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The following problem in risk theory is considered. An insurance company, endowed with an initial
capital a . 0, receives insurance premiums and pays out successive claims. The losses occur according to
renewal process. At any moment, the company may broaden or narrow down the offer, what entails the
change of the parameters. This change concerns the rate of income, the intensity of renewal process and
the distribution of claims. After the change, the management wants to know the moment of the maximal
value of the capital assets. Therefore, our goal is finding two optimal stopping times: the best moment of
change the parameters and the moment of maximal value of the capital assets. We will use a dynamic
programming method to calculate the expected capital at that times.
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1. Introduction

In this paper, the following problem is considered. The insurance company, endowed with an

initial capital a . 0, receives insurance premium with constant rate of income c1 and pays

out successive claims, which are representing by i.i.d. random variables X1;X2; . . . with

cumulative distribution function H1. The losses occur according to the renewal process

{N1ðtÞ; t $ 0}, so that N1ðtÞ is the number of claims up to the time t. The renewal process is

independent on the sequence of claims. Let Ti denote the moment of the ith claim (T0 ¼ 0),

then the random variables Si ¼ Ti 2 Ti21 are i.i.d. with continuous cumulative distribution

function F1. Let us assume that the company can change the parameters of the classical risk

model at any time s. It corresponds with the circumstances when companies broaden the

offer to appeal to a wider range of customers. Then the rate of income changes to c2 and the

losses, after the time s, occur according to another renewal process {N2ðtÞ; t $ 0}. The

claims after the change are i.i.d. random variables ~X1; ~X2; . . . having cumulative distribution

function H2 and being independent on the renewal process {N2ðtÞ; t $ 0}. Let ~Ti denote the
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moment of the ith claim after the time of change s ( ~T0 ¼ s), then like before, the random

variables ~Si ¼ ~Ti 2 ~Ti21 are i.i.d. with continuous cumulative distribution function F2.

Let Uðs; tÞ correspond to the value of the capital assets at time t, if the change of the

parameters took place at time s, then

Uðs; tÞ ¼
aþ c1t2

PN1ðtÞ
n¼0 Xn if t # s

aþ c1s2
PN1ðsÞ

n¼0 Xn þ c2ðt2 sÞ2
PN2ðt2sÞ

n¼0
~Xn if t . s;

8<
: ð1Þ

where X0 ¼ 0, ~X0 ¼ 0. It is convenient to introduce classical Cramér–Lunberg risk process

U1ðtÞ ¼ aþ c1t2
XN1ðtÞ

n¼0

Xn; ð2Þ

which is the base ofmanymodelswidely discussed in the literature (seeAzuce andRoberts [1],

Muciek [13], Rolski et al. [18]). Additionally, let

U2ðtÞ ¼ c2t2
XN2ðtÞ

n¼0

~Xn: ð3Þ

Then, formula (1) reduces to

Uðs; tÞ ¼
U1ðtÞ if t # s

U1ðsÞ þ U2ðt2 sÞ if t . s:

(
ð4Þ

The return at time t is given by the process {Zðs; tÞ; t . 0; s . 0} defined by

Zðs; tÞ ¼
gðUðs; tÞÞI{Uðs;l Þ.0;l#t} if t # t0

0 if t . t0

(
; ð5Þ

where t0 is a fixed horizon and g is an utility function.

Assumption 1. The utility function g is bounded, continuous, nondecreasing and differentiable.

The above assumptions are not particularly restrictive, because most frequently used utility

functions fulfill these requirements. The return is equal to zero only if the company goes

bankrupt (i.e. Uðs; tÞ # 0 occurs for some time t # t0) or the horizon t0 is exceeded.

For simplicity, we define gðu; tÞ ¼ gðuÞI{t$0} and

mn ¼
Yn
j¼1

I{Uðs;TjÞ.0;Tj#s} ¼
Yn
j¼1

I{U1ðTjÞ.0}; m0 ¼ 1;

ms;n ¼
Yn
j¼1

I{Uðs; ~TjÞ.0; ~Tj.s}; ms;0 ¼ 1:

The process of capital assets Uðs; tÞ decreases only at the times when successive claims

occur, so we can transform equation (5) into

Zðs; tÞ ¼ gðUðs; tÞ; t0 2 tÞ
YN1ðs^tÞ

j¼1

I{Uðs;TjÞ.0}

YN2ððt2sÞþÞ

j¼1

I{Uðs; ~TjÞ.0}

¼ gðUðs; tÞ; t0 2 tÞmN1ðs^tÞms;N2ððt2sÞþÞ:

ð6Þ
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The process Zðs; tÞ is piecewise-deterministic and belongs to the class of semi-Markov

processes. The optimal stopping of such processes was studied in a fairly general setting by

Boshuizen and Gouwleeuw [2], Jensen [11] and Schöttl [19].

