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Abstract

This paper deals with an extension of the concept of correlated strategies to Markov stopping games. The Nash equi-
librium approach to solving nonzero-sum stopping games may give multiple solutions. An arbitrator can suggest to each
player the decision to be applied at each stage based on a joint distribution over the players’ decisions according to some
optimality criterion. This is a form of equilibrium selection. Examples of correlated equilibria in nonzero-sum games
related to the best choice problem are given. Several concepts of criteria for selecting a correlated equilibrium are used.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is devoted to two-person, non-zero sum games based on bilateral stopping of a Markov process.
Let (X,, 7., Px)flvzo, N e NU {0}, be a homogeneous Markov process defined on a probability space
(Q, 7, P) with state space (E, #). The following decision problem was considered by Szajowski [51] and Neu-
mann et al. [28]. At each moment n, n € {1,2,..., N}, the decision makers (henceforth called Player 1 and
Player 2) are able to observe the Markov chain sequentially. Each player has his own utility function
G;: E— R, i=1,2, and at each moment n each decides separately whether to accept or reject the realization
x, of X,,. It is assumed that if both players select the same moment 7 to accept x,,, then a lottery decides which
player gets the right (priority) of acceptance. According to the lottery at moment 7, Player 1 is chosen with
probability o, and Player 2 with probability . = 1 — «,. The player rejected by the lottery may select any other
realization x,, at a later moment n, 1 <n < N. Once accepted a realization cannot be rejected, once rejected it
cannot be reconsidered. If a player has not chosen any realization of the Markov process, he gets
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G = inf,ceG;(x). The aim of each player is to choose a realization in such a way as to maximize his expected
utility. The problem is formulated as a two-person non-zero sum game. In such a model the players choose
their strategies based on their knowledge about the payoff functions and the sets of strategies available to
them.

Reviews of alternative approaches have been made by Szajowski and Nowak [32] and Sakaguchi [41].
Examples of such games related to the secretary problem or a version of poker have been solved by Ben Abde-
laziz and Krichen [2], Enns and Ferenstein [6], Mazalov [21] and Sakaguchi [37,39,40,38,42]. Different aspects
of N person games, assuming players decide about stopping by majority voting, have been investigated by
Kurano, Yasuda, Nakagami [20,56], Szajowski and Yasuda [52] and Ferguson [10].

The concept of Nash equilibrium may lead to multiple solutions and the problem of equilibrium selection
appears. The multiplicity of Nash equilibria in strategic form games restricts the predictive power of the con-
cept of Nash equilibrium (see [34]). Many attempts have been made in the literature to reduce the set of (Nash)
equilibria either by only considering equilibria which satisfy stricter conditions (refinements), or by making a
convincing unique choice out of the set of Nash equilibria (equilibrium selection). The equilibrium selection
problem is discussed by Herings and Peeters [18,19]. Some authors start from any refinement and choose an
equilibrium using a lottery over all the refined equilibria with the same payoff vector. The method they use to
find such lotteries is borrowed from Nash bargaining theory (see [34,35,53]). On the other hand, models of
extensions of games with pre-play or intra-play information and communication allow us to define new
notions of equilibria. The relevant question is how the outcomes change when communication between players
is allowed, or when they are given some kind of pre-play information. This aspect has been discussed by Sorin
[49]. Correlated equilibria have been considered, among other things, in non-zero sum matrix games (see
[1,7,23,26]), sequential games (see [12,25]), stochastic games (see [47,29,31]) and differential games (see
[30,54]). When correlated strategies are adopted, the players may obtain advice from an arbitrator as to which
actions should be taken. There is communication between this arbitrator and the players, which is described
later.

It is well known (see [15]) that a Nash equilibrium is a complicated concept of solution from a computa-
tional point of view, whereas the concept of correlated equilibrium is simple. Correlation means a certain lim-
itation of the freedom of the players in selecting their pure actions, because some process of pre-play
communication is needed to realize a correlated strategy. However, any player is free to choose any pure
action, regardless of the results of the communication process. The aim of this paper is to adopt this approach
to nonzero-sum stopping games.

