# A note on properties for a complementary graph and its tree graph 

Abulimiti Yiming*<br>Department of Mathematics<br>Institute of Mathematics $\mathcal{E}$ Informations<br>Xinjiang Normal University<br>China<br>Masami Yasuda ${ }^{\dagger}$<br>Department of Mathematics $\mathcal{E}$ Informations<br>Faculty of Science<br>Chiba University<br>Chiba, 263-8522<br>Japan


#### Abstract

In this note a complementary graph in $n$-th $(n \geq 2)$ order is defined and discussed its property. Since it can not be reduced from $n$-th order to 2 -nd, we must consider its property of $n$-th order graph separately. We investigate whether similar properties of the graph arising from 2 -nd order case hold or not. A relation to the complete graph $K_{2 n}$ and also to the tree graph associated with the complementary graph are studied.


Keywords: ???

## 0. Introduction

Let $G=(V, E)$ be a non-directed graph whose vertex set is $V$ and edge is $E$. Assume its degree is $p$ and the size is $q$, that is, $|V|=p$, $|E|=q$. Here we permit the graph $G$ has multiple edges but there are

[^0]
## Journal of Discrete Mathematical Sciences E Cryptography

Vol. ( ), No. , pp. 1-9
(C) Taru Publications
no loops. The definition and notation is usual one so refer to the classical noted book [7], etc. If the connected graph $G$ has two spanning trees $T_{1}$ and $T_{2}$, which satisfies $G=T_{1} \cup T_{2}$ with $T_{1} \cap T_{2}=\emptyset$, we call the graph as a 2-nd order complementary tree or the graph has a structure of 2-nd order complementary.

It is known that Lee [3] applies this complementary graph to the theory of circuit network firstly and then Kajitani [1] discussed several dis-cussion in 2-nd order. There are few paper concerning with this topics however. In this note we will study this notion of complementary tree from 2-nd order to $n$-th $(n \geq 2)$ and investigate their properties.

## 1. Definition and notations

Definition 1.1. If there exist $n$ spanning trees $T_{1}, T_{2}, \cdots, T_{n}$ in a given connecting graph $G$, and each satisfies the following conditions:
(i) $G=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$
(ii) $T_{i} \cap T_{j}=\emptyset, i \neq j ; i, j=1,2, \cdots, n$,
then the graph $G$ is called as an $n$-th order complementary graph.
Example 1. The next graph $G$ is a sample for 2-nd order complementary graph.

$G=(V, E)$

$T_{1}$

$T_{2}$

Example 2. The next graph $G$ is a sample for 3-rd order complementary graph. We note that the 3-rd order graph cannot be reduced to 2 -nd one because the definition require each graph must be a tree.

$G=(V, E)$

$T_{1}$

$T_{2}$

$T_{3}$

Now we will discuss several properties for the $n$-th order complimentary tree.

Theorem 1.1. For an $n$-th order complementary graph $G=(V, E)$ with $|V|=p,|E|=q$, then it holds that the equality $q=n(p-1)$ and $\lambda(G) \geq n$ provided $\lambda(G)$ means the number of connected component for $G$.

Proof. The concernment is clear from the definition. To prove the equality, we consider each edge. Since each spanning tree of $G$ has same $p-1$ edges, so there are $n(p-1)$ edges in total. And every vertex connects to all spanning tree. The least number of cutting edge is $n$. Therefore the graph $G$ has $n$-edges of cutting. Thus the edge connection of $G$ is greater than $n$.

Theorem 1.2. The rank $r(G)$ of $n$-th order complementary graph $G$ equals $r(G)=p-1$ and the nullity $\mu(G)$ equals $\mu(G)=(n-1)(p-1)$.

Proof. Since $G$ is connected, the incident matrix of $G$ has rank $n-1$. So the rank of $G$ is $n-1$. This is also seen from the definition in directly. For any graph, it is well known that the nullity $\mu(G)=q-p+\omega(G)$ where $\omega(G)$ denotes the number of components of $G$. In this note the complementary graph is assumed to be connected so $\omega(G)=1$. Hence $\mu(G)=q-p+1$. Substitute for $q=n(p-1)$, the relation $\mu(G)=$ $(n-1)(p-1)$ is obtained.