2. The optimization problem

The multiple optimal stopping problems have been treated by many authors. The

double stopping problem was posed by Haggstrom [10] and for the discrete time

Markov processes has been considered by Eidukjavicjus [6], M.L. Nikolaev [16,17] and

Stadje [20].

Let us define s-field generated by all events up to time t, if there was no change of

parameters

F t ¼ s ðU1ðl Þ; l # t # sÞ ¼ s ðX1; T1; . . . ;XN1ðtÞ; TN1ðtÞÞ

and similarly s-field generated by all events up to time t if there was change of parameters at

time s

F s;t ¼ s ðUðs; lÞ; l # t; s # tÞ ¼ s ðF s; ~X1; ~T1; . . . ; ~XN2ðt2sÞ; ~TN2ðt2sÞÞ:

Additionally, we denoteF n U F Tn
,F s;n U F s; ~Tn

and notice thatF s;s ¼ F s. Let T and T s be

the sets of stopping times with respect to the s-fields {F t; t $ 0} and {F s;t; 0 # s # t},

respectively. Furthermore, let

T n;K ¼ {t [ T : t $ 0; Tn # t # TK}; for n [ N and n , K;

and

T s
n;K ¼ {t [ T s : t $ s; ~Tn # t # ~TK}; for n [ N and n , K:

Our goal is to find optimal stopping times t* and ~t* such that

EZðt*; ~t*Þ ¼ sup
t[T

sup
~t[T t

EZðt; ~tÞ: ð7Þ

Let us notice that

EZðt*; ~t*Þ ¼ sup
t[T

EZðt; ~t*Þ ¼ sup
t[T

E{E½Zðt; ~t*ÞjF t�}

¼ sup
t[T

E ess sup
~t[T t

E½Zðt; ~tÞjF t� ¼ sup
t[T

EJðtÞ;
ð8Þ

where

JðsÞ ¼ E{Zðs; ~t*ÞjF s} ¼ ess sup
~t[T s

E{Zðs; ~tÞjF s}: ð9Þ

Therefore, in order to find t* and ~t*, we first calculate the process JðsÞ, s $ 0, which

is revenue function in the one stopping problem if the process starts at the moment s.

A similar problem for the classical risk process (2) has been considered by Ferenstein

and Sierociński [8] and we will take the advantage of their solution. First, they have

found the optimal stopping rule in the finite horizon case (i.e. assuming that at least K

claims occurred, where K is fixed). Afterwards, they have proved that the optimal

Double optimal stopping 157



stopping time for the infinite horizon case is the limit of the finite horizon optimal

stopping rules.

3. Construction of the optimal second stopping time

3.1 Fixed number of claims

In this section, we find the solution of one stopping problem defined by equation (9) in the

case with a fixed number of claims K after the change of parameters. In other words, we are

looking for optimal stopping time in the class T s
0;K , i.e. stopping time ~t *

K U ~t *
0;K such that

E Z s; ~t*K
� �

F sj
� �

¼ sup
~t[T s

0;K

E{Zðs; ~tÞjF s};

where s $ 0 is a fixed time of the change of the parameters.

Let us define

Gs
n;K ¼ E Z s; ~t *

n;K

� �
F sj

n o
¼ ess sup

~t[T s
n;K

EðZðs; ~tÞjF s;nÞ; n ¼ K;K 2 1; . . . ; 1; ð10Þ

and notice that Gs
K;K ¼ Zðs; ~TKÞ ¼ gðUðs; ~TKÞ; t0 2 ~TKÞmN1ðsÞms;K . The following lemma

plays a crucial role in our subsequent consideration (see Ref. [3]).

Lemma 3.1. If t [ T n;K (or ~t [ T s
n;K), then there exists a positive, F n-measurable (or F s;n-

measurable), random variable Rn (or ~Rn) such that

t ^ Tnþ1 ¼ ðTn þ RnÞ ^ Tnþ1; ðor ~t ^ ~Tnþ1 ¼ ð ~Tn þ ~RnÞ ^ ~Tnþ1Þ a:s:

We derive the dynamic programming equations satisfied by Gs
n;K in a similar way to

Ferenstein and Sierociński [8].

Theorem 3.1. Let s $ 0 be the time of change of the parameters.

