ [0,1]. Suppose that lim;—,, g(©*(c,t)) =
—oo and supysq ¢(¢®(c,t)) < oo for each
¢ € C(S). Then, T* is a-optimal and 77 (-) =

9@ (5 m2())-

Recently, Kadota et al. [8] discusses the va-
lidity of the one-step look ahead (OLA) policy
for Markov chains with general utility, whose
results are applicable to our problem. For the
OLA stopping time, refer to Ross [14].

for all o € ¥;.



Assumption B (Closedness). For any a €
[0,1], if (¢*(5a:1), 5t,0) € K*(g) for some t,
then (¢p*(5a,t'),51.4) € K(g) for all ¢’ > ¢.

Lemma 4.3. Suppose Assumption B holds.
Then, under the assumption of Lemma 4.2,
a-optimal 7} (c) is represented as

r2(e) = minft € N | (¢ (e, 1), ) € K*(0)),

(4.5)
where K%(g) = {(h,c) € C(R) x C(5) |
g(h) 2 g(h+ Ra(c))}.

For each a € [0,1], applying the above
lemmas, we can find an a-optimal stop-
ping time 77. Assuming the existence of a-
optimal stopping times for each a € [0,1],
let {73 }ae[0,1] be the family of such stopping
times. Here, we try to construct an optimal
fuzzy stopping time from {7} ,¢[0,1]- For this
purpose, we need a regularity condition. In
order to derive our main result, we introduce
the following Assumption C.

Assumption C (Regularity). 77%(3,) is non-
increasing in a € [0, 1].

We can assume the left-continuity of the map
a — T4(5,), by considering limgiq 75 (547)
instead of 73(3,). Define a map 7* : F XN
[0, 1] by

7*(8,t) := sup {a A I{T;(§Q)>t}} (4.6)

a€[0,1]

for all s € F and ¢t € N.

Theorem 4.1. Suppose Assumptions B and
C hold. Then, 7* defined by (4.6) is an 3-
optimal fuzzy stopping time. Further, if g is
additive, i.e.

for ¢, " € C(9),
(4.7)

g(c'+ ") = g() + (<)
then it holds that

(5t +71)=7(5,t) AT (S¢41,7)  (4.8)
for each s € F and t,r € N.

If the regularity does not hold for some
5 € F, the s-optimality of 7" does not fol-

low. But, 7* defined by (4.6) is thought

of as a good fuzzy stopping time. We note
that weighting functions g are usually addi-
tive in the sense of (4.7) (see Fortemps and
Roubens [4]), and (4.8) gives a concrete rep-
resentation of the non-increase in Definition
2(ii).

5 A numerical example

In this section, an example is given to illus-
trate the theoretical results. Let S := [0, 1]
and 0 < 8 < 0.98. the fuzzy relations ¢ and
7 are given by

q(z,y) = (1 - |y — Bz[/100) v 0,

and

z,y € [0,1]

o 1 ifz=2-A
r(z,2) = 0 otherwise

for z € [0,1], z € R, where X is an observa-
tion cost satisfying A > 1/100(1 — 3). Then,
Qo and R, defined by (3.1) and (3.2) are as

follows:

Qa(la,b]) = [Ba - (1 — @), fb+ (1 — a)]

and

Ro([a,b]) = [a — A, b — Al

for 0 < a <b< 1. Now, let ¢ = [a,b] (0
a<b<1)and g(c) =b. Then

o(¢°(e,t) =g (i Ra<cz>)
=1

IN

_ (1=p"bs
R )
where b, :==b—(1—a)/100(1 - 3) and A, =
A= (1-a)/100(1 — B) for a € [0,1]. Let
§(z)=(1—-|8z—4]|)v0 forze[0.1].

Then we see

§_[3—|—a5—0z]
L8 7 8 |

Therefore

ri(52) = [log 2202 fiog ) 41,

—b, log B

where [z] is the largest integer equal to or less
than a real number z. Since § is regular with
respect to {7 }o¢[o,1y Theorem 4.1 gives the
S-optimal fuzzy stopping time 7*.



6 Concluding Remarks

The aim of this paper is to consider an ap-
plication of dynamic fuzzy systems in math-
ematical economics. Then we need to deal
with fuzzy rewards which is a particular no-
tion in fuzzy mathematical economic models,
and the fuzzy rewards for fuzzy stopped sys-
tems are estimated by a scalarization. In
this paper, we move fuzzy stopping times
themselves in a class of fuzzy stopping times
to maximize the fuzzy rewards, and we dis-
cuss the properties of optimal fuzzy stopping
times. This approach is one step of the stud-
ies about the fuzzy stopping. We hope that
the optimization problem will be discussed
from various approaches and will be applied
to many fields of practical applications.
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