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Abstract

In this paper, the average cases of Markov decision processes with uncertainty
is considered. That is, a controlled Markov set-chain model with a finite state and
action space is developed by an interval arithmetic analysis, and we will find a Pareto
optimal policy which maximizes the average expected rewards over all stationary
policies under a new partial order. The Pareto optimal policies is characterized
by a maximal solution of an optimality equation which is derived from the model.
Also, a maximin policy is obtained and shown to be Pareto-optimal. A numerical
example is given.
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1 Introduction and notations

In a real application of Markov decision processes(MDP’s in short, cf.[7, 10, 15]), the
require data must be estimated. Thus, the mathematical model of MDPs can be only be
viewed as approximations. It may be useful that the model is ameliorated so to be more
”robust” in the sense that it’s reasonably efficient in rough approximations. How can be
modelized this situation? One of a realistic way to answer such a problem is to use certain
intervals containing the required data.

Applying Hartfiel’s[5, 6] interval method for Markov chains, Kurano et al[13] has
introduced a decision model, called a controlled Markov set-chain, which is robust for
rough approximation of the transition matrix in MDPs. The discounted reward problems
was developed in [12, 13] and the non-discounted case had been discussed in [8]. However,
the functional characterization of optimal policies for average reward problems is not given
yet.

In this paper, applying an interval arithmetic analysis, the average case of MDPs with
uncertainty is considered. That is, in a controlled Markov set-chain with finite state and
action spaces, we will find a Pareto optimal policy which maximizes the average expected
rewards over all stationary policies under some partial order.
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Analyzing the behavior of the expected rewards over T -horizon as T approaches ∞
under some regularity condition, the average expected rewards corresponding to any sta-
tionary policy is given as a unique solution of an interval equation. Also, Pareto optimal
policies are characterized by a maximal solution of an optimality equation determined by
the decision model.

Concerning about a Pareto optimal policy, we will consider a maximin policy, which
maximizes the expected average reward in the worst cases scenarios for the decision pro-
cess. Takahashi[17, 18] has introduced a weak D-Markov chain in order to treat bounds
for state probabilities of aggregated chains in the large scale Markov chains and applied
to tandem queueing networks. The results are closely related to ours and we will clear it
in the sequel.

In the remainder of this section, we shall give some notation referring to the works
[4, 5, 6] on Markov set-chain and an interval arithmetic by [14] and formulate a controlled
Markov set-chain which will be examined in the sequel.

Let R, Rn and Rn×m be the sets of real numbers, real n- dimensional column vectors
and real n×m matrices, respectively. We shall identify n× 1 matrices with vectors and
1× 1 matrices with real numbers, so that R = R1×1 and Rn = Rn×1. Also, we denote by
R+, Rn

+ and Rn×m
+ the subsets of entrywise non-negative elements in R, Rn and Rn×m,

respectively.
We equip Rn×m with the component-wise relations ≤, <,≥, >. For any A = (aij), A =

(aij) in Rn×m
+ with A ≤ A, we define the set of stochastic matrices, 〈A,A〉, by

〈A,A〉 := {A | A = (aij) isan n×m stochasticmatrixwith A ≤ A ≤ A},
Let

Mn := {A = 〈A,A〉 | 〈A,A〉 6= ∅, A ≤ A and A, A ∈ Rn×n
+ }.

The product of A and B ∈Mn is defined by

AB := {AB | A ∈ A, B ∈ B}.
For any sequence {Ai}∞i=1 with Ai ∈ Mn (i ≥ 1), we define the multiproduct inductively
by

A1A2 · · · Ak := (A1 · · · Ak−1)Ak (k ≥ 2).

Denote by C(R+) the set of all bounded and closed intervals in R+. Let C(R+)n be the
set of all n-dimensional column vectors whose elements are in C(R+), i.e.,

C(R+)n := {D = (D1, D2, · · · , Dn)′ | Di ∈ C(R+)(1 ≤ i ≤ n)}.
where d′ denotes the transpose of a vector d.

