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Abstract

In this note a complementary graph in n -th (n ≥ 2) order is defined and discussed
its property. Since it can not be reduced from n -th order to 2-nd, we must consider its
property of n -th order graph separately. We investigate whether similar properties of the
graph arising from 2-nd order case hold or not. A relation to the complete graph K2n and
also to the tree graph associated with the complementary graph are studied.

Keywords : ???

0. Introduction

Let G = (V, E) be a non-directed graph whose vertex set is V and
edge is E . Assume its degree is p and the size is q , that is, |V| = p ,
|E| = q . Here we permit the graph G has multiple edges but there are
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no loops. The definition and notation is usual one so refer to the classical
noted book [7], etc. If the connected graph G has two spanning trees T1

and T2 , which satisfies G = T1 ∪ T2 with T1 ∩ T2 = ∅ , we call the graph
as a 2-nd order complementary tree or the graph has a structure of 2-nd
order complementary.

It is known that Lee [3] applies this complementary graph to the
theory of circuit network firstly and then Kajitani [1] discussed several
dis-cussion in 2-nd order. There are few paper concerning with this topics
however. In this note we will study this notion of complementary tree
from 2-nd order to n -th(n ≥ 2) and investigate their properties.

1. Definition and notations

Definition 1.1. If there exist n spanning trees T1, T2, · · · , Tn in a given
connecting graph G , and each satisfies the following conditions:

(i) G = T1 ∪ T2 ∪ · · · ∪ Tn

(ii) Ti ∩ Tj = ∅ , i 6= j ; i, j = 1, 2, · · · , n ,

then the graph G is called as an n -th order complementary graph.

Example 1. The next graph G is a sample for 2-nd order complementary
graph.

Example 2. The next graph G is a sample for 3-rd order complementary
graph. We note that the 3-rd order graph cannot be reduced to 2-nd one
because the definition require each graph must be a tree.
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Now we will discuss several properties for the n -th order compli-
mentary tree.

Theorem 1.1. For an n-th order complementary graph G = (V, E) with
|V| = p, |E| = q , then it holds that the equality q = n(p − 1) and λ(G) ≥ n
provided λ(G) means the number of connected component for G .

Proof. The concernment is clear from the definition. To prove the equality,
we consider each edge. Since each spanning tree of G has same p − 1
edges, so there are n(p − 1) edges in total. And every vertex connects to
all spanning tree. The least number of cutting edge is n . Therefore the
graph G has n -edges of cutting. Thus the edge connection of G is greater
than n . ¤

Theorem 1.2. The rank r(G) of n-th order complementary graph G equals
r(G) = p − 1 and the nullity µ(G) equals µ(G) = (n − 1)(p − 1) .

Proof. Since G is connected, the incident matrix of G has rank n − 1. So
the rank of G is n − 1. This is also seen from the definition in directly. For
any graph, it is well known that the nullity µ(G) = q − p + ω(G)

where ω(G) denotes the number of components of G . In this note the
complementary graph is assumed to be connected so ω(G) = 1. Hence
µ(G) = q − p + 1. Substitute for q = n(p − 1) , the relation µ(G) =

(n − 1)(p − 1) is obtained. ¤

Theorem 1.3. Every edge of n-th order complementary graph G is contained a
cycle of G :

∀ ei ∈ G ⇒ ∃ Ci , ei ∈ Ci .

Proof. Every edge of G is contained by a spanning tree Ti for some i .
There exists other edge which connecting to it. By adding the edge to the
tree, it becomes loop, that is, a cycle. ¤

Definition 1.2. Let e = xy be an edge connecting between the vertex
x and y in a graph G . The length of edge e becomes shrinking as a
vertex. The graph obtained by this manipulation, it is called a contraction
of G and denoted by G Ä {e} . Similarly G Ä {ei1 , ei2 , · · · , ein} is called
the contraction of n -th order. Alternatively by cutting edges e from the
graph G , it is a removal denoted by expressed as G − {e} and also
G − {ei1 , ei2 , . . . , ein} is the removal of n -th order.
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Example 3. The next figure is a sample of reduction.

Theorem 1.4. For n-th order complementary graph G with multiple edges;
ei1, ei2 , · · · , ein , the reduction G ª {ei1 , ei2 , · · · , ein} of G is also n-th order
complementary graph G.

