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Abstract We study nonzero-sum stopping games with randomized stopping
strategies. The existence of Nash equilibrium and ε-equilibrium strategies are dis-
cussed under various assumptions on players random payoffs and utility functions
dependent on the observed discrete time Markov process. Then we will present a
model of a market game in which randomized stopping times are involved. The
model is a mixture of a stochastic game and stopping game.

Keywords Stopping games · Stochastic games · Nash equilibrium · Markov chain

1 Introduction and preliminaries

The paper is concerned with two types of games: m-person nonzero-sum nonco-
operative sequential games in which randomized stopping times are players strat-
egies and some specific stochastic games interpreted as market games (or some
econometric models). In the former, players payoffs are their utility functions (in
particular case) dependent on a state of the observed sequentially discrete—time
Markov process at the random moment of stopping. These games are generaliza-
tions of the stopping game formulated by Dynkin (1969) as an example of optimal
stopping of random sequences. In the latter, players control transition probability
law of a Markov chain so as to stop it at a random moment with the aim to max-
imize their expected utilities dependent on the current state of the process and on
the collection of players who have decided to stop it.
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First we will quote main results on stopping games with players strategies
belonging to a class of nonrandomized stopping times. Let (Ω,F, P) be some
fixed probability space on which all considered random variables are defined and
{Fn, n ∈ N } an increasing sequence of sub-σ -fields of F, N = {1, 2, . . . }. Fn is
a σ -field of events observed by the players till the moment n, n ∈ N , inclusively.
Let M denote the set of stopping times τ with respect to {Fn, n ∈ N },N = N ∪
{∞},F∞ = σ({Fn, n ∈ N }, i.e. τ : Ω → N and {ω ∈ Ω : τ(ω) = n} ∈ Fn, for
any n ∈ N .Dynkin considered the following zero-sum stopping game. Two players
observe a bivariate sequence of random variables {(Xn, ϕn), n ∈ N } - {Fn, n ∈ N }
adapted. The player 1 and the player 2 have the strategy sets M ∩ {τ : ϕτ ≤ 0}
and M ∩ {τ : ϕτ > 0}, respectively. Let (τ1, τ2) be a pair of players strategies.
The game terminates at τ = min{τ1, τ2} and Xτ is the reward (loss) for Player 1
(Player 2). The objective of Player 1 (Player 2) is to maximize (minimize) the
mean E(Xτ ). Neveu considered a slight modification of this zero-sum stopping
game in which the game strategy is a pair of stopping times (τ1, τ2) ∈ M × M
and the reward (loss) R(τ1, τ2) for Player 1 (Player 2) is determined by a bivariate
sequence of random variables {(Xn, Yn), n ∈ N } − {Fn, n ∈ N } adapted, so that

R(τ1, τ2) = Xτ1 I{τ1<τ2} + Yτ2 I{τ2≤τ1}, (1)

where IA denotes the indicator function of the set A in F . The game payoff is
V (τ1, τ2) = E (R(τ1, τ2)) . The game has the value and max–min strategy under
suitable integrability assumptions and Xn ≤ Yn, a.s., n ∈ N . Zero-sum stopping
games with more general forms of the reward (1) were investigated by Yasuda
(1986) and Rosenberg et al. (2001). Let {(Xn, Yn, Wn), n ∈ N } be {Fn, n ∈ N }
adapted sequence of the observed rewards satisfying the following condition

E

(
sup
n∈N

max{|Xn|, |Yn|, |Wn|}
)
< ∞. (2)

Let the reward (loss) for Player 1 (Player 2) be as follows

R(τ1, τ2) = Xτ1 I{τ1<τ2} + Yτ2 I{τ2<τ1} + Wτ1 I{τ1=τ2}, (3)

and the discounted reward with λ ∈ (0, 1) :
Rλ(τ1, τ2) = λτ1 Xτ1 I{τ1<τ2} + λτ2 Yτ2 I{τ2<τ1} + λτ1 Wτ1 I{τ1=τ2}. (4)

Unless the inequalities Xn ≤ Wn ≤ Yn, a.s., n ∈ N , are fulfilled these games
may not have the values. It turns out that without this assumption one may get
existence of the game value in the class of randomized stopping times. Existence
of the value of a zero-sum game with randomized stopping times and discounted
reward Rλ(τ1, τ2) was proved by Yasuda (1986). Rosenberg et al. (2001) showed
that in the class of randomized stopping times game with a reward (3) has the value.
Moreover, they showed that the game value V (τ1, τ2) is the limit of game values
Vλ(τ1, τ2) as λ → 0+ of games with discounted rewards Rλ(τ1, τ2).