(i) For n ¼ K 2 1;K 2 2; . . . ; 0

Gs
n;K ¼ ess sup mN1ðsÞms;n �F2ð ~RnÞgðUðs; ~TnÞ þ c2 ~Rn; t0 2 ~Tn 2 ~RnÞ

�
þE I{ ~Rn$~Snþ1}

Gs
nþ1;K jF s;n

h i
: ~Rn $ 0 is F s;n 2measurable

o
a:s:;

where �F2 ¼ 1 2 F2 is the survival function.

(ii) Denote

Gs
n;K ¼ mN1ðsÞms;n ~gK2nðUðs; ~TnÞ; ~TnÞ a:s:;

for n ¼ K;K 2 1; . . . ; 0, where the sequence of functions ~gjðu; tÞ, u [ R, t . s, is

defined recursively as follows:

~g0ðu; tÞ ¼ gðu; t0 2 tÞ

~gjðu; tÞ ¼ sup
r$0

�F2ðrÞgðuþ c2r; t0 2 t2 rÞ

�

þ

ðr
0

dF2ðzÞ

ðuþc2z

0

~gj21ðuþ c2z2 x; t þ zÞ dH2ðxÞ

�
; j ¼ 1; 2; . . .
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Proof.

(i) Let us take ~t [ T s
n;K . From Lemma 3.1, we get

An ¼ { ~t , ~Tnþ1} ¼ { ~Tn þ ~Rn , ~Tnþ1} ¼ { ~Rn , ~Snþ1};

�An ¼ { ~t $ ~Tnþ1} ¼ { ~Tn þ ~Rn $ ~Tnþ1} ¼ { ~Rn $ ~Snþ1};

then E{Zðs; ~tÞjF s;n} ¼ E{Zðs; ~tÞIAn
jF s;n} þ E{Zðs; ~tÞI �An

jF s;n} ¼ an þ bn.

Let us notice, on the basis of Lemma 3.1, that for ~t , ~Tnþ1 occurs ~t ¼ ~Tn þ ~Rn a:s:

and it follows Uðs; ~tÞ ¼ Uðs; ~TnÞ þ c2
~Rn a:s: Now we calculate an and bn

an ¼ E{mN1ðs^ ~tÞms;N2ðð ~t2sÞþÞgðUðs; ~tÞ; t0 2 ~tÞIAn
jF s;n}

¼ E{mN1ðsÞms;ngðUðs; ~TnÞ þ c2 ~Rn; t0 2 ~Tn 2 ~RnÞI{ ~Rn,~Snþ1}
jF s;n}

¼ mN1ðsÞms;n �F2ð ~RnÞgðUðs; ~TnÞ þ c2 ~Rn; t0 2 ~Tn 2 ~RnÞ:

Let ~t 0 ¼ ~t _ ~Tnþ1 [ T s
nþ1;K , hence we obtain

bn ¼ E{I{ ~Rn$~Snþ1}
EðZðs; ~t 0ÞjF s;nþ1ÞjF s;n}:

We get the dynamic programming equation for Gs
n;K using the standard argumentation

for optimal stopping theory.

(ii) Now we proceed by backward induction. First we check that (ii) is satisfied for n ¼ K

Gs
K;K ¼ mN1ðsÞms;K ~g0ðUðs; ~TKÞ; ~TKÞ ¼ mN1ðsÞms;KgðUðs; ~TKÞ; t0 2 ~TKÞ:

Let n ¼ K 2 1 then from (i), we get

Gs
K21;K ¼ ess sup mN1ðsÞms;K21

�F2ð ~RK21ÞgðUðs; ~TK21Þ þ c2 ~RK21; t0 2 ~TK21 2 ~RK21Þ
�

þE I{ ~RK21$~SK}
mN1ðsÞms;K ~g0ðUðs; ~TKÞ; ~TKÞjF s;K21

h i
: ~RK21 $ 0 is F s;K21 2measurable

�
a:s:

It is easily seen that ms;K ¼ ms;K21I{Uðs; ~TK21Þþc2
~SK2 ~XK.0} and random variables ~SK , ~XK

are independent on the s-field F s;K21. An easy computation shows that

Gs
K21;K ¼ mN1ðsÞms;K21 ~g1ðUðs; ~TK21Þ; ~TK21Þ:

Let 1 # n # K 2 1 and suppose Gs
n;K ¼ mN1ðsÞms;n ~gK2nðUðs; ~TnÞ; ~TnÞ.