Section 2.1 gives a review of concepts of solutions to stopping games. Section 2.2 introduces the main con-
cepts of the article: correlated stopping times and the definition of a correlated equilibrium. It is shown that
the set of correlated equilibria is non-empty for the model considered. Section 2.3 considers the problem of
equilibrium selection and presents some criteria that may be used to select an equilibrium. Section 3 reviews
the idea of random priority in stopping games. Section 4 considers the general approach to selecting a corre-
lated equilibrium in a game based on the best choice problem. Section 5 gives examples of equilibrium selec-
tion in this game using various selection criteria. It is not the aim of this paper to give a comprehensive guide
to such criteria, since many such criteria may be used. However, such a comparison may well be a subject of
future research.

2. Concepts of a solution in a stopping game
2.1. Nash equilibria in stopping games

First of all, basic definitions in the field of optimal stopping of stochastic processes are presented. Next,
randomized stopping times are defined and the concept of Nash equilibrium for stopping games is given.
Finally, the concept of correlated stopping times is defined.

In the problem of optimal stopping, the basic class of strategies 7" are Markov times with respect to o-
fields {,97,,}2/:0. We permit that P(t < N) <1 for some 1 € 7" when N € N or P(t < o0o) <1 when N = oo,
which means that it is possible that no state is chosen. Stopping games need a wider class of strategies (see
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[55]). In such games randomized stopping times are used. It is assumed that the probability space is rich
enough to permit the following constructions.

Definition 2.1 (see [55]). A random sequence p = (p,) such that, for each =,

(1) p, is adapted to Z ;

is called a randomized stopping time. The set of all such sequences will be denoted by 2" .

Remark 2.1. Given a strategy p = (p,) € 2" and sequence Ay, 4y, .., 4, of i.i.d. r.v. with uniform distribution
on [0, 1] independent of the Markov process (X, 7 ,, PX)LVZO, Mp)=mnf{l0 <n<N+1:4,<p,} is a stopping
time with respect to the o-fields #, = 6{F,, {4o,41,...,4,}}.

If each random variable in p only takes the values 0 or 1, the strategy is called a pure strategy. In this case
the Markov time t(p) is a Markov time with respect to the filtration {ﬁn},}:jzo (a pure stopping time). In
particular an {#,}-Markov time A corresponds to the strategy p = (p,) with p, = l;;,—,,, where I, is the
indicator function for the set A.

Two players observe a homogeneous Markov process (X, 7 ,,7Px)iv:0 sequentially. Their gain functions

G;:{0,1,...,N} x E x E — R are measurable, bounded, and their strategy sets are the collections of stopping
times 7Y, i=1,2. If 1y € 7) and 1, € 7) are chosen, the gain of the ith player is G(ti,1;) =
Gi(t1 AN12, X oy, X o).

Definition 2.2

(i) A Nash equilibrium in the game %, = (G, G,,. 7, 775) is a pair (z},75) € 7 x 75 such that for all
xek
v1(x) = E.G(1],75) = E,G((11,75),
02 (x) = E,Gy2 (1], 75) = E.Gy(1],72)
for every t; € 77 and for every 1, € 7.

(ii) The strategy sets in the game % can be extended to sets of randomized stopping times 2V x 2). A Nash
equilibrium (¢j,¢3) € 2} x 25 in the mixed extension %, = (G, G, 2),25) of %, where
G, : 2 x 2) — R is defined as

Gi(q91,9,) = Gi(t(q,),7(¢2)) (1)
for i =1,2, such that for all x € E

b1(x) = E.Gi(q].45) > E:Gi(q,,43),

U2(x) = E.Ga(q],45) = E.Gi(q],9,)

for every ¢, € 2} and for every ¢, € 25.

N ={re7V 1> n}, i=1,2, are defined.
These sets of strategies are used in the recursive construction of a solution when the horizon is finite.

For further consideration, the restricted sets of strategies .7

Definition 2.3. A pair (1} ,,7t3,) € 77, x 7% is called an equilibrium point of % at n, if for every 11, € 77,
and for every 1,, € 9‘]2\],,

Ul(naXn) = EXHGI(‘CT,)N‘C;,n) = EXnGl(Tlva;,n) P,—as.,
vy(n,X,) = Eanz(Tﬁ{ﬁ,,,‘E;,,) > EX”GZ(T’{ﬁn,‘cz,,,) P.—a.s.