Nonzero-sum stopping games with general rewards (5), given below, satisfying
the integrability condition (2), were investigated by Ohtsubo (1987, 1991). Let the
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reward for Player i, i = 1, 2, under the game strategy (τ1, τ2) ∈ M × M be as
follows

Ri (τ1, τ2) = Xi
τi

I{τi<τ j } + Y i
τ j

I{τ j<τi }
+ W i

τi
I{τi =τ j<∞} + lim sup

n→∞
W i

n I{τ1=τ2=∞}, (5)

where sequences of trivariate random variables {(Xi
n, Y i

n,W i
n), n ∈N } are

{Fn, n ∈ N } adapted. They represent players’ rewards associated with their appro-
priate decisions. The aim of each of the players is to make his mean reward as large
as possible. So, they look for a Nash equilibrium strategy (̂τ1, τ̂2) ∈ M × M of the
game G = (M × M, V 1, V 2), presented in a normal form, where players’ payoff
functions V i are their mean rewards, i.e. V i (τ1, τ2) = E(Ri (τ1, τ2)), i = 1, 2.
Thus, for any strategy (τ1, τ2) from M × M we have

V 1(̂τ1, τ̂2) ≥ V 1(τ1, τ̂2) and V 2(̂τ1, τ̂2) ≥ V 2(̂τ1, τ2).

Similarly as in the case of zero-sum stopping games the game G may not have
a Nash equilibrium strategy unless sequences of rewards satisfy some inequalities.
For instance, Ohtsubo (1987) proved existence of Nash equilibrium assuming that
sequences {(Xi

n, Y i
n,W i

n), n ∈ N } satisfy the integrabilty condition (2) and the
inequalities Xi

n ≥ W i
n ≥ Y i

n, a.s., for i = 1, 2, n ∈ N . Other types of constraints
on reward sequences assuring existence of Nash equilibrium in the class of non-
randomized stopping times were considered in Ohtsubo (1991), Ferenstein (1992,
1993), Bobecka and Ferenstein (2001). Finite-horizon stopping games were inves-
tigated in a series of papers, often in the context of best choice problems. A broad
survey of stopping games is given in Nowak and Szajowski (1999), Neumann et al.
(2002).

Two-person nonzero-sum stopping games with rewards (5) and randomized
stopping times were analyzed in Ferenstein (2005). Special type of m-person ran-
domized stopping games with nonrandom rewards, called quitting games, was
considered by Solan and Vieille (2001). They obtained existence of Nash ε-equi-
librium strategies under some inequality constraints on rewards approaching infin-
ity. In Sect. 2 we generalize results obtained in Ferenstein (2005) for two-person
games and compare them with those in Solan and Vieille (2001). In Sect. 3 we ana-
lyze Markov randomized stopping game as a special type of a new nonzero-sum
discounted stochastic game introduced by Nowak (2003). In Sect. 4 we construct
a new model of m-person sequential game which is a mixture of some stochastic
game and stopping game. The considered form of players rewards suggest that it
may be used as a market game.

Section 5 is devoted to some proofs of results presented in Sect. 2.

2 Dynkin game with randomized stopping times

In this section we will present a generalized model of Dynkin stopping game. This
is m-person nonzero-sum noncooperative game in which randomized stopping
times are players’ strategies. We assume that m players (decision makers) observe
sequentially elements of a sequence of random vectors {Rn, n ∈ N } defined on
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(Ω,F, P) and {Fn, n ∈ N } adapted, which determine players’ rewards depending
on the moment of stopping the game and on the collection of players who have
decided to stop it. Precisely, at any moment n each player makes one of the two
possible decisions: either to quit (stop) the game or to continue it. The game is
over (stopped) if at least one of the players decides to quit it. The vector of rewards
at the n − th stage of the game Rn = (Ri

n,D)i∈M, D∈2M\∅
, M = {1, . . . ,m}, is

interpreted so that the random variable Ri
n,D is the reward for the player i if the

game is stopped at the moment n and D is a collection of players who have decided
to quit the game. Players’ decisions are independent and they are based on update
observations, so they are random variables {Fn, n ∈ N } adapted. Precisely, we
admit two representations of players’ strategies: randomized stopping strategies or
randomized stopping times. We assume in the sequel, without loss of generality,
that the underlying probability space (Ω,F, P) on which all considerded random
variables are defined is rich enough to allow randomization.

Denote by Λ the set of randomized stopping times. Let us recall the notion of
randomized stopping time as in Chow et al. (1971), similarly in Ferguson (1967).
Namely, τ ∈ Λ iff there exists a filtration {Un}n∈N such that below conditions
(a)–(c) are satisfied.

(a) Fn ⊂ Un, for n ∈ N ,
(b) P(A|Fn) = P(A|Un), a.s., A ∈ F∞, n ∈ N ,
(c) τ is a stopping time with respect to {Un}n∈N .