We apply (i)

Gs
n21;K ¼ ess sup mN1ðsÞms;n21

�F2ð ~Rn21ÞgðUðs; ~Tn21Þ þ c2 ~Rn21; t0 2 ~Tn21 2 ~Rn21Þ
�

þE I{ ~Rn21$~Sn}
mN1ðsÞms;n ~gK2nðUðs; ~TnÞ; ~TnÞjF s;n21

h i
: ~Rn21 $ 0 is F s;n21 2measurable

�
a:s:

and express the second term under ess sup as

mN1ðsÞms;n21 E I{ ~Rn21$~Sn}
I{Uðs; ~Tn21Þþc2 ~Sn2 ~Xn.0} ~gK2nðUðs; ~Tn21Þþc2 ~Sn2 ~Xn; ~Tn21þ~SnÞjF s;n21

h i
:
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We see at once that

Gs
n21;K¼mN1ðsÞms;n21esssup �F2ð ~Rn21ÞgðUðs; ~Tn21Þþc2 ~Rn21;t02 ~Tn212 ~Rn21Þ

�
þ

ð ~Rn21

0

dF2ðzÞ

ðUðs; ~Tn21Þþc2z

0

~gK2nðUðs; ~Tn21Þþc2z2x; ~Tn21þzÞdH2ðxÞ

: ~Rn21$0 isF s;n2measurable
�
¼mN1ðsÞms;n21 ~gK2ðn21ÞðUðs; ~Tn21Þ; ~Tn21Þ a:s: A

In order to perform ~t *
K , the properties of the sequence { ~gj; j $ 0} are presented according

to the idea in Ref. [8]. Let B ¼ B½ð21;1Þ £ ½0;1Þ� be the space of all bounded continuous

functions with the norm kdk ¼ supu;tjd ðu; tÞj and

B0 ¼ {d : d ðu; tÞ ¼ d1ðu; tÞI{t#t0} and d1 [ B}:

Let us define, for each d [ B0; u [ R; t . s; r [ Rþ, the function ~fd

~fdðr; u; tÞ ¼ �F2ðrÞgðuþ c2r; t0 2 t2 rÞ þ

ðr
0

dF2ðzÞ

ðuþc2z

0

d ðuþ c2z2 x; t þ zÞ dH2ðxÞ

and the operator ~F

ð ~FdÞðu; tÞ ¼ sup
r$0

{ ~fdðr; u; tÞ} [ B0: ð11Þ

Note that ~fdðr; u; tÞ is continuous and differentiable with respect to r, u, t, for t [ ½0; t0 2 r�.

It follows from the properties of the cumulative distribution functionF2 and utility function g.

Lemma 3.2. For each d [ B0 we have

ð ~FdÞðu; tÞ ¼ max
0#r#t02t

{ ~fdðr; u; tÞ} [ B0

and there exists a function ~rdðu; tÞ such that ð ~FdÞðu; tÞ ¼ ~fdð~rdðu; tÞ; u; tÞ.

Proof. It is easy to check that

~fdðr; u; tÞ ¼

ðt02t

0

dF2ðzÞ

ðuþc2z

0

d ðuþ c2z2 x; t þ zÞ dH2ðxÞ

for all d [ B0 and for any r . t0 2 t. The form of ~F is a straightforward consequence of

Assumption 1 and the fact that F2 is continuous. A

Let us perform recursive formula for ~gjðu; tÞ

~gjðu; tÞ ¼
ð ~F ~gj21Þðu; tÞ if u $ 0 and s , t # t0;

0 otherwise:

(

By Lemma 3.2, there exists function ~rj U ~r ~gj21
such that

~gjðu; tÞ ¼
~f ~gj21ð~rjðu; tÞ; u; tÞ if u $ 0 and s , t # t0;

0 otherwise:

(

The consequence of the foregoing equations is the theorem, which determines optimal

stopping times ~t *
n;K in following manner:
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Theorem 3.2. The stopping time ~t *
n;K ¼ ~T ~hn;K

þ ~R
*
~hn;K

, n ¼ 0; 1; . . . ;K, where

~R
*
i ¼ ~rK2iðUðs; ~TiÞ; ~TiÞ ~hn;K ¼ K ^ inf i $ n : ~R

*
j , ~Siþ1

n o
;

is optimal in the class T s
n;K .

For this ~t *
n;K , we have Gs

n;K ¼ EðZðs; ~t *
n;KÞjF s;nÞ and for n ¼ 0, we have Gs

0;K ¼

EðZðs; ~t *
KÞjF sÞ ¼ mN1ðsÞ ~gKðU1ðsÞ; sÞ.

3.2 Infinite number of claims

In this section, we consider the case of infinite number of claims and we find stopping time

~t *, which is optimal in the class T s. In order to solve our one stopping problem, it is

necessary to put the following restriction on cumulative distribution function.