The following arithmetics are used in Section 2. For D = (D1, D2, · · · , Dn)′, E =
(E1, E2, · · · , En)′ ∈ C(R+)n, h ∈ Rn

+ and λ ∈ R+, D + E = {d + e | d ∈ D, e ∈ E}, λD =

{λd | d ∈ D} and h + D = {h + d | d ∈ D}. If D = ([d1, d1], · · · , [dn, dn])′, D will be
denoted by D = [ d, d ], where d = (d1, · · · , dn)′, d = (d1, · · · , dn)′ and [ d, d ] = {d ∈
Rn

+ | d ≤ d ≤ d}.
For any D = (D1, D2, · · · , Dn)′ ∈ C(R+)n and subset G of R1×n

+ the product of G and
D is defined as

GD := {gd | g = (g1, · · · , gn) ∈ G, d = (d1, · · · , dn)′ ∈ D, di ∈ Di(1 ≤ i ≤ n)}.
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The following results are used in the sequel.

Lemma 1.1 ([6, 13])

(i) Any A ∈Mn is a convex polytope in the vector space Rn×n.

(ii) For any compact convex subset G ⊂ R1×n
+ and D = (D1, D2, · · · , Dn)′ ∈ C(R+)n, it

holds GD ∈ C(R+).

We will give a partial order Â,º on C(R+) by the definition : For [c1, c2], [d1, d2] ∈
C(R+),

[c1, c2] º [d1, d2] if c1 ≥ d1, c2 ≥ d2,

and
[c1, c2] Â [d1, d2] if [c1, c2] º [d1, d2] and [c1, c2] 6= [d1, d2].

For v = (v1, v2, · · · , vn)′ and w = (w1, w2, · · · , wn)′ ∈ C(R+)n, we write v º w (by abase
of notation) if vi º wi, 1 ≤ i ≤ n and v Â w if v º w and v 6= w. Define a metric ∆
on C(R+)n by

∆(v, w) := max
i∈S

δ(vi, wi)

for v = (v1, v2, · · · , vn)′,w = (w1, w2, · · · , wn)′ ∈ C(R+)n, where δ is the Hausdorff metric
on C(R+) and given by

δ([a, b], [c, d]) := |a− c| ∨ |b− d| for [a, b], [c, d] ∈ C(R+),

where x ∨ y = max{x, y}. Obviously, (C(R+)n, ∆) is a complete metric space.
A controlled Markov set-chain consists of four object:

(S,A, q, q, r),

where S = {1, 2, · · · , n} and A = {1, 2, · · · , k} are finite sets and for each (i, a) ∈ S ×
A, q = q(·|i, a) ∈ R1×n

+ , q = q(·|i, a) ∈ R1×n
+ with q ≤ q and 〈q, q〉 6= ∅ and r = r(i, a) a

function on S × A with r ≥ 0. Note that A is used as the set in this section, different
from that in the previous section. We interpret S as the set of states of some system, and
A as the set of actions available at each state.

When the system is in state i ∈ S and we take action a ∈ A, we move to a new state
j ∈ S selected according to the probability distribution on S, q(·|i, a), and we receive
an immediate return, r(i, a), where we know only that q(·|i, a) is arbitrarily chosen from
〈q(·|i, a), q(·|i, a)〉. This process is then repeated from the new state j. Denote by F the
set of functions from S to A.

A policy π is a sequence (f1, f2, · · · ) of functions with ft ∈ F, (t ≥ 1). Let Π denote
the class of policies. We denote by f∞ the policy (h1, h2, · · · ) with ht = f for all t ≥ 1
and some f ∈ F . Such a policy is called stationary, denoted simply by f , and the set of
stationary policies is denoted by ΠF .