Players observe subsequently events in Fn, n ∈ N , and their decisions either
to quit the game or to continue it are independent. Thus, we assume that the set of
game strategies Λ̃ consists of vectors τ̃ = (τ1, . . . , τm) of randomized stopping
times τ1 ∈ Λ, . . . , τm ∈ Λ which are conditionally independent given Fn, for any
n ∈ N . τi is the strategy of the player i, i = 1, . . . ,m. Under the strategy τ̃ ∈ Λ̃
the payoff for the player i is V i (̃τ ), defined as follows

V i (̃τ ) = E
(

Ri
t (̃τ ),D(τ̃ )

)
,

where t (̃τ ) = min{τ1, . . . , τm}, D(̃τ ) = {1 ≤ j ≤ m : τ j = t (̃τ )}.
Let S be the set of randomized stopping strategies, i.e. the set of {Fn}n∈N

adapted random sequences s = {pn}n∈N such that

0 ≤ pn ≤ 1 and
∑
n∈N

pn = 1, a.s. (6)

For a randomized stopping strategy s = {pn}n∈N , pn is to be interpreted as con-
ditional probability that stopping occurs at time n, given the observations in Fn .

Let s̃ = (s1, . . . , sm) ∈ S̃ = Πm
i=1S, si = {pi

n}n∈N , i ∈ M. Then, let us define
the player’s i payoff

Hi (̃s) = E

⎛
⎝∑

n∈N

∑
D∈2M\∅

Ri
n,D

∏
l∈D

pl
n

∏
j /∈D

(
1 − p j

1 − · · · − p j
n

)⎞
⎠ . (7)
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Proposition 1 (i) For s̃ = (s1, . . . , sm) ∈ S̃ there exists τ̃ = (τ1, . . . , τm) ∈ Λ̃
such that

Hi (̃s) = V i (̃τ ), i ∈ M. (8)

(ii) For τ̃ = (τ1, . . . , τm) ∈ Λ̃ there exists s̃ = (s1, . . . , sm) ∈ S̃ such that the
equality (8) is fulfilled.

Because of Proposition 1 we may analyze games with players’ strategies either
from Λ̃ or S̃ depending on the covenience. Now, we will obtain results on exis-
tence of Nash equilibrium strategies of the games G (

Λ̃
) = (

Λ̃, V 1, . . . , V m
)

and
G (

S̃
) = (

S̃, H1, . . . , Hm
)
. We will need the below conditions

(A1) E( sup
n∈N

|Ri
n,D|) < ∞, i ∈ M, D ∈ 2M \ ∅,

(A2) For any n ∈ N , Fn is generated by at most countable set of events {Bn
1 , . . . ,

Bn
kn

} from F, kn ≤ ∞.

Theorem 1 Suppose that Assumptions (A1), (A2) are satisfied. and the sequences
{Ri

n,D}n∈N tend to 0 as n → ∞, in probability, i ∈ M, D ∈ 2M \ ∅. Then, the

game G (
S̃
)

has a Nash equilibrium strategy.

Suppose that in the above theorem we will neglect assumption that reward
sequences approach zero at infinity. Then to assure existence of Nash equilibrium
strategies still we will have to put some constraints on length of the game which
may be done in two ways: either restrictions on quitting probabilities (randomized
stopping strategies) or restrictions on rewards which appear for instance in the
case of random horizon independent on the observed filtration. The below theorem
concerns random-horizon stopping game.

Theorem 2 Suppose that Assumptions (A1), (A2) are fulfilled. Let K be an non-
negative integer valued random variable, independent on {Fn}n∈N , and E(K ) <
∞. Suppose that players’ rewards and payoffs, for τ̃ = (τ1, . . . , τm) ∈ Λ̃, are
defined as follows

V i
K (̃τ ) = E

(
Ri

t (̃τ ),D(̃τ ) I{t (̃τ )≤K }
)
,

where

t (̃τ ) = min{τ1, . . . , τm}, D(̃τ ) = {1 ≤ j ≤ m : τ j = t (̃τ )}.
Then, the game GK

(
Λ̃

) = (
Λ̃, V 1

K , . . . , V m
K

)
has a Nash equilibrium strategy.

Next theorem deals with quasi-finite-horizon game, where we use the below
definition.

Definition 1 Let r = {rn}n∈N be a sequence of random variables {Fn}n∈N adapted
with finite second moments and such that E(

∑∞
n=1 r2

n ) < ∞. Let, for some given
natural L , the subset of randomized stopping strategies SL

r ⊂ S be as follows

SL
r = {

s = {pn}n∈N ∈ S : pn ≤ rn, a.s., for n ≥ L
}
.

For the game G (
S̃L

r

) = (
Πm

i=1SL
r , H1, . . . , Hm

)
called quasi-finite-horizon ran-

domized stopping game we have the following theorem.
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Theorem 3 Suppose that Assumptions (A1), (A2) are fulfilled. Then, the game
G (

S̃L
r

)
has a Nash equilibrium strategy.