Assumption 2. F2ðt0Þ , 1:

The following lemma (see Ref. [8]) will play the important role in our considerations.

Lemma 3.3. The operator ~F : B0 ! B0 defined by equation (11) is a contraction.

Proof. Let us take the functions d1; d2 [ B0. On the basis of Lemma 3.2, there exist

~ri ¼ ~rdiðu; tÞ, such that ð ~FdiÞðu; tÞ ¼ ~fdið ~ri; u; tÞ, i ¼ 1; 2. Let us notice that ~fd2
ð ~r2; u; tÞ $

~fd2
ð ~r1; u; tÞ and it follows that

ð ~Fd1Þðu; tÞ2 ð ~Fd2Þðu; tÞ ¼ ~fd1 ð ~r1; u; tÞ2
~fd2 ð ~r2; u; tÞ #

~fd1 ð ~r1; u; tÞ2
~fd2 ð ~r1; u; tÞ

#

ð ~r1

0

dF2ðzÞ

ðuþc2z

0

½d1 2 d2�ðuþ c2z2 x; t þ zÞ dH2ðxÞ

# kd1 2 d2k

ð ~r1

0

dF2ðzÞ

ðuþc2z

0

dH2ðxÞ # ~rkd1 2 d2k;

where

~r ¼ sup
u.0

ðt0
0

dF2ðzÞ

ðuþc2z

0

dH2ðxÞ # F2ðt0Þ , 1:

Similarly, we get ð ~Fd2Þðu; tÞ2 ð ~Fd1Þðu; tÞ # ~rkd1 2 d2k. Hence, k ~Fd1 2 ~Fd2k #

~rkd1 2 d2k. A

As ~g0 [ B0, we conclude that ~gi [ B0 for all i, therefore we can use the fixed point

theorem and obtain the following lemma

Lemma 3.4. There exists ~g [ B0 such that

~g ¼ ~F ~g and lim
K!1

k ~gK 2 ~gk ¼ 0:

Corollary 3.3. ~g is uniform limit of ~gK , when K tends to infinity.

The consideration of Sections 3.1 and 3.2 leads to the following formulation of the optimal

strategy after the change of parameters in the risk process.
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Theorem 3.4. If the function g fulfils Assumption 1, F2 fulfils Assumption 2 and has the

density function f 2, then

(i) for n [ N, the limit ~t *
n ¼ limK!1 ~t *

n;K a:s: exists and ~t *
n is an optimal stopping rule in

the set T s > { ~t $ ~Tn},

(ii) EðZðs; ~t *
n ÞjF s;nÞ ¼ mN1ðsÞms;n ~g ðUðs; ~TnÞ; ~TnÞ a.s.

Proof.

(i) The stopping rule ~t *
n ¼ limK!1 ~t *

n;K a:s: exists because ~t *
n;K # t*

n;Kþ1.

Let us define the process j ðs; tÞ ¼ ðt;Uðs; tÞ; Yðs; tÞ;Vðs; tÞÞ, where Yðs; tÞ ¼ t2
~TN2ððt2sÞþÞ, Vðs; tÞ ¼ mN1ðsÞms;N2ððt2sÞþÞ. It can be found in Gikhman and Skorohod [9]

that j ðs; tÞ is a Markov process with the state space Rþ £ R £ Rþ £ {0; 1}. We express

the process Zðs; tÞ as Zðs; tÞ ¼ ~gðj ðs; tÞÞ and calculate the strong generator of j ðs; tÞ

ðA~gÞðt; u; y; vÞ ¼ v c2g
0ðuÞ þ

f 2ðy Þ

�F2ðy Þ

ðu
0

gðu2 xÞ dH2ðxÞ2 gðuÞ

� �	 

;

where s , t , t0, y . 0 and v [ {0; 1}.

The next step is noting that ~gðj ðs; tÞÞ2 ~gðj ðs; sÞÞ2
Ð t
s
ðA~gÞðj ðs; zÞÞ dz is a martingale

with respect to s ðj ðs; zÞ; s , z # tÞ, which is the same as F s;t (see Davis [5]) and

applying the optional sampling theorem

E ~g j s; ~t*n;K

� �� �
F s;n

��n o
2 ~g ðjðs; ~TnÞÞ ¼ E

ð ~t *
n;K

~Tn

ðA~gÞðj ðs; zÞÞ dzjF s;n

" #
a:s: ð12Þ

It is immediate that

ðA~gÞðjðs; tÞÞ ¼ mN1ðsÞmN2ðt2sÞ c2g
0ðUðs; tÞÞ

	