Proof. By the assumption, let G = T1 ∪ T2 ∪ · · · ∪ Tn with Ti ∩ Tj = ∅ ,
i 6= j ; i, j = 1, 2, · · · , n . Since the number of two connecting vertices is
less than or equal to n , GÄ {ei1 , ei2 , · · · , ein} has no loop. Therefore, for
the edges ei j ∈ Tj , j = 1, 2, · · · , n the contraction T∗

j = Tj Ä {ei j} has
the property ∪ jT∗

j = (∪ jTj) Ä {ei1 , ei2 , · · · , ein} = G Ä {ei1 , ei2 , · · · , ein}

and Ti ∩ Tj = ∅ , i 6= j ; i, j = 1, 2, · · · , n . Thus the assertion holds from
Definition 1.1. ¤

Example 4. The graph G of Example 3 is 3-rd order complementary graph.
The contraction subset Gs of its multiple edge {e1, e2, e3} is also 3-rd order
complementary graph:

2. The case of the complete graph

Now we will discuss the important class of the complete graph is
included by the complementary graph.

Theorem 2.1. The complete graph K2n (n ≥ 2) is also n-th order complemen-
tary graph.

Proof. We will prove it by a mathematical induction. For n = 2, the graph
K2×2 = K4 is seen to be a 2-nd order complementary graph immediately.
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Assume the case of n = k holds. That is, there exist k spanning
tree T1, T2, · · · , Tk with the property K2k = T1 ∪ T2 ∪ · · · ∪ Tk and they
are satisfy Ti ∩ Tj = ∅ , i 6= j , i, j = 1, 2, · · · , k . Let u, v be two
vertices in the complete graph K2(k+1) and others are simply denoted by
1, 2, · · · , 2k . Since the graph is complete, each u, v connects to other 2k
vertices. So the edges connecting between u and 1, 2, · · · , 2k are denoted
by eu,1, eu,2, · · · , eu,2k , and similarly the edges connecting between v and
1, 2, · · · , 2k are denoted by ev,1, ev,2, · · · , ev,2k . The edge eu,v is between u
and v .

By the assumption the removed graph K2k = K2(k+1) − {u, v} is k -
th order complementary graph, there exists k spanning tree T ′

1, T′
2, · · · , T′

k
and these satisfy that T′

1 ∪ T′
2 ∪ · · · ∪ T′

k = K2k = K2(k+1) − {u, v} and
T′

i ∩ T′
j = ∅ , i 6= j ; i, j = 1, 2, · · · , k .

If we introduce a new tree Ti = T′
i ∪ {eu,2i−1, ev,2i} , i = 1, 2, · · · , k

and by letting Tk+1 = {eu,2, ev,3, · · · , eu,2k−2, ev,2k−1, eu,2k , ev,1, eu,v} , then
Definition 1.1 imply that K2(k+1) is a k + 1-th order complementary tree.
Therefore, for arbitrary n ∈ N , we have proved that K2n is n -th order
complementary graph. ¤

The next graph denotes a complete graph corresponding 3-rd order
complementary graph.

Corollary 2.2. For the complete graph K2n+1 , there exist n spanning trees
T1, T2, · · · , Tn with Ti ∩ Tj = ∅ , i 6= j ; i, j = 1, 2, · · · , n. Also there exists
a spanning tree T which distance equals d(T ∩ Ti) = p − 2 for each Ti and
|T ∩ Ti| = 1 simultaneously.
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Proof. Let ω be an arbitrary vertex in the complete graph K2(n+1) and
other 2n vertices are denoted by 1, 2, · · · , 2n . In this case the removal
T2n+1 − {ω} = K2n is a complete graph. By the previous Theorem 2.1,
there exist n spanning trees T′

1, T′
2, · · · , T′

n which satisfy T′
1 ∪ T′

2 ∪ · · · ∪

T′
n = K2n and T′

i ∩ T′
j = ∅ , i 6= j ; i, j = 1, 2, · · · , n .

Denote each edge between a vertex ω and vertices 1, 2, · · · , 2n by
eω,1, eω,2, · · · , eω,2n respectively, each graph Ti = T′

i ∪ {eω,i−1} is n
spanning trees of K2(n+1) . Also Ti ∩ Tj 6= ∅ , i 6= j ; i, j = 1, 2, · · · , n
hold and T = {eω,1, eω,2, · · · , eω,2n} is a spanning trees of K2(n+1) too.
See the following figure.

Note that T ∩ Ti = {e2i−1} , i = 1, 2, · · · , n . Thus d(T, Ti) = 2n − 1 =

p − 2 holds, where d(T, Ti) = 1
2 N(T ⊕ Ti) , where N(T ⊕ Ti) = |T4Ti| =

|(T ∪ Ti) \ (T ∩ Ti)| means a symmetrical difference T and Ti . ¤

3. Relation to a tree graph

The relation between a tree graph and a complementary tree is known
[7]. First the definition of a tree graph corresponding to a graph is given.