Theorem 1.3. Every edge of $n$-th order complementary graph $G$ is contained a cycle of $G$ :

$$
\forall e_{i} \in G \Rightarrow \exists C_{i}, e_{i} \in C_{i}
$$

Proof. Every edge of $G$ is contained by a spanning tree $T_{i}$ for some $i$. There exists other edge which connecting to it. By adding the edge to the tree, it becomes loop, that is, a cycle.

Definition 1.2. Let $e=x y$ be an edge connecting between the vertex $x$ and $y$ in a graph $G$. The length of edge $e$ becomes shrinking as a vertex. The graph obtained by this manipulation, it is called a contraction of $G$ and denoted by $G \ominus\{e\}$. Similarly $G \ominus\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{n}}\right\}$ is called the contraction of $n$-th order. Alternatively by cutting edges $e$ from the graph $G$, it is a removal denoted by expressed as $G-\{e\}$ and also $G-\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right\}$ is the removal of $n$-th order.

Example 3. The next figure is a sample of reduction.


$G \ominus\left\{e_{1}\right\}$

$G \ominus\left\{e_{1}, e_{2}\right\}$

Theorem 1.4. For $n$-th order complementary graph $G$ with multiple edges; $e_{i 1}, e_{i_{2}}, \cdots, e_{i_{n}}$, the reduction $G \ominus\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{n}}\right\}$ of $G$ is also $n$-th order complementary graph $G$.

Proof. By the assumption, let $G=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ with $T_{i} \cap T_{j}=\emptyset$, $i \neq j ; i, j=1,2, \cdots, n$. Since the number of two connecting vertices is less than or equal to $n, G \oplus\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{n}}\right\}$ has no loop. Therefore, for the edges $e_{i_{j}} \in T_{j}, j=1,2, \cdots, n$ the contraction $T_{j}^{*}=T_{j} \Theta\left\{e_{i j}\right\}$ has the property $\cup_{j} T_{j}^{*}=\left(\cup_{j} T_{j}\right) \oplus\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{n}}\right\}=G \ominus\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{n}}\right\}$ and $T_{i} \cap T_{j}=\emptyset, i \neq j ; i, j=1,2, \cdots, n$. Thus the assertion holds from Definition 1.1.

Example 4. The graph $G$ of Example 3 is 3-rd order complementary graph. The contraction subset $G_{s}$ of its multiple edge $\left\{e_{1}, e_{2}, e_{3}\right\}$ is also 3-rd order complementary graph:


## 2. The case of the complete graph

Now we will discuss the important class of the complete graph is included by the complementary graph.

Theorem 2.1. The complete graph $K_{2 n}(n \geq 2)$ is also $n$-th order complementary graph.

Proof. We will prove it by a mathematical induction. For $n=2$, the graph $K_{2 \times 2}=K_{4}$ is seen to be a 2-nd order complementary graph immediately.


Assume the case of $n=k$ holds. That is, there exist $k$ spanning tree $T_{1}, T_{2}, \cdots, T_{k}$ with the property $K_{2 k}=T_{1} \cup T_{2} \cup \cdots \cup T_{k}$ and they are satisfy $T_{i} \cap T_{j}=\emptyset, i \neq j, i, j=1,2, \cdots, k$. Let $u, v$ be two vertices in the complete graph $K_{2(k+1)}$ and others are simply denoted by $1,2, \cdots, 2 k$. Since the graph is complete, each $u, v$ connects to other $2 k$ vertices. So the edges connecting between $u$ and $1,2, \cdots, 2 k$ are denoted by $e_{u, 1}, e_{u, 2}, \cdots, e_{u, 2 k}$, and similarly the edges connecting between $v$ and $1,2, \cdots, 2 k$ are denoted by $e_{v, 1}, e_{v, 2}, \cdots, e_{v, 2 k}$. The edge $e_{u, v}$ is between $u$ and $v$.