In the above theorems we use assumption that the σ -fields of the observed
filtration are countably generated. For instance, in the case when rewards are func-
tions of states of a Markov process it means that the state space of the process
is countable. It would be interesting to get existence type results for uncounable
state space. Solan and Vieille (2001) obtained existence of ε-equilibria without
any restricions on the observed filtration but they had to assume some additional
conditions on rewards. They proved the following

Theorem 4 Assume that the sequence {Rn, n ∈ N } converges to R∞, a.s. Assume
that (A1) is satisfied. Then, for every ε > 0, the game G (

S̃
)

admits an ε-Nash
equilibrium provided that R∞ satisfies the following

C1. Ri
∞,{i} = 1, a.s., for i ∈ M,

C2. Ri
∞,D ≤ 1, a.s., for i ∈ M and D ∈ 2M \ ∅.

Corollary 1 Suppose that Assumption (A1) is satisfied and the sequences
{Ri

n,D}n∈N tend to 0 as n → ∞, a.s., i ∈ M, D ∈ 2M \ ∅. Then, the game

G (
S̃
)

has an ε-Nash equilibrium strategy.

Similarly, theorems on existence of ε-Nash equilibrium of the games GK
(
Λ̃

)
,

G (
S̃L

r

)
are true without Assumption (A2) which was needed to obtain existence

of Nash equilibria in Theorems 2 and 3.

Theorem 5 Suppose that Assumption (A1) is fulfilled. Let K be an nonnegative
integer valued random variable, independent on {Fn}n∈N , and E(K ) < ∞. Then,
for any ε > 0, the game GK

(
Λ̃

)
defined in Theorem 2 admits an ε-Nash equilib-

rium.

Theorem 6 Suppose that Assumptions (A1) is fulfilled. Then, for any ε > 0, the
game G (

S̃L
r

)
admits an ε-Nash equilibrium.

3 Markov stopping games

In this section we give examples of the considered games for which Assumption
(A2) may be skipped and Nash equilibria exist. In these games sequences of rewards
are functions of currently observed states of a homogeneous Markov chain with
Borel state space and probability transitions that are combinations of finitely many
measures on the state space with coefficients depending on the state. This class of
transition probabilities is contained in the class of the ones considered by Nowak
(2003) in his new model of discounted stochastic games. In this new stochastic
game these coefficients depend on the state of the controlled Markov chain and on
the players’ actions. In stopping games, only at most two actions are possible and
there is no players’ influence on the Markov chain evolution. Nevertheless, stop-
ping games may be presented as stochastic games with special type of transition
probabilities. In what follows we present the Markov stopping game as a special
case of a discounted stochastic game considered by Nowak (2003).
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Let us introduce the following elements of Markov stopping games:

(i) E is a nonempty Borel state space, i.e. subset of a separable complete metric
space, say Y, and there exists y0 ∈ Y \ E .

(ii) ξ = {ξn}n≥1 is a homogeneous Markov chain with state space E, determined
on a probability space (Ω,F, P),

(iii) gi : E × ⋂m
i=1{0, 1} → R is an utility function for Player i such that

gi (·, i1, i2, . . . , im) is Borel measurable for each i j ∈ {0,1}, j =1, 2, . . . ,m,
where we interpret i j = 0 (1) as the player j decision to continue (stop) the
game. We assume that there exists some K >0 such that |gi(e, i1, i2, . . . , im)|
≤ K for each e ∈ E, i j ∈ {0, 1}, and j ∈ {1, 2, . . . ,m}. Let β ∈ (0, 1) be
a discount factor such that, referring to our game model from Sect. 2, the
reward for Player i at moment n is as follows

Ri
n,D = βn−1gi (ξn, i1, i2, . . . , im), where D = {1 ≤ j ≤ m : i j = 1}.

(9)

(iv) p is a Borel measurable transition probability from E to E, i.e. if e is a state of
the Markov chain at some moment n, then p(B | e) = P(ξn+1 ∈ B | ξn = e)
for any Borel subset B of E .

(v) Let the set S of game strategies consist of players strategies which are sta-
tionary randomized stopping strategies, i.e. π = (π1, π2, . . . , πm) ∈ S iff
πi : E → [0, 1] are Borel measurable functions, i = 1, 2, . . . ,m. πi (e)
is interpreted as conditional probability that Player i chooses stopping while
observing the current state e and he has not decided to stop earlier. Referring to
denotations of Sect. 2 we have Fn = σ(ξ1, . . . , ξn) and for i = 1, 2, . . . ,m,
n ∈ N

pi
n = πi (ξn)

n−1∏
k=1

(1 − πi (ξk)).