A Nash equilibrium point at n =0 is a solution of ¥,. The pair (v{(0,x),v5(0,x)) of values is the Nash value
corresponding to (1}, 75) = (1}, 73) € 7 x T3.
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Much research on the solution described by Definition 2.2(i) has been carried out. Let us recall the result by
Ohtsubo [33]. Six measurable, bounded functions ¢;, ¥, and A;, i = 1,2 on E are given. When the ith player
applies stopping time 1, € 7, i = 1,2, his reward function is

Ex[Gi(Tl; TZ)} = Ex[¢(Xri)u(ri<r/) + l,b(X‘r,-)l](r,'<ri) + hi(Xr,-)”(r,:‘r,-<oo) + lim sup hi(Xr,:‘r,:n)]»

where j=1,2,j #i,x € E

Theorem 2.1 (see [33]). Let us assume that \; < h; < ¢p; or ¢; < h; < Y, on E. There exists a Nash equilibrium
(t3,73) of the game Y.

Remark 2.2. Ohtsubo’s proof in [33] gives the construction of a sequence of functions which tends to a Nash
value. The Nash value enables the definition of a Nash equilibrium point. In the finite horizon case an equi-
librium point and its corresponding Nash value can be calculated by a recursive procedure based on the
restricted sets of strategies described immediately above Definition 2.3.

In general, there may be no solutions described by Definition 2.2(i) in a stopping game where the given rela-
tion between payoff functions ¢;, ; and h;, i = 1,2 does not hold. However, in the mixed extension %,, of the
game (see Definition 2.2(ii)), when the gain is defined by (1), the class of stopping games having a solution is
wider. The solution of the randomized extension of the game considered by Ohtsubo in [33] has been given by
Ferenstein [8].

A general two-person non-zero-sum stopping game has been solved by Shmaya et al. [44], who proved the
existence of an e-equilibrium for such games. The existence of a Nash equilibrium in a multi-player infinite
stage stopping game has been proved by Solan and Vieille [46]. The game considered by Fushimi [13] has been
extended to finite horizon stopping games with randomized strategies on a Markov process by Szajowski [S1].
The following definition is an extension of the randomized stopping time used in [51] (see also [5,9,6,36,44]).

Let 2 ={q=(q,) €2:qy=...=q,, =0} for i=1,2. If the horizon is finite and gy =1 by assump-
tion, then the strategy defines a randomized stopping time which is finite with probability 1.

Definition 2.4. A pair (q},,,43,) € 27, x 25, is called an equilibrium point of %y, at n, if for every ¢, , € 2,
and for every ¢,, € 25,

{)l(n7Xﬂ) = EXnGl(qT,n?q;n) > EX”Gl(qL”’q;") Px_a.s.’
B2(n,X,) = Ex, G2(q] . 43,,) =

A Nash equilibrium point at » =0 is a solution of %,,. The pair (7,(0,x), 9,(0,x)) of values is the Nash value
corresponding 10 (g}, 43,) = (¢7,93) € 2} x 25.

EX" 62 (q?m qZ,n) Px_a~s~

Let the gain functions G; : {0,1,...,N} x Ex E— R, i= 1,2, be measurable and bounded. Also, the play-
ers observe the homogeneous Markov process (X, 7 ,, Px)nN:O. The following theorem is a consequence of the
results from [51].

Theorem 2.2. There exists a Nash equilibrium (q7,q3) in the game %y, with finite horizon. An equilibrium point
and its corresponding Nash value can be calculated by a recursive procedure.

2.2. Correlated equilibria in stopping games

The concept of Nash equilibrium leads to multiple equilibria in stopping games, as in matrix games. These
equilibria may give different values of the game to the players. There exists a problem regarding the selection
of an equilibrium acceptable to both players. In 1974 Aumann [1] introduced a correlation scheme in random-
ized strategies for non-zero-sum games extending the concept of Nash equilibrium. Using this approach some
process of pre-play communication and correlation mechanisms are needed to realize such a strategy. The idea
of correlated equilibria for sequential games has been developed by Forges [12] and Myerson [25]. Various
generalisations of correlation devices have been introduced (see [48]). It should be emphasized that in sequen-
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tial games pre-play communication can occur either before the start of the game or at each stage before each
sequential decision. Communication mechanisms can receive some private message from each player at each
stage, and choose for each player a private signal for that stage (communication device, see [11,12,25,22]), or
send one private signal before the beginning of the game (correlation device, see [11]). Private signals may be
based on the current state (weak correlation devices, see [29]) or on previous signals only (autonomous corre-
lation devices, [11]). These approaches are not equivalent (see [11,24,45]). The process of adapting correlated
equilibria to stopping games starts with the idea of correlated stopping times. It should be noted that this def-
inition assumes that a weak communication device is used i.e. that players observe a signal at each moment of
the game and this signal depends only on the state of the process and not on any of the previous signals. One
might consider correlated stopping times which are realized with the aid of a correlation device. In this case,
the correlation device is used to choose two stopping times from the set of randomized stopping times. This
difference is illustrated in Section 5.4.