By the assumption the removed graph $K_{2 k}=K_{2(k+1)}-\{u, v\}$ is $k$ th order complementary graph, there exists $k$ spanning tree $T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{k}^{\prime}$ and these satisfy that $T_{1}^{\prime} \cup T_{2}^{\prime} \cup \cdots \cup T_{k}^{\prime}=K_{2 k}=K_{2(k+1)}-\{u, v\}$ and $T_{i}^{\prime} \cap T_{j}^{\prime}=\emptyset, i \neq j ; i, j=1,2, \cdots, k$.

If we introduce a new tree $T_{i}=T_{i}^{\prime} \cup\left\{e_{u, 2 i-1}, e_{v, 2 i}\right\}, i=1,2, \cdots, k$ and by letting $T_{k+1}=\left\{e_{u, 2}, e_{v, 3}, \cdots, e_{u, 2 k-2}, e_{v, 2 k-1}, e_{u, 2 k}, e_{v, 1}, e_{u, v}\right\}$, then Definition 1.1 imply that $K_{2(k+1)}$ is a $k+1$-th order complementary tree. Therefore, for arbitrary $n \in N$, we have proved that $K_{2 n}$ is $n$-th order complementary graph.

The next graph denotes a complete graph corresponding 3-rd order complementary graph.

$K_{2 \cdot 3}=K_{6}$

$T_{1}$

$T_{2}$

$T_{3}$

Corollary 2.2. For the complete graph $K_{2 n+1}$, there exist $n$ spanning trees $T_{1}, T_{2}, \cdots, T_{n}$ with $T_{i} \cap T_{j}=\emptyset, i \neq j ; i, j=1,2, \cdots, n$. Also there exists a spanning tree $T$ which distance equals $d\left(T \cap T_{i}\right)=p-2$ for each $T_{i}$ and $\left|T \cap T_{i}\right|=1$ simultaneously.

Proof. Let $\omega$ be an arbitrary vertex in the complete graph $K_{2(n+1)}$ and other $2 n$ vertices are denoted by $1,2, \cdots, 2 n$. In this case the removal $T_{2 n+1}-\{\omega\}=K_{2 n}$ is a complete graph. By the previous Theorem 2.1, there exist $n$ spanning trees $T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{n}^{\prime}$ which satisfy $T_{1}^{\prime} \cup T_{2}^{\prime} \cup \cdots \cup$ $T_{n}^{\prime}=K_{2 n}$ and $T_{i}^{\prime} \cap T_{j}^{\prime}=\emptyset, i \neq j ; i, j=1,2, \cdots, n$.

Denote each edge between a vertex $\omega$ and vertices $1,2, \cdots, 2 n$ by $e_{\omega, 1}, e_{\omega, 2}, \cdots, e_{\omega, 2 n}$ respectively, each graph $T_{i}=T_{i}^{\prime} \cup\left\{e_{\omega, i-1}\right\}$ is $n$ spanning trees of $K_{2(n+1)}$. Also $T_{i} \cap T_{j} \neq \emptyset, i \neq j ; i, j=1,2, \cdots, n$ hold and $T=\left\{e_{\omega, 1}, e_{\omega, 2}, \cdots, e_{\omega, 2 n}\right\}$ is a spanning trees of $K_{2(n+1)}$ too. See the following figure.


Note that $T \cap T_{i}=\left\{e_{2 i-1}\right\}, i=1,2, \cdots, n$. Thus $d\left(T, T_{i}\right)=2 n-1=$ $p-2$ holds, where $d\left(T, T_{i}\right)=\frac{1}{2} N\left(T \oplus T_{i}\right)$, where $N\left(T \oplus T_{i}\right)=\left|T \triangle T_{i}\right|=$ $\left|\left(T \cup T_{i}\right) \backslash\left(T \cap T_{i}\right)\right|$ means a symmetrical difference $T$ and $T_{i}$.