Definition 3.1. The tree graph corresponding to a given graph G = (V, E)

is a graph denoted by T(G) = (Vt, Et) and their vertices and edges are
defined as follows: Each vertex vtk of T(G) has one to one correspond
to each of a spanning tree Tk in G , and two vertices vti , vt j ∈ Vt

has a distance d(vti , vt j) = 1 provided that these are adjoining and
non-directed. The distance between vertices is defined by d(T, Ti) =
1
2 N(T ⊕ Ti) , where N(T ⊕ Ti) = |T4Ti| = |(T ∪ Ti) \ (T ∩ Ti)| means
a symmetrical difference T and Ti .

Example 5. The next Ti , i = 1, 2, · · · , 5 illustrates all of spanning trees for
G = (V, E) and its tree graph T(G) = (Vt, Et) .
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The next theorem is a characterization of 2-nd order complementary
graph by its tree graph. However we see that it is unknown for case of
n -th (n ≥ 3) order. Example 6 is a counterexample of general case.

Theorem 3.1. Let there are p vertices and 2(p − 1) edges in the graph
G = (V, E) . The necessarily and sufficient condition to be G = (V, E) a 2 -nd
order complementary graph is that there exists pairing vertices vi , v j in the tree
graph T(G) = (Vt, Et) for G = (V, E) and the shortest length between them is
equal to p − 1 .

Proof. “Sufficiency”: Let vi , v j are adjoin two vertices in a tree graph
T(G) which is corresponding to a graph G . Since the shortest length
of path is p − 1, their connecting path vi − v j is written as P =

vivi1 , · · · , vip−2 v j . From Definition 3.1, there exist p spanning trees
Ti , Ti1 , · · · , Tip−2 Tj and they correspond to vi , vi1 , · · · , vip−2 , v j of the
vertices in P(G) . Also, by the same Definition 3.1, d(Ti , Ti1) = 1,
d(Ti1 , Ti2) = 1, · · · , d(Tip−n , Ti j) = 1 hold. Since the length from vi to v j is
p − 1, d(Ti , Tik ) ≥ k , k = 1, 2, · · · , p − 2. Thus we have d(Ti , Tj) = p − 1.
Clearly the number of edges in G equals 2(p − 1) , so Ti ∩ Tj = G and
Ti ∩ Tj = ∅ . Therefore G = (V, E) is a 2-complementary tree.

“Necessity”: If G = (V, E) is 2-nd order complementary graph, there exist
two spanning trees T1, T2 such that T1 ∩ T2 = G and T1 ∩ T2 = ∅ . By
converting the edge of trees, we associate with other p − 2 spanning trees
Ti1 , · · · , Tip−2 . Thus T1, Ti1 , · · · , Tip−2 , T2 and d(T1, Ti1)= 1, d(Ti1 , Ti2)= 1,
d(T1, Ti2) = 1, d(Tip−2 , T2) = 1, d(T1, T2) = 1 are hold. For a tree graph
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T(G) of G , there is a pairing vertex v1, v2 . Thus there is a shortest path of
length p − 1 from v1 to v2 . ¤

As a remark of this theorem, the above assertion does not hold in
general because the following example shows.

Example 6. The figure G has p = 3 vertices and 3(p − 1) edges. This
graph is not 3-complementary. But its tree graph T(G) has the shortest
length p − 1 = 2 from v1 to v8 .

The next theorem is a partial answer for characterization of n -th
order complementary graph by using the tree graph.

Theorem 3.2. There is an n-th order complementary graph for the tree graph
T(C2n) where C2n is a cycle of order 2n.

Proof. Since C2n has 2n spanning trees, and the distance with each others
equal 1, so T(C2n) and K2n is equivalent. Theorem 2.1 implies that T(C2n)

is n -th order complementary graph. ¤

From this Theorem 3.2, we can prove the following corollary:

Corollary 3.3. If G is simple, the tree graph T(G) which number of vertices is
n(≥ 3) contains Kn as its subgraph.

Proof. The graph G is connected however it is not tree, so it contains a
cycle of the length at least three. Similarly the distance between them in
the cycle equals one. Therefore at least three vertices of T(G) are adjoined
with each other. ¤

The next figure shows eight vertices of a tree graph T(G) which
contain K3 and K4 .
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Corollary 3.4. If G is a simple graph, there are no tree graphs which consists of
only two vertices.

Proof. Assume that if there exist a tree graph with two vertices. Then the
graph G has two spanning trees. This is impossible. ¤

Corollary 3.5. For n > 3 , the tree graph T(Cn) contains
⌊

n
2

⌋

-th order comple-

mentary graph where the notation bxc denotes the gamester integer ≤ x.

Proof. When n = 2k , a tree graph T(G) has k -complementary graph by
Theorem 3.2. If n = 2k + 1, T(G) contains k -complementary graph by
Corollary 3.3. These complete the proof. ¤
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