Definition 2.5. A random sequence ¢ = {(¢},4?,4>)} such that, for each n,

(i) ¢’ is adapted to 7, for i=1,2,3;
(i) 0< ¢ <¢2<qg <1las.

n

is called a correlated stopping strategy. The set of all such sequences will be denoted by 9N,

Remark 2.3. Let 4, A4,,...,Ax be a sequence of 1.i.d. r.v. with uniform distribution on [0, 1] and independent
of the Markov process (X,,7,, Px)nN:()- Denote g, = (q},42,¢}). Correlated stopping times are pairs
(2Ng), 2(q)) of Markov times with respect to the o-fields #, = o{F,,{4o,41,...,4,}} defined by the strat-
egy ¢ = (G,) € 2" as follows:

M) =inf{0<n<N:4,<q} (2)
and

(@) =inf{0<n<N:4,<q¢ or g <4,<q}. (3)
The strategy ¢ will be called the correlation profile and it defines the pair (1'(¢), 2*(¢)).

In intuitive terms, the vector §, = (¢!, 42, ¢>) defines the joint distribution of the actions taken by the players
at moment n: with probability ¢! both players choose the action “stop”, with probability > — g} Player 1 stops
and Player 2 chooses the action “continue”, with probability ¢> — ¢> Player 1 continues and Player 2 stops and
with probability 1 — ¢ both players continue. A correlated strategy ¢ is assumed to be defined by pre-play
communication between the players with the possible aid of an “‘external judge”. We consider general com-
munication devices. The form of the correlation strategy is known to both players.

If at a given moment the distribution over the pairs of actions available to the players defining a correlated
strategy is not concentrated on just one pair of actions, a lottery carried out by the external judge is required to
define the pair of actions to be taken. In such a case, this external judge chooses the pair of actions to be taken
using an appropriate randomization device and communicates to each player separately the action he should
take.

In specific cases, where a player knows the action suggested to the other player given the action suggested to
him, such a correlation can be achieved by the players jointly observing the result of an appropriate random-
ization. This occurs, for example, when the correlation is concentrated on the pairs of actions (s, ¢) (Player 1
stops and Player 2 continues) and (c,s) (Player 1 continues and Player 2 stops).

Remark 2.4. It is assumed that the players are using a weak correlation device and continue to receive signals
from this device, even after one of them has decided to deviate and play independently. Suppose Player j
deviates from the strategy agreed upon. He may wish to follow the recommendation of the judge in some
states (the state is understood as %), but decide to ignore the recommendation in others. In states where he
decides to deviate from the judge’s recommendation, he uses a mixed strategy over the set of possible actions
{c,s}. In this case the actions taken by the players are independent and the probability that the other player,
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Player — j, plays c is simply the marginal probability that he plays ¢ according to the correlated strategy agreed
upon.

Assume that the players agree on the correlated strategy ¢ and the pair of correlated stopping times
associated with this strategy are (1'(§),4*(¢)). In the case Player j wishes to deviate from this strategy, it
follows from the above argument that given his strategy we can define the resulting correlated strategy, qj, as
well as the pair of correlated stopping times associated with this strategy, (1'(g;),4*(¢;)). Denote

Gi(q) = Gi(A' () A *(9),X, A@n q) and Gi(¢;) = Gi(2' (@) A 22(g,), X A2 /) The expected payoffs are
defined as Gi(x,§) = E,G(3) and Gi(x, ( q;)) = E.Gi(g;), respectively.