## 3. Relation to a tree graph

The relation between a tree graph and a complementary tree is known [7]. First the definition of a tree graph corresponding to a graph is given.
Definition 3.1. The tree graph corresponding to a given graph $G=(V, E)$ is a graph denoted by $T(G)=\left(V_{t}, E_{t}\right)$ and their vertices and edges are defined as follows: Each vertex $v_{t k}$ of $T(G)$ has one to one correspond to each of a spanning tree $T_{k}$ in $G$, and two vertices $v_{t i}, v_{t j} \in V_{t}$ has a distance $d\left(v_{t i}, v_{t j}\right)=1$ provided that these are adjoining and non-directed. The distance between vertices is defined by $d\left(T, T_{i}\right)=$ $\frac{1}{2} N\left(T \oplus T_{i}\right)$, where $N\left(T \oplus T_{i}\right)=\left|T \triangle T_{i}\right|=\left|\left(T \cup T_{i}\right) \backslash\left(T \cap T_{i}\right)\right|$ means a symmetrical difference $T$ and $T_{i}$.

Example 5. The next $T_{i}, i=1,2, \cdots, 5$ illustrates all of spanning trees for $G=(V, E)$ and its tree graph $T(G)=\left(V_{t}, E_{t}\right)$.


$$
G=(V, E)
$$


$T_{4}$

$T_{1}$

$T_{5}$

$T_{2}$

$G=\left(V_{t}, E_{t}\right)$

The next theorem is a characterization of 2-nd order complementary graph by its tree graph. However we see that it is unknown for case of $n$-th $(n \geq 3)$ order. Example 6 is a counterexample of general case.
Theorem 3.1. Let there are $p$ vertices and $2(p-1)$ edges in the graph $G=(V, E)$. The necessarily and sufficient condition to be $G=(V, E)$ a 2 -nd order complementary graph is that there exists pairing vertices $v_{i}, v_{j}$ in the tree graph $T(G)=\left(V_{t}, E_{t}\right)$ for $G=(V, E)$ and the shortest length between them is equal to $p-1$.

Proof. "Sufficiency": Let $v_{i}, v_{j}$ are adjoin two vertices in a tree graph $T(G)$ which is corresponding to a graph $G$. Since the shortest length of path is $p-1$, their connecting path $v_{i}-v_{j}$ is written as $P=$ $v_{i} v_{i_{1}}, \cdots, v_{i_{p-2}} v_{j}$. From Definition 3.1, there exist $p$ spanning trees $T_{i}, T_{i_{1}}, \cdots, T_{i_{p-2}} T_{j}$ and they correspond to $v_{i}, v_{i_{1}}, \cdots, v_{i_{p-2}}, v_{j}$ of the vertices in $P(G)$. Also, by the same Definition 3.1, $d\left(T_{i}, T_{i_{1}}\right)=1$, $d\left(T_{i_{1}}, T_{i_{2}}\right)=1, \cdots, d\left(T_{i_{p-n}}, T_{i_{j}}\right)=1$ hold. Since the length from $v_{i}$ to $v_{j}$ is $p-1, d\left(T_{i}, T_{i_{k}}\right) \geq k, k=1,2, \cdots, p-2$. Thus we have $d\left(T_{i}, T_{j}\right)=p-1$. Clearly the number of edges in $G$ equals $2(p-1)$, so $T_{i} \cap T_{j}=G$ and $T_{i} \cap T_{j}=\emptyset$. Therefore $G=(V, E)$ is a 2-complementary tree.
"Necessity": If $G=(V, E)$ is 2-nd order complementary graph, there exist two spanning trees $T_{1}, T_{2}$ such that $T_{1} \cap T_{2}=G$ and $T_{1} \cap T_{2}=\emptyset$. By converting the edge of trees, we associate with other $p-2$ spanning trees $T_{i_{1}}, \cdots, T_{i_{p-2}}$. Thus $T_{1}, T_{i_{1}}, \cdots, T_{i_{p-2}}, T_{2}$ and $d\left(T_{1}, T_{i_{1}}\right)=1, d\left(T_{i_{1}}, T_{i_{2}}\right)=1$, $d\left(T_{1}, T_{i_{2}}\right)=1, d\left(T_{i_{p-2}}, T_{2}\right)=1, d\left(T_{1}, T_{2}\right)=1$ are hold. For a tree graph
$T(G)$ of $G$, there is a pairing vertex $v_{1}, v_{2}$. Thus there is a shortest path of length $p-1$ from $v_{1}$ to $v_{2}$.