The mean reward function Vi (π)(e) for Player i under the game strategy π
is as follows

Vi (π)(e)= E

⎛
⎝∑

n∈N

⎛
⎝ ∑

D∈2M\∅

Ri
n,D

∏
l∈D

πl(ξn)

⎞
⎠∏

j /∈D

(1 − π j (ξn))�n|ξ1 =e

⎞
⎠,

where �n =
n−1∏
k=1

m∏
p=1
(1 − πp(ξk)).

We now describe our basic assumption similarly as Assumption A1 in Nowak
(2003).

(A3) Assume that B is a countable subset of E and denote C = E \ B. There are
atomless nonnegative measuresµ j on C , j = 1, . . . , k, and nonnegative measures
δt concentrated on subsets of B, t = 1, . . . , l, and there are Borel measurable
functions c j : E → [0, 1], bt : E → [0, 1] such that for all e ∈ E , we have

p(· | e) = q(· | e)+ δ(· | e),
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where δ is the “atomic part” of p of the form

δ(·|e) =
l∑

t=1

bt (e)δt (·)

and the “atomless part” q of p is as follows

q(·|e) =
k∑

j=1

c j (e)µ j (·).

Now, we can state our main result on the considered (discounted) Markov ran-
domized stopping game written in a normal form as G(S) = (S, V1, V2, . . . , Vm).

Theorem 7 Every discounted Markov randomized stopping game G(S) satisfying
(i) through (v) and (A3) has a Nash equilibrium.

Proof We will present the game as a special type of a discounted stochastic game.
Let us consider m-person nonzero-sum stochastic game for which:

(i) X = E ∪ {y0} is a nonempty Borel state space.
(ii) Ai = {0, 1} is the set of actions of each Player i. Let A = A1 × · · · × Am .

(iii) Let Ai (x) = {0, 1} for x ∈ E and Ai (y0) = {1} be sets of actions of Player
i available at state x . Let

A(x) = A1(x)× A2(x)× · · · × Am(x), x ∈ X.

(iv) Let∆ = {(x, a) : x ∈ X, a ∈ A(x)}. ∆ is a Borel subset of X × A. ri : ∆ →
R is a Borel measurable payoff function for Player i such that ri (y0, a) = 0,
ri (x, a) = 0 for x ∈ E , a = (0, 0, . . . , 0) and ri (x, a) = gi (x, a) if x ∈ E
and a = (a1, . . . , am) ∈ A(x) is such that

a1 + a2 + · · · + am ≥ 1.

(v) p̂ is a Borel measurable transition probabilty from X × A to X, called the law
of motions among states, which is the transition probability of the stopped
Markov chain with the absorbing state y0, i.e. p̂(· | x, a) = p(· | x) if x ∈ E,
a = (0, 0, . . . , 0), = δ0(·) if x ∈ E, a1 + a2 + · · · + am ≥ 1, = δ0(·) if
x = y0, where δ0(·) is a measure concentrated at y0.

Let H∞ = X × A × X × · · · be the space of all infinite histories of the
game, endowed with the product σ -algebra. For π = (π1, π2, . . . , πm) ∈ S define
π̂ = (π̂1, π̂2, . . . , π̂m) so that π̂i (x) = πi (x) if x ∈ E, and π̂i (y0) = 1. π̂i (x)
determines the probability distribution on Ai (x) so that it is the probability of the
action 1.

For any profile of strategies π̂ of the players and every initial state X1 = x ∈ E,
let a probability measure P π̂x and a stochastic process {(Xn, Yn)} be defined on H∞
in a canonical way, where the random variables Xn, Yn describe the state and the
actions chosen by the players, respectively, at the nth stage of the game. Now, we
may define the β-discounted expected payoff function to Player i as follows

γi (π̂)(x) = E π̂x

( ∞∑
n=1

βn−1ri (Xn,Yn)

)
,
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where E π̂x is the expectation operator with respect to the probability measure P π̂x .
Now, it is easy to see that (i)–(v) and (A3) assure that assumptions of Theorem

1 in Nowak (2003) are fulfilled. Hence, there exists a Nash equilibrium π̂∗ in the
discounted stochastis game.

It is sufficient to note that

γi (π̂)(x) = Vi (π)(x), x ∈ E .

Thus π∗(x) = π̂∗(x), x ∈ E, is a Nash equilibrium of the game G(S). 
�
It is possible to skip Assumption (A3) and still have existence result on Nash

equilibria using Schauder Fixed Point Theorem but with additional constraints on
stationary strategies π . This result will be presented in future.

4 The model of a market game

In many econometric papers [e.g. Duffie et al. (1994) or Karatzas et al. (1994) or
Nowak and Szajowski (1999)] model of the economy is constructed via stochastic
games or Markov decision processes. We will present model which is a kind of
stochastic game with stopping.

We now describe the game model consisting of the following elements:

(i) (E,B) is a measurable space, E is the state space of the controlled Markov
process.