We associate with each f ∈ F the n-dimensional column vector r(f) ∈ Rn
+ whose

i-th element is r(i, f(i)) and the set of stochastic matrices Q(f) := 〈Q(f), Q(f)〉 ∈ Mn,

where the (i, j) elements of Q(f) and Q(f) are q(j|i, f(i)) and q(j|i, f(i)), respectively,

and 〈Q(f), Q(f)〉 is already defined.
For any π = (f1, f2, · · · ) ∈ Π, let v1(π) = r(f1) and, by setting Q0 = identity,

vT (π) = {ΣT
i=1Q1Q2 · · ·Qt−1r(ft) | Qi ∈ Q(fi), i = 1, 2, · · · , T − 1} (T ≥ 2). (1.1)
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We observe, for example, that

v3(π) = r(f1) +Q(f1)(r(f2) +Q(f2)r(f3)),

so that by Lemma 1.1 (ii) it holds that vT (π) ∈ C(R+)n for all T ≥ 1. For any π ∈ Π, let

v(π) := lim inf
T→∞

1

T
vT (π), (1.2)

where, for a sequence {Dk} ⊂ C(R+)n,

lim inf
k→∞

Dk :=

{
x ∈ Rn

∣∣∣∣lim sup
k→∞

δ1(x,Dk) = 0

}
,

and δ1(x,D) := infy∈D δ2(x, y), δ2 is a metric in Rn. Since v(π) ∈ C(R+)n, v(π) is written
as v(π) = [v(π), v(π)].

Definition. A policy f ∗ ∈ ΠF is called Pareto optimal if there does not exist f ∈ ΠF

such that v(f ∗) ≺ v(f).

In the above definition, we confine ourselves to the stationary policies, which simplifies
our discussion in the sequel. In Section 2, a regularity condition for the class of transition
matrices is introduced, under which the interval equations concerning the average rewards
are investigated. In Section 3, the asymptotic behavior of vT (f) as T approaches ∞ is
given. And in Section 4, Pareto optimal policies are characterized by maximal solutions
of optimality equation. Also, a maximin policy which maximizes the expected reward
earned in the worst cases scenarios is given and shown to be Pareto optimal.

2 Assumption and preliminary lemmas

Henceforth, the following assumption will remain operative.

Assumption A (Primitivity). For any f ∈ F , each Q ∈ Q(f) is primitive, i.e., Qt >
0 for some t ≥ 1.

Obviously, if Q(f) is primitive in the sense of non-negative matrix ( cf.[16]), Assump-
tion A holds.

The following facts on Markov matrices are well-known (cf.[2, 11]).

Lemma 2.1 For any f ∈ F , let Q be any matrix in Q(f).

(i) The sequence (I + Q + · · ·+ Qt)/(t + 1) converges as t →∞ to a stochastic matrix
Q∗ with Q∗Q = Q∗, Q∗ > 0 and rank(Q∗) = 1.

(ii) The matrix Q∗ in (i) is uniquely determined by Q∗Q = Q and rank(Q∗) = 1.

Associated with each f ∈ F is a corresponding operator L(f), mapping C(R+)n into
C(R+)n, defined as follows.

For v ∈ C(R+)n,
L(f)v := r(f) +Q(f)v. (2.1)
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Note that from Lemma 1.1, L(f)v ∈ C(R+)n for each v ∈ C(R+)n. Putting v = [v, v]
with v ≤ v, v, v ∈ Rn

+, (2.1) can be written as

L(f)v = [L(f)v, L(f)v], (2.2)

where L and L are operators from Rn into itself, defined by :
{

L(f)v = r(f) + minQ∈Q(f) Qv,
L(f)v = r(f) + maxQ∈Q(f) Qv. (2.3)

and min(max) represents component-wise minimization(maximizing).
Let e := (1, 1, · · · , 1)′. Here, for any f ∈ F , we consider the interval equation:

r(f) +Q(f)h = v + h, (2.4)

where v := [ve, ve], h = [h, h] ∈ C(R)n, v, v ∈ R, h, h ∈ Rn with v ≤ v, h ≤ h.
Obviously, the interval equation can be rewritten by their extremal points as

{
r(f) + minQ∈Q(f) Qh = ve + h

r(f) + maxQ∈Q(f) Qh = ve + h (2.5)

with
v ≤ v, h ≤ h (2.6)

where v, v ∈ R, h, h ∈ Rn.
Takahashi[17, 18] has showed that upper or lower bounds of the average rewards for

weak D-Markov chains satisfies both of the equations (2.5), and had calculated them with
Howard’s policy improvement ([10]).

We have the following lemma.