þ
f 2ðt2 ~TN2ðt2sÞÞ

�F2ðt2 ~TN2ðt2sÞÞ

ðUðs;tÞ

0

gðUðs; tÞ2 xÞÞ dH2ðxÞ2 gðUðs; tÞ

� �

;

therefore the right side of equation (12) can be expressed as E{I1
n;K jF s;n}2

E{I2
n;K jF s;n}, where

I2
n;K ¼

ð ~t *
n;K

~Tn

mN1ðsÞmN2ðz2sÞ

f 2ðz2 ~TN2ðz2sÞÞ

�F2ðz2 ~TN2ðz2sÞÞ
gðUðs; zÞÞ dz



:

We can observe that I1
n;K , I

2
n;K are positive random variables. Let us define random

variable M ¼ inf{n [ N : ~Tn , t0; ~Tnþ1 $ t0}, then

I2
n;K #

gðaþ c2ðt0 2 sÞÞ

�F2ðt0Þ
EM a:s:;

where EM ¼
P1

n¼0F
*
ðnÞ

2 ðt0Þ #
P1

n¼0½F2ðt0Þ�
n , 1: On the basis of monotone

convergence theorem, we see that

E

ð ~t *
n;K

~Tn

ðA~gÞðj ðs; zÞÞ dzjF s;n

" #
K!1
��!

E

ð ~t *n

~Tn

ðA~gÞðj ðs; zÞÞ dzjF s;n

" #
a:s: ð13Þ
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Applying the Dynkin’s formula again yields

E

ð ~t *n

~Tn

ðA~gÞðj ðs; zÞÞ dzjF s;n

" #
¼ E ~g j s; ~t *

n

� �� �
F s;n

��� �
2 ~g j s; ~Tn

� �� �
a:s: ð14Þ

Combining these with equations (12) and (13), we obtain

E ~g j s; ~t *
n;K

� �� �
F s;n

��n o
K!1
��!

E ~g j s; ~t *
n

� �� �
F s;n

��� �
a:s: ð15Þ

The task is now to prove that ~t *
n is optimal in the T s > {t : t $ Tn}. Let t be any

stopping rule t [ T s > {t : t $ Tn}, then from optimality of ~t *
n;K , we get

E ~g j s; ~t *
n;K

� �� �
F s;n

��n o
$ E{~gðj ðs; t ^ ~TKÞÞjF s;n} a:s:

In the same manner as before, we can see that E{~gðj ðs; ~t *
n ÞÞjF s;n} $ E{~gðjðs; tÞÞjF s;n},

which completes the proof.

(ii) Applying Theorem 3.1 and equation (10), we deduce that

E ~g j s; ~t *
n;K

� �� �
F s;n

��n o
¼ E Z s; ~t *

n;K

� �
F s;n

��n o
¼ mN1ðsÞms;n ~gK2nðUðs; ~TnÞ; ~TnÞ a:s:

Combining Lemma 3.3 and equation (15), we obtain

E ~g j s; tn;K
~

� �� �
F s;n

��� �
K!1
��!

E ~g j s; ~t *
� �� �

F s;n

��� �
¼ mN1ðsÞms;n ~gðUðs; ~TnÞ; ~TnÞ a:s:

A

At the end of this section, we notice that optimal stopping time for second stop is equal to

~t * ¼ ~t *
0 [ T s, where ~t *

0 ¼ limK!1 ~t *
0;K and the conditional value function of the optimal

stopping problem after moment s is given by

JðsÞ ¼ E Z s; ~t *
0

� �
F s;0

��� �
¼ mN1ðsÞms;0 ~g ðUðs; ~T0Þ; ~T0Þ ¼ mN1ðsÞ ~g ðU1ðsÞ; sÞ a:s: ð16Þ

4. Construction of the optimal first stopping time

In this section, we formulate the solution of our problem. Properties of the function ~gðu; tÞ,

which was determined in Lemma 3.4, will play the crucial role.

Remark 4.1. The functions ~gjðu; tÞ have finite one-sided derivatives.

The foregoing remark is the consequence of the fact, that ~fdðr; u; tÞ is continuous and

differentiable with respect to r, u, t.

Remark 4.2. If the functions dnðuÞ have finite one-sided derivatives for all u and d is uniform

limit of dn, with respect to the norm kdk ¼ supujdðuÞj, then dðuÞ has the same, finite one-

sided derivatives for all u.