If each random vector in ¢ takes values in the set % = {(0,0,0),(0,0,1),(0,1,1,),(1,1,1)}, then such a
strategy is called a pure strategy. In this case the pair of random variables ' (9) =
inf{n:g, € {(0,1,1),(1,1,1)}} and A*(g) = inf{n: g, € {(0,0,1),(1,1,1)}} are Markov times with respect
to the filtration {f,,}yzo (pure stopping times for the players). When restriction is made to the subset
&% ={(0,0,0),(1,1,1)}, then the Markov times 2'(3) and /*(g) are equal (1'(¢) = 4*(¢)). In particular an
{Z,}-Markov time 4 corresponds to the strategy ¢ = (¢,) with ¢, = l;,=y, i=1,2,3, n=0,1,.. ., N.
Remark 2.5. Let 0<a,<1 and 0<b,<1 be such that G, = (¢,42,¢>) = (anbn,an,ay +b ayb,) for
n=0,1,...,N. Then /'(4) and 2*(3) are independent random variables. If a,, b, € {0,1} then 2'(§) and 1%(§)
are pure stopping times. In particular an {Z ,}-Markov time A corresponds to the strategy ¢ = (¢,) with
q’; = U{A:n}, = 1,2,3, n:0,1,...,N

Each correlated stopping strategy = = {mg, 71,...,7x} can be presented as

{(”n ST, T T, )}2[ 0= {(ql ‘ﬁ _q:anz _qia 1 _qg)}nN:O' (4)

Denote QN {Ge2V g == =0,k=0,1,....n— 1,4, = ¢% = ¢}, = 1}. The policy § € 2" will be
denoted ¢ and will be called a restricted strategy. The game associated with such a strategy will be called
a restricted game.

Definition 2.6. A correlated stopping strategy ¢* € 9N is called a correlated equilibrium point of %, if
Gi(x.q") = Gi(x, (d))) (5)

for every x € E, g; and i = 1,2. This means a player cannot increase his expected reward by switching his deci-
sion from the one suggested to him by the arbitrator.

For a given ¢ € 2V define

' (1,%,4") = B, Gi(d") Vi o -2 V=)
ul (n,x,g") = Exna((?("))”{),l@):n 2()>ny Hxa=x (6)
u(n,x, f]<n+1>) = E)(,,éi(‘}(n))ﬂ{) Y@)>ni(q n}H{X =x}>

uy(n,x ‘1"“ ) = EXnEi( ))"{) L@g)>n,i2( >n}U{X =x}-

For a given correlated profile, at each stage n € {0,1,..., N}, the players observe the payoffs in the bimatrix
game defined by (u’l’ , ulz’)l Jjea defined by (6), where 4 = {s,c}. Based on the concept of a correlated equilibrium
for such a bimatrix game, one can define rational behaviour at stage n and a correlated equilibrium using a
weak correlation device.

Definition 2.7. A correlated profile §* € 9V is called a correlated rational strategy of %, if every restriction
7" of ¢* to 2¥, n=0,1,...,N, fulfills

Zu nX,g" ) Zu n X, g N on {w: 2! @") =n}, (7a)
Jjed jed
S uwn X g’ = ul X, on {2 G") > n}, (7b)

JjeA Jjed
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S wb X" =Y Wi, X" e on {o: 2(g") = n}, (7¢)
Jjed jeA
>k Xo g =Y WX, g on {0 2@") > n). (7d)
jed Jjead

Theorem 2.3. A correlated rational strategy §* for the finite horizon game defined by Definition 2.7 is equivalent
to a correlated equilibrium point as defined in Definition 2.6.

Proof. The equivalence of these definitions will be proved by recursion. Define

G7(x,4) = EJ[Gi(q)| 7). (®)

From the properties of conditional expectation G7"(x,q) = Ex, G/(§") = G;(X,,4™). For n= N, from the
form of a correlated equilibrium of a bimatrix game, condition (5) is equivalent to the conditions in Definition
2.7. Let us assume that the equivalence is established for n + 1,7 + 2,..., N. Suppose that at moment n Player j
wishes to deviate from ¢* and thereafter plays according to ¢*. In order to consider the stability of §*, we may
assume that he tlakes ‘[l(lel )action that was not recommended to him. The resulting correlated strategy is denoted
q;- Clearly, g; A gt

On{w A<*“)=n}by(8)

&™) Z W (n, X, 3" iy ) (9a)
jed
X,,41) = ui (0%, w7, (9b)
jed
where E = ;j ~ and
w(n Z”j nX, A*<n+1>) ;ﬂ’ (10a)
jed
X0 @5) =Y w0, X,, ¢ (10b)
jed
where n;’ = %, for some correlated strategy ¢* (the convention (6) = 0 is adopted). Let us assume that g*

fulfills (5) for j =1, then from (9a) and (9b) condition (7a) must be satisfied. Similarly, for j =2, from (10a)
and (10b) condltlon (7c) must be satisfied.