Lemma 2.2([1, 8]) For any f ∈ F , the interval equation (2.5) determines v uniquely and
h up to an additive constant [c1e, c2e] with c1, c2 ∈ R(c1 < c2).

3 Asymptotic bounds for the finite horizon reward

In this section we give the asymptotic behavior of vT (f) as T → ∞ under Assumption
A, whose proofs are given in [9]. Throughout this section, we assume that Assumption A
holds.

For any g ∈ C(R)n and f ∈ F , the sequence {vT (f, g), T ≥ 0} is defined as follows:

v0(f, g) := g

and

vT (f, g) :=
{
ΣT

i=1Q1 · · ·Qt−1r(f) + Q1 · · ·QT g | Qi ∈ Q(f), i = 1, · · · , T
}

(t ≥ 1).
(3.1)

Lemma 3.1 For any g ∈ C(R+)n and f ∈ F , the sequence {vT (f, g)} satisfies that

vT (f, g) = L(f)vT−1(f, g) (T ≥ 1). (3.2)

5



Since the solutions v, v, h of (2.4)-(2.6) in Section 2 are depending on f ∈ F , we will
denote them respectively by v(f) = [v(f)e, v(f)e] and h(f) = [h(f), h(f)].

Lemma 3.2 For any f ∈ F , it holds that

vT (f, h(f)) = Tv(f) + h(f) for all T ≥ 0. (3.3)

The following theorem is concerned with the asymptotic properties of vT (f) as T →
∞.

Theorem 3.1 For any f ∈ F , there exists c1, c2, c
′
1, c

′
2 ∈ R (c′1 ≤ c1, c

′
2 ≤ c2) such that

[(Tv(f) + c1)e, (Tv(f) + c′2)e] ⊂ vT (f) ⊂ [(Tv(f) + c′1)e, (Tv(f) + c2)e]

for all T ≥ 0, (3.4)

where [a, b] = ∅, if a > b.

For simplicity of the notation, let, for any d ∈ Rn and f ∈ F ,

Q(f, d) :=

{
Q ∈ Q(f)

∣∣∣∣Qd = min
Q∈Q(f)

Qd

}
,

and

Q(f, d) :=

{
Q ∈ Q(f)

∣∣∣∣Qd = max
Q∈Q(f)

Qd

}
.

Corollary 3.1 For any f ∈ F , it holds

(i) v(f) = [v(f)e, v(f)e]

and

(ii) v(f)e = Q∗r(f), v(f)e = Q
∗
r(f)

for any Q ∈ Q(f, h) and Q ∈ Q(f, h), where Q∗ = lim
T→∞

1

T

T−1∑
t=0

Qt for Q ∈ Q(f).

4 Characterization of Pareto optimal policies

In this section, we derive the optimality equation by which all Pareto optimal policies are
characterized.

Lemma 4.1 Let f be Pareto optimal and v(f) = [v(f)e, v(f)e]. Then, it holds

(i) v(f)e = min
Q∈Q(f)

Q∗r(f),

and

(ii) v(f)e = max
Q∈Q(f)

Q∗r(f).
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Proof. Let v(f), v(f) ∈ R and h(f), h(f) ∈ Rn be a solution of (2.5). Then, for any Q ∈
Q(f), (2.5) implies

r(f) + Qh(f) º v(f)e + h(f) (4.1)

By Q∗Q = Q, (4.1) derives that v(f)e ¹ Q∗r(f) This fact implies (i) by Corollary 3.1(ii).
Similarly, (ii) can be proved. Q.E.D.

Lemma 4.2 For any f, g in F , suppose that

v(f) + h(f)

{ ¹
≺

}
r(g) +Q(g)h(f). (4.2)

Then, it holds that

v(f)

{ ¹
≺

}
v(g). (4.3)

Proof. The left and right extremal equation of (4.2) are given as follows.

v(f)e + h(f)

{ ¹
≺

}
r(g) + min

Q∈Q(f)
Qh(f) (4.4)

v(f)e + h(f)

{ ¹
≺

}
r(g) + max

Q∈Q(f)
Qh(f). (4.5)

By Lemma 4.1, there exists Q ∈ Q(g) with v(g)e = Q∗r(g). Multiplying the both sides

of (4.4) by Q∗, we get that from Q∗Q = Q∗ and Q∗ > 0 that v(f)e

{ ¹
≺

}
Q∗r(g). Thus

v(f)e

{ ¹
≺

}
v(g)e follows. Similarly, we get v(f)e

{ ¹
≺

}
v(g)e, which proves (4.3).