(ii) Ai is a compact metric space called an action space of the player i, i ∈
{1, . . . ,m} = M. A = A1 × · · · × Am is the action space of all players.

(iii) r i
C : E → R is a measurable function, interpreted as a reward function for

the player i, i ∈ M, C ∈ 2M, C denotes the collection of players who decide
to quit the game.

(iv) Q(· | x, a) is a product measurable transition probability law from E × A
into E .

(v) A0 = {0, 1}, where 0 denotes the decision “to continue the game” and 1 is
the decision “to quit (stop) the game”.

Let∆ = A0 × A denote the set of possible realizations of players’ decisions.∆
will be called the decision space. Suppose that at some stage k, k ≥ 1, realizations
of the state of the process and the players’ decision are, respectively, x ∈ E and
d = (d0, d1) ∈ ∆, where d0 = (d1

0 , . . . , dm
0 ) ∈ Πm

i=1 A0, d1 = (d1
1 , . . . , dm

1 ) ∈ A.
Let us defineψ(d) = ∑m

i=1 di
0.Then, the game is stopped iffψ(d) > 0.Otherwise

the process evolves to another state in E according to the transition probability
law Q(·|x, d1). The fact of stopping the game will be identified with attaining
the absorbing state δ, say. Hence, we may extend the state space E by δ and
accordingly the transition probability law. Thus, the new measurable state space
is (Ẽ, B̃), where Ẽ = E ∪ {δ}, B̃ = σ(B, {δ}), and the new transition probability
law Q̃(· | x, d) is defined as follows. For B ∈ B̃, x ∈ Ẽ, d ∈ ∆ we have

Q̃ (B|x, d) = Q(B \ {δ} | x, d1) if x ∈ E, ψ(d) = 0,

or

Q̃ (B|x, d) = 1 if x ∈ E and ψ(d )̇ > 0 and δ ∈ B or if x = δ ∈ B,
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or

Q̃ (B|x, d) = 0 if x ∈ E, ψ(d )̇ > 0 and δ /∈ B.

Let hn = (x1, d1, . . . , xn−1, dn−1, xn) ∈ Hn = E×∆×Πn−1
i=2 (Ẽ×∆)×Ẽ,n ≥

2, be the history of the game till the moment n and xn is the current state of the pro-
cess at n. Let h1 = x1 ∈ E = H1. Let us define ψn(hn) = ∑n−1

k=1 ψ(dk). Suppose
thatψn(hn) = 0 which means that till the moment n the game has not been stopped.
Let the policy of Player i at the nth stage of the game be γ i

n(hn) ∈ P(A0)⊗P(Ai ),

where P(A0) and P(Ai ) are the sets of probability distributions over A0 and Ai ,
respectively. Thus γ i

n(hn)may be identified with the pair (pi
n(hn), µ

i
n(hn)),where

pi
n(hn) ∈ [0, 1] is the probability that the player i stops the game at n given the

history hn, µ
i
n(hn) is the probability distribution over the action space Ai given the

history hn .Hence, the game strategy at the nth stage γ̃n(·) and the total game strat-
egy γ̃ (·) are such that γ̃n(·) = (γ 1

n (·), . . . , γm
n (·)) and γ̃ (·) = (γ̃1(·), γ̃2(·), . . . ) ,

respectively. In the case when γ i
n(hn) = γ i

n(xn), for every n ∈ N and every
i ∈ M, γ̃ will be called Markov game strategy. Moreover, γ̃ is called stationary
Markov game strategy if γ i

n(xn) = γ i (xn), for any n and i. Let Γ denote the set of
all stationary Markov game strategies, γ = (γ 1, . . . , γm) ∈ Γ and x ∈ E be an
initial state. Let {Xn}n∈N , {Dn}n∈N denote the induced Markov chain and decision
process, respectively. Let us denote, for x ∈ Ẽ , d = (d0, d1) ∈ ∆, i ∈ M, the
reward for the player i as r i (x, d). Hence, r i (x, d) = r i

C(x) if x ∈ E, ψ(d )̇ > 0
and C = {i ∈ M : d0,i = 1, d0 = (d0,1, . . . , d0,m)}, otherwise it is equal to 0.
Now, let the discounted mean reward for the player i be as follows

Hi (γ, x) = Eγx

(∑
n∈N

βn−1r i (Xn, Dn)

)
, (10)

where β ∈ (0, 1) is a discount factor.
One may obtain existence of Nash equilibria of the above game using The-

orem 1 in Nowak (2003) which demands the assumption similar to (A3) on the
decomposition of the transition probability.

5 Proofs of main results

In this section we will prove theorems formulated in Sect. 2. First, let us recall a
general result of game theory which will be used in the proofs, namely the following
theorem (Nash 1951; Fan 1966).