As a remark of this theorem, the above assertion does not hold in general because the following example shows.

Example 6. The figure $G$ has $p=3$ vertices and $3(p-1)$ edges. This graph is not 3-complementary. But its tree graph $T(G)$ has the shortest length $p-1=2$ from $v_{1}$ to $v_{8}$.


G

$T=(G)$

The next theorem is a partial answer for characterization of $n$-th order complementary graph by using the tree graph.

Theorem 3.2. There is an $n$-th order complementary graph for the tree graph $T\left(C_{2 n}\right)$ where $C_{2 n}$ is a cycle of order $2 n$.

Proof. Since $C_{2 n}$ has $2 n$ spanning trees, and the distance with each others equal 1, so $T\left(C_{2 n}\right)$ and $K_{2 n}$ is equivalent. Theorem 2.1 implies that $T\left(C_{2 n}\right)$ is $n$-th order complementary graph.

From this Theorem 3.2, we can prove the following corollary:
Corollary 3.3. If $G$ is simple, the tree graph $T(G)$ which number of vertices is $n(\geq 3)$ contains $K_{n}$ as its subgraph.

Proof. The graph $G$ is connected however it is not tree, so it contains a cycle of the length at least three. Similarly the distance between them in the cycle equals one. Therefore at least three vertices of $T(G)$ are adjoined with each other.

The next figure shows eight vertices of a tree graph $T(G)$ which contain $K_{3}$ and $K_{4}$.


Corollary 3.4. If $G$ is a simple graph, there are no tree graphs which consists of only two vertices.

Proof. Assume that if there exist a tree graph with two vertices. Then the graph $G$ has two spanning trees. This is impossible.

Corollary 3.5. For $n>3$, the tree graph $T\left(C_{n}\right)$ contains $\left\lfloor\frac{n}{2}\right\rfloor$-th order complementary graph where the notation $\lfloor x\rfloor$ denotes the gamester integer $\leq x$.

Proof. When $n=2 k$, a tree graph $T(G)$ has $k$-complementary graph by Theorem 3.2. If $n=2 k+1, T(G)$ contains $k$-complementary graph by Corollary 3.3. These complete the proof.

## References

[1] Y. Kakitani, Graph Theory for Networks (in Japanese), Shokodo Co. Ltd., Tokyo, Japan, 1979.
[2] D. J. Kleitman, More complementary tree graphs, Discrete Math., Vol. 15 (1976), pp. 373-378.
[3] H. B. Lee, On the differing abilities of RL structure to realize natural frequencies, IEEE Trans. Circuit Theory, Vol. CT-12 (1965), pp. 365373.
[4] P. M. Lin, Complementary trees in circuit theory, IEEE Trans. Circuit and Systems, Vol. CAS-27 (1980), pp. 921-928.
[5] B. L. Liu, 2-complementary tree graph (Chinese), J. South China Normal Univ. Natur. Sci. Ed., Vol. 8 (1988), pp. 18-23.
[6] U. G. Rothblum, On the number of complementary tree in a graph, Discrete Math., Vol. 15 (1976), pp. 359-371.
[7] R. J. Wilson, Introduction to Graph Theory, 2nd edn., Academic Press, New York, 1979.


[^0]:    *E-mail: ablimit1@hotmail.com
    ${ }^{\dagger}$ E-mail: yasuda@math.s.chiba-u.ac.jp