Q.E.D.
Let U be an arbitrary subset of C(R)n. A point u ∈ U is called an efficient element of

U with respect to ¹ on C(R)n iff it holds that there does not exist v ∈ U such that u ≺
v. We denote by eff(U) the set of all elements of U efficient with respect to ¹ on C(R)n.
For any u ∈ C(R)n, let

L(u) := eff ({L(f)u | f ∈ F}) ,

where L(f)u ∈ C(R)n is defined in (2.1). We note that L(u) ⊂ C(R)n for any u ∈ C(R)n.
Here, we consider the following interval equations inducing efficient set-function L(·)

on C(R)n.
v + h ∈ L(h), (4.6)

where v = [ve, ve], h = [h, h] ∈ C(R)n and v ≤ v, h ≤ h, v, v ∈ R, h, h ∈ Rn. The equation
(4.6) is called an optimality equation, by which Pareto optimal policies are characterized.
A solution (v,h) of the optimal equation (4.6) is called maximal if there does not exist
any solution (v′,h′) of (4.6) such that v ≺ v′. In the following, Pareto optimal policies
are characterized by maximal solutions of the optimality equation.

Theorem 4.1 A policy f∞ is Pareto optimal if and only if the pair (v(f), h(f)) given by
Lemma 2.2 is a maximal solution to the optimality equation (4.6).

Proof. The proof of ”only if ” part is easily obtained from Lemma 4.2. In order
to prove ”if” part, suppose that (v(f), h(f)) is a maximal solution of (4.6) but f∞ is
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not Pareto optimal. Then, there exists g ∈ F with v(f) ≺ v(g). Since {v(g′)|v(g) ¹
v(g′), g′ ∈ F} is finite, it has a maximal element v(g(1)) with respect to the partial order
¹. For this g(1), suppose that v(g(1)) + h(g(1)) /∈ L(h(g(1))). Then, there exists an i0 ∈ S
and a0 ∈ A such that

v(g(1))i0 + h(g(1))i0 ≺ r(i0, a0) +
(
q(i0, a0)h(g(1))

)
i0

, (4.7)

where q(·|i0, a0) := 〈q(·|i0, a0), q(i0, a0)〉. Define f (1) by

f (1) =

{
a0, if i = i0,
g(1)(i), if i 6= i0.

Then, from (4.6), it holds that

v(g(1)) + h(g(1)) ≺ r(f (1)) + Q(f (1))h(g(1)). (4.8)

Thus, by Lemma 4.2, v(g(1)) ≺ v(f (1)). For this f (1), obviously v(f) ≺ v(f (1)). If
v(f (1))+h(f (1)) /∈ L(h(f (1))), we can construct f (2) with v(f (1)) ≺ v(f (2)), repeating the
above discussion. Since F is a finite set, by repeating this method successively, we come
to the conclusion that there exists f (k) ∈ F such that v(f) ≺ v(f (k)) and (v(f (k)),h(f (k)))
satisfies (4.6). However, this contradicts that (v(f),h(f)) is maximal. Q.E.D.

Remark. For vector-valued discounted MDPs, Furukawa[3] and White[19] had derived
the optimal equation including efficient set-function on Rn, by which optimal policies are
characterized. The form of the optimality equation (4.6) is corresponding to the average
case of controlled Markov set-chains.

5 The maximim policy and an numerical example

In this section, a maximin policy which maximizes the expected average reward earned in
the worst case scenarios of the decision process is given and shown to be Pareto optimal.
Also a numerical example is given.