Proof. The function dn has finite right-hand derivative in the point u0, equal to M , 1 if and

only if

lim
h!0þ

dnðu0 þ hÞ2 dnðu0Þ

h
¼ M
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and this is equivalent to the condition

;e1.0’de1.0;h 0 , h , de1 )
dnðu0 þ hÞ2 dnðu0Þ

h
2M

����
���� , e1

� 

: ð17Þ

On the other side, the sequence dn converge uniformly to the d, with respect to the norm

supremum, if and only if

;e2.0’n0;n$n0;u sup
u
jdnðuÞ2 dn0 ðuÞj , e2: ð18Þ

Let us take any u0 and n0 such, that e2 ¼ e1h. On the basis of the equations (17) and (18), we

have

d ðu0 þ hÞ2 d ðu0Þ

h
2M

����
���� # d ðu0 þ hÞ2 dn0ðu0 þ hÞ

h

����
����þ dn0 ðu0 þ hÞ2 dn0ðu0Þ

h
2M

����
����

þ
dn0ðu0Þ2 d ðu0Þ

h

����
���� , e1h

h
þ e1 þ

e1h

h
¼ 3e1 ¼ e :

We conclude that for all e, there exists d ¼ de1
, such that d 0

þ(u0) ¼ M , 1. The proof for the

left-hand derivative is similar. A

Lemma 4.3. The function ~g ðu; tÞ is bounded, continuous, nondecreasing and has finite one-

sided derivatives with respect to u for all u [ Rþ and t for all t [ ½0; t0�.

Proof. From Lemma 3.4, we get that ~g ðu; tÞ is bounded and continuous. In order to prove that

~g ðu; tÞ is nondecreasing with respect to u, we first observe that on the basis of equations (6)

and (16) for mN1ðsÞ ¼ 1, s , ~t *
0 # t0, we have

~gðU1ðsÞ; sÞ ¼ E{ms;N2ð ~t
*
0
2sÞgðU1ðsÞ þ U2ðt

*
0 2 sÞÞjF s} a:s:

Let us notice that F s can be replaced with U1ðsÞ and therefore

~gðU1ðsÞ; sÞ ¼ E{ms;N2ð ~t
*
0
2sÞgðuþ U2ð ~t

*
0 2 sÞÞjU1ðsÞ ¼ u} a:s:

As the function gðuÞ is nondecreasing on the basis of Assumption 1 and t*
0 is optimal if

U1ðsÞ ¼ u, we conclude that ~g ðu; tÞ is nondecreasing with respect to u. The straightforward

consequence of Remark 4.1, Corollary 3.3 and Remark 4.2 is the fact that ~g has finite one-

sided derivatives with respect to u and t. A

We have proved that the function ~g has similar properties as g and this follows that the rest

of the paper runs like in Section 3. We will apply the same arguments again, with g replaced

by ~g.

4.1 Fixed number of claims

In this section, we find the first optimal stopping time, if the number of claims before the

change of parameters is fixed and equal to L. We can formulate the problem as looking for

t*
L ¼ t*

0;L such that

EJðt*LÞ ¼ sup
t[T L

EJðtÞ:
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Let us define

Gn;L ¼ E J t*n;L

� �
F nj

n o
¼ ess sup

t[T n;L

EðJðtÞjF nÞÞ; n ¼ L; L2 1; . . . ; 1: ð19Þ

The dynamic programming equations satisfied by Gn;L are considered in following theorem.

Theorem 4.1.

(i) For n ¼ L2 1; L2 2; . . . ; 0

Gn;L ¼ ess sup{mn
�F1ðRnÞ ~g ðU1ðTnÞ þ c1Rn; Tn þ RnÞ

þ E I{Rn$Snþ1}Gnþ1;LjF n

� �
: Rn $ 0 is F n 2measurable} a:s:;

where �F1 ¼ 1 2 F1 is the survival function.

(ii) The sequence of random variables Gn;L can be performed as Gn;L ¼ mngL2nðU1ðTnÞ; TnÞ

a.s. for n ¼ L; L2 1; . . . ; 0, where the sequence of functions gjðu; tÞ, u [ R, t [ ½0; t0�

is defined recursively as follows:

g0ðu; tÞ ¼ ~g ðu; tÞ

gjðu; tÞ ¼ sup
r$0

�F1ðrÞ ~g ðuþ c1r; t þ rÞ
�

þ

ðr
0

dF1ðzÞ

ðuþc1z

0

gj21ðuþ c1z2 x; t þ zÞ dH1ðxÞ

�
j ¼ 1; 2; . . .