Theorem 8 Suppose that for an m-person nonzero-sum game G = (S1 × · · · ×
Sm, H1, . . . , Hm) the following assumptions are fulfilled:

(i) S1, . . . , Sm are nonempty compact convex subsets of a linear separated topo-
logical space X.

(ii) Functions Hi : S1 × · · · × Sm → R, i = 1, . . . ,m, are continuous.
(iii) Hi (s−i , ·) are quasi-concave, for any s ∈ S1 × · · · × Sm, i = 1, . . . ,m.

Then, the game G has a Nash equilibrium strategy.
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Let X denote the space of random sequences {ξn}n∈N such that ξn ∈ L2(Ω,Fn,

P), n ∈ N , and E
( ∑

n∈N ξ2
n

)
< ∞. X equipped with the inner product 〈ξ, η〉 =∑

n∈N ξnηn is a Hilbert space. Let us note that sets of randomized strategies are
embedded in X, namely we have SL

r ⊂ S ⊂ X. First, we will state results needed
in the proofs of Theorems 1–3.

Lemma 1 Let Assumption (A2) be satisfied. Then,

(i) S is weakly compact in X,
(ii) SL

r is compact in X.

Proof (i) Directly by definition, S is convex and bounded subset of the Hilbert
space X . We will show that S is closed subset of X , which together with the former
assures (i). Thus, let pk = {pk

n}n∈N ∈ S, k = 1, 2, . . . , and p = {pn}n∈N ∈ X
be such ‖pk − p‖2 = E

(∑
n∈N (p

k
n − pn)

2
) → 0 as k → ∞. Hence, there

exists subsequence of naturals {k j } such that, for any n, we have p
k j
n → pn as

j → ∞, a.s. Therefore, pn is Fn-measurable, 0 ≤ pn ≤ 1, a.s. To prove that
p ∈ S it remains to show that

∑
n∈N pn = 1, a.s. For any j and M we may write

p
k j
1 + · · · + p

k j
M + ∑

M<n∈N p
k j
n = 1, which gives us,

p1 + · · · + pM + lim
j→∞

∑
M<n∈N

p
k j
n = 1, a.s. (11)

Denote the limit above as γM .We have γM ≥ γM+1 ≥ 0. Therefore γM → γ ≥ 0.
Note that γ cannot be >0 for

∑
M<n∈N pk

n → 0 as M → ∞, for any k. Hence,
taking M arbitraly large in (11) we get

∑
n∈N pn = 1.

(ii) is proved in Lemma 1 in Ferenstein (2005). 
�
Proof of Theorem 1 We will show that Assumptions (A1), (A2) assure that for the
game G(S̃) the assumptions of Theorem 8 are satisfied. First, note that players’
strategy sets Si = S. S is an nonempty convex subset of the Hilbert space X
and according to Lemma 1 it is weakly compact in X . Moreover, let us note that
for any i ∈ M and s̃ ∈ S̃, Hi (̃s−i , ·) is quasi-concave since Hi is linear with
respect to the player’s i strategy set S. Hence, it remains to show that the func-
tions Hi : S̃ = Πm

i=1S → R, i ∈ M, are weakly continuous. Let {Xn}n∈N be
a sequence of random variables {Fn}n∈N adapted such that E(sup |Xn|) < ∞,
limn→∞ Xn = 0, a.s. Let us note that any payoff Hi is the sum over D ∈ 2M \ ∅

of functions J (̃s), s̃ ∈ S̃, written in the following forms

J (̃s) = E

⎛
⎝∑

n∈N
Xn

∏
i∈D

pi
n

∏
j /∈D

(
1 − p j

1 − · · · − p j
n

)⎞
⎠ . (12)

It is sufficient to prove that J : S̃ → R is weakly continuous. Let s̃k = (sk
1 , . . . , sk

m)

∈ S̃, sk
i = {pi,k

n }n∈N , k = 1, 2, . . . , be a sequence of game strategies converging
weakly to s̃ = (s1, . . . , sm) ∈ S̃,si = {pi

n}n∈N . We will show that J (̃sk) → J (̃s)
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as k → ∞. One may assume that D = {1, . . . , l}, l ∈ M. Then, for any natural
M, J (̃sk) may be written as follows

J (̃sk) = E

⎛
⎝ M∑

n=1

Xn

l∏
i=1

pi,k
n

m∏
j=l+1

(
1 − p j,k

1 − · · · − p j,k
n

)⎞
⎠

+ E

⎛
⎝ ∑

n>M

Xn

l∏
i=1

pi,k
n

m∏
j=l+1

(
1 − p j,k

1 − · · · − p j,k
n

)⎞
⎠

= AM (̃s
k)+ BM (̃s

k), (13)

where AM (̃sk) andBM (̃sk) denote the corresponding expectations above.
Note that for any h ∈ X and i ∈ M we have〈

h, sk
i − si

〉
→ 0 as k → ∞, (14)

since X is Hilbert space. Moreover, from Assumption (A2), for any k and n there
exist sequences of reals αi,k

j,n, α
i
j,n, j = 1, . . . , kn , such that we have, a.s.,

pi,k
n =

kn∑
j=1

α
i,k
j,n IBn

j
and pi

n =
kn∑

j=1

αi
j,n IBn

j
. (15)