Let q(i, a) := 〈q(·|i, a), q(·|i, a)〉 for each i ∈ S and a ∈ A. For each i ∈ S and f ∈ F ,
denote by G(i, f) the set of a ∈ A for which

v(f) + h(f)i < r(i, a) + min
q∈q(i,a)

n∑
j=1

q(j|i, a)h(f)j,

where v(f) and h(f) = (h(f)1, · · · , h(f)n) is solution of (2.5). Let g ∈ F be such that
g(i) ∈ G(i, f) for any i with G(i, f) 6= ∅ and g(i) = f(i) for any i with G(i, f) = ∅. Then,
we have the following.

Lemma 5.1 For any f with G(i, f) 6= ∅ for some i ∈ S, v(f) ≺ v(g).
The following lemma is proved from the idea of policy improvement (cf.[10] ).

Lemma 5.2 The left side optimality equations (5.1) below determine v∗ uniquely and
h ∈ Rn up to an additive constant.

v∗ + hi = max
a∈A

(
r(i, a) + min

q∈q(i,a)

n∑
j=1

q(j|i, a)hj

)
(1 ≤ i ≤ n). (5.1)
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Let, for each i (1 ≤ i ≤ n),

Ai := arg max
a∈A

(
r(i, a) + min

q∈q(i,a)

n∑
j=1

q(j|i, a)hj

)
.

For each i ∈ S and f ∈ F with f(i) ∈ Ai for all i ∈ S, denote by G(i, f) the set of a ∈ Ai

for which

v(f) + h(f)i < r(i, a) + max
q∈q(i,a)

n∑
j=1

q(j|i, a)h(f)j,

where v(f) and h(f) = (h(f)1, · · · , h(f)n) is a solution of (2.5). Using G(i, f), we can
prove the following.

Lemma 5.3 The right side optimality equations below determine v∗ uniquely and h ∈
Rn up to an additive constant.

v∗ + hi = max
a∈Ai

(
r(i, a) + max

q∈q(i,a)

n∑
j=1

q(j|i, a)hj

)
(1 ≤ i ≤ n). (5.2)

Let, for each i(1 ≤ i ≤ n),

A∗
i := arg max

a∈Ai

(
r(i, a) + max

q∈q(i,a)

n∑
j=1

q(j|i, a)hj

)
.

A policy f ∗ with f ∗(i) ∈ A∗
i for all i in S is called a maximin policy. Then, (v(f ∗),h(f ∗))

corresponding to a maximin policy is obviously a maximal solution of the optimality equa-
tion (4.6). So, from Theorem 4.1, we have the following Theorem.

Theorem 5.1 A maximin policy f ∗ is Pareto optimal and v(f ∗) = [v∗e, v∗e].

Here we shall give a numerical example which illustrates Theorem 5.1. For simplicity,
let qa

ij
:= q(j|i, a), qa

ij := q(j|i, a) and r(a) := (r(1, a), r(2, a)). Consider the following

controlled Markov set-chain model: S = {1, 2}, A = {1, 2},

(q1

ij
) =

(
1
3

1
3

1
3

1
3

)
, (q1

ij) =

(
2
3

1
2

1
2

2
3

)
,

(q2

ij
) =

(
2
5

2
5

2
5

2
5

)
, (q2

ij) =

(
1
2

3
5

3
5

1
2

)
,

and r(1) = (1, 2), r(2) = (1, 2.1). Then, the equation (5.1) which v∗ and h = (h1, h2)
′

is given as follows :

v∗ + h1 = max

{
1 + min{(2h1 + h2)/3, (h1 + h2)/2,

1 + min{(2h1 + 3h2)/5, (h1 + h2)/2

and

v∗ + h2 = max

{
2 + min{(h1 + 2h2)/3, (h1 + h2)/2,

2.1 + min{(3h1 + 2h2)/5, (h1 + h2)/2.
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After a simple calculation, the solution of the above with h1 = 0 becomes that v∗ =
1.5 and h = (0, 1)′. Also, we easily find A1 = {2} and A2 = {1, 2}. Similarly, by solving
the equation h1 = 0, we get v∗ = 23/14, h = (0, 15/14)′, A∗

1 = {2} and A∗
2 = {1}.

So, by Theorem 5.1, f ∗ with f ∗(1) = 2 and f ∗(2) = 1 is Pareto optimal and v(f ∗) =
[(3/2)e, (23/14)e].
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