ð20Þ

Similarly, like for one stop case, we define the function fd

fdðr; u; tÞ ¼ �F1ðrÞ ~g ðuþ c1r; t þ rÞ þ

ðr
0

dF1ðzÞ

ðuþc1z

0

d ðuþ c1z2 x; t þ zÞ dH1ðxÞ;

the operator F

ðFdÞðu; tÞ ¼ sup
r$0

fdðr; u; tÞ [ B0 ð21Þ

and conclude that there exists a function rdðu; tÞ such that ðFdÞðu; tÞ ¼ fdðrdðu; tÞ; u; tÞ

for each d [ B0, u [ R, t [ Rþ, r [ Rþ.

The function f and the operator F have the same properties as ~f and ~F respectively,

therefore we can formulate the solution of the fixed number claims problem in the following

way.

Theorem 4.2. The stopping time t*
n;L ¼ Thn;L

þ R*
hn;L

for n ¼ 0; 1; . . . ; L, where

R*
i ¼ rL2iðU1ðTiÞ; TiÞ

hn;L ¼ L ^ inf i $ n : R*
i , Siþ1

� �
;

is optimal in the class T n;L. For this ~t *
n;L, we have Gn;L ¼ EðJðt*

n;LÞjF nÞ and for n ¼ 0, we

have G0;L ¼ EðJðt*
LÞjF 0Þ ¼ gLða; 0Þ.

4.2 Infinite number of claims

In this section, we formulate the final solution of our problem. To this end, the additional

assumption is needed.
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Assumption 3. F1ðt0Þ , 1.

The solution of the double stopping problem defined in equation (8) is following.

Theorem 4.3. If the function g and the distribution F2 fulfill the assumptions of Theorem 3.4,

F1 fulfils Assumption 3 and has the density function f 1, then

(i) for n [ N, the limit t*
n ¼ limL!1 t*

n;L exists and t
*
n is an optimal stopping rule in the set

T > {t $ Tn},

(ii) EðJðt*
nÞjF nÞ ¼ mng ðU1ðTnÞ; TnÞ a:s:, where g is the uniform limit of gj given by

equation (20).

This follows by the same method as in Section 3. The function ~g ðu; tÞ is bounded,

continuous, nondecreasing with respect to u and it has finite right-hand derivatives with

respect to u and t. We define the Markov process j ðtÞ ¼ ðt;U1ðtÞ; YðtÞ;VðtÞÞ, where

YðtÞ ¼ t2 TN1ðtÞ, VðtÞ ¼ mN1ðtÞ, with the state space Rþ £ R £ Rþ £ {0; 1}. We express the

process, given by equation (16), as JðtÞ ¼ ~gðj ðtÞÞ and calculate the strong generator of j ðtÞ

ðA~gÞðt; u; y; vÞ ¼ v c1
› ~g ðuþ; tÞ

›u
þ

› ~g ðu; tþÞ

›t
þ

f 1ðy Þ

�F1ðy Þ

ðU
0

~g ðu2 x; tÞ dH1ðxÞ2 ~g ðu; tÞ

� �	 

:

The domain of A contains all bounded functions, which have finite right-hand side

derivatives in the first two coordinates. On the basis of Lemma 4.3, we conclude that ~g

belongs to the domain of the strong generator A. Let us notice, that there is only one

difference in the form of strong generator of the process j ðtÞ in comparison with the

generator of j ðs; tÞ. It is the derivative with respect to t. It follows that the rest of the proof

runs similarly as in Theorem 3.4.

Finally, using equation (8) the solution of double stopping problem is given by

EZðt*; ~t*Þ ¼ EJðt*Þ ¼ g ðU1ð0Þ; 0Þ ¼ g ða; 0Þ;

where t* and ~t* are defined according to Theorems 3.4 and 4.3.

5. Final remarks

The multiple stopping models are recently willingly applied as a tool of modelling the

technical and economical phenomenon. The double disorder problem for the discrete time

Markov processes has been investigated by Szajowski [21] and the multiple disorder of the

continuous time processes by Nikolaev [15]. In mathematical finance, the multiple stopping

approach is used by Carmona and Touzi [4] for modelling the swing option. Several models

connected with multiple stopping have been considered in the area of yield management.

Feng and Xiao [7] solved the problem of optimal pricing of inventories with multiple

predetermined prices and Karpowicz and Szajowski [12] have considered the problem with

possibility of double reversible price changes under the general predetermined price

structure. Even though the process of sale in the problems of optimal pricing is similar to the

risk process however there are important differences, such that the another techniques to

solve them are used.

The presented model is a new approach to the risk reserve processes management. Its

importance concerns both the applicability of the model and theoretical investigation on the
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optimization techniques in stochastic environment. Further research should be done in many

directions to extend the risk model and possibilities of its applications. (cf. Muciek and

Szajowski [14]).
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