Now (14) and (15) assure that for any n and j ≤ kn we have αi,k
j,n − αi

j,n → 0 as
k → ∞ and we may write, for any M,

AM (̃sk) = E

(
M∑

n=1
Xn

kn∑
j=1

l∏
i=1

α
i,k
j,n IBn

j

m∏
j=l+1

(
1 − p j,k

1 − · · · − p j,k
n

))
, (16)

BM (̃sk) = E

( ∑
n>M

Xn

l∏
i=1

pi,k
n

m∏
j=l+1

(
1 − p j,k

1 − · · · − p j,k
n

))
, (17)

|BM (̃sk)| ≤ E

(
sup
n>M

|Xn|
)
. (18)

Now, from (14) to (16) and the assumption that the sequence {Xn}n∈N satisfies
the integrability condition analogous to (A1), for any M we have

lim
k→∞ AM (̃s

k) = AM (̃s). (19)

Moreover, from (7) and assumptions on {Xn}n∈N the sequence {BM (̃sk)}M∈N con-
verges uniformly to 0 as M → ∞. Hence, (13) and (19) give us weak continuity
of J (·) which completes the proof. 
�
Proof of Theorem 2 Suppose (A1), (A2) and that K is a random horizon satisfying
the assumptions of Theorem 2. We will show that for the game GK

(
S̃
)
, equivalent

to GK
(
Λ̃

)
, one may apply Theorem 8. Following the proof of Theorem 1 we

state that the assumptions (i) and (iii) are fulfilled with every player’s strategy set
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S which is weakly compact in X. We will show that player’s payoffs are weakly
compact. Let τ̃ = (τ1, . . . , τm) ∈ Λ̃, and s̃ = (s1, . . . , sm) ∈ S̃ be corresponding
random stopping game strategy, i.e. si = {pi

n}n∈N , pi
n = P(τi = n | Fn), a.s., for

i ∈ M, n ∈ N . Now, the player’s i payoff may be rewritten as follows

V i
K (̃τ ) = E

(
Ri

t (̃τ ),D(̃τ ) I{t (̃τ )≤K }
)

where we have denoted Gn = P(K > n), n = 1, 2, . . .
Now, it is easy to see that Hi is the finite sum of functions of the following

forms

U (̃s) = E

⎛
⎝∑

n∈N
XnGn−1

∏
i∈D

pi
n

∏
j /∈D

(
1 − p j

1 − · · · − p j
n

)⎞
⎠ , s̃ ∈ S̃, (20)

where according to Assumption (A1) a sequence {Xn}n∈N is {Fn}n∈N adapted and
E(sup |Xn|) < ∞. Moreover, XnGn−1 → 0 as n → ∞, a.s., since E(K ) < ∞.
Thus the function U (·) is weakly continuous since it has the same properties as J (·)
in (12) where we insert XnGn−1 instead of Xn, n = 1, 2, . . . . Thus Hi (·), i ∈ M,
are weakly continuous. Hence, the assumption (ii) of Theorem 8 is satisfied for the
game GK (S̃). The proof is completed. 
�
Remark 1 Let us note that in the light of the formula (20) the random horizon of
the randomized stopping game GK (Λ̃) is equivalent to the game G(S̃) in which the
sequence of players’ rewards is discounted with Gn−1, n = 1, 2, . . .

Proof of Theorem 3 Assume that (A1), (A2) are fulfilled and that S̃L
r is the game

strategy set, r ∈ X, L ∈ N . Thanks to Lemma 1(ii) and Theorem 8 we need to
show that Hi (·), i ∈ M, are continuous. It is easy to see that Hi (̃s)may be written
as the finite sum of functions written as follows

J (̃s) = AM (̃s)+ BM (̃s),

with

AM (̃s) = E

⎛
⎝ M∑

n=1

Xn

l∏
i=1

pi
n

m∏
j=l+1

(
1 − p j

1 − · · · − p j
n

)⎞
⎠ ,

BM (̃s) = E

⎛
⎝ ∑

n>M

Xn

l∏
i=1

pi
n

m∏
j=l+1

(
1 − p j

1 − · · · − p j
n

)⎞
⎠ ,

where sequence {Xn}n∈N satisfies integrability assumption corresponding to (A1).
Now, continuity of J (·) is obvious since AM is continuous for any M and BM (̃s) →
0 as M → ∞, uniformly in SL

r . 
�
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