On {w: 21(§*"") > n, 22(§""") = n} it follows from the definition of a correlated equ1hbr1um that conditions
(7b) and (7c) are satisfied for Player 1 and 2, respectively. On {w : A' ( ) =n, 12 ( + ) > n} this definition
implies (7a) and (7d) for Player 1 and 2, respectively. Finally, on {o : 2' (¢ *(”)) > n,72(q""") > n} this definition
implies (7c) and (7d) for Player 1 and 2, respectively. If (7a) and (7d) are fulfilled on 27, then (5) is fulfilled on
{w: 24" = n,22(q") = n}. 1t follows that, on 2", the strategy ¢* fulfills Definition 2.7, iff it fulfills
Definition 2.6. By induction these definitions are equivalent. [

A correlated strategy constitutes a correlated equilibrium, if at each moment Player i/ cannot gain by car-
rying out a different action to the action suggested to him, when the other player chooses his action from the
appropriate conditional distribution given the action suggested to Player i.

We treat such solutions as solutions to a noncooperative game. Thus, players are assumed not to make any
binding agreements or threats regarding reactions to any breaking of an agreement.

Definition 2.8. The set of all correlated equilibrium points is denoted CE. For ¢* € CE we define the correlated
value of the game to the players as 3;(x,¢*) = E.G;(¢*) for i =1,2.

Theorem 2.4. The set of correlated equilibrium points CE for the finite horizon stopping games with bounded pay-
offs is not empty.
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Proof. This follows from the fact that any Nash equilibrium satisfies the conditions of a correlated
equilibrium. O

This may also be proven directly using recursion by showing that there exists §*” which satisfies Conditions
(7a) and (7d) for all possible realizations of X, forn=N,N —1,...,0.

Remark 2.6. A proof of the existence of Nash equilibria in two player finite horizon stopping games has been
recursively constructed based on the existence of equilibria in two-by-two bimatrix games (see [S1]). Such
solutions of two-by-two bimatrix games are used in the construction of correlated equilibria in the finite
horizon stopping game. The structure of correlated solutions are described in many papers. Forges [11] has
shown that the set of payoffs associated with this solution concept is a convex polyhedron. The relation
between Nash equilibria and correlated equilibria in bimatrix games has been investigated by Hendrickx et al.
[17], Nau et al. [27] and in two-by-two bimatrix games by Calvé-Armengol [4]. However, these results are not
implemented in the construction of solution for stopping game considered here.

2.3. Selection of a correlated rational equilibria
We consider selection from the following four classes of strategy:

(i) The class of pure equilibria.

(i1) The class of mixed equilibria.
(iii) The class obtained by randomization over mixed equilibria.
(iv) The class of correlated equilibria.

The first three of these classes are subclasses of the class of correlated equilibria.

When selecting an equilibrium from a given class of equilibria, players communicate at the beginning of the
game to decide which strategies should be used. When selecting from the set of pure equilibria no further com-
munication takes place and randomization devices cannot be used. Selecting an equilibrium from the set of
mixed equilibria, no further communication takes place, but players can independently use a randomization
device to choose their actions at each stage. Selecting from the class obtained by randomization over mixed
equilibria, at each stage the players can jointly observe the result of a lottery to decide which mixed equilib-
rium should be played. Finally, selecting from the class of correlated equilibria, an arbitrator may be used. The
arbitrator chooses the actions to be taken according to the appropriate joint distribution and informs each
player individually which action he should take.

Hence, in practical terms pure strategies are the easiest class of strategy to play and correlated equilibria are
the most complex. However, the mathematical properties of the set of correlated equilibrium often make the
problem of selection more tractable.

Theory for selecting an equilibrium in stochastic games has been developed e.g. in [18]. Since the set of
Nash equilibria is a subset of the set of correlated equilibria, it is clear that whenever the problem of the selec-
tion of a Nash equilibrium exists, the problem of the selection of a correlated equilibrium also exists. However,
the notion of correlated equilibrium assumes that communication takes place. Such communication can be
used to make the aims of the players precise and to define the criteria used by players to select a correlated
equilibrium. We now formulate various criteria for selecting correlated equilibria. These criteria select subsets
of CE. The concepts which are used here do not come from the concepts of solution to Nash’s problem of
cooperative bargaining, but were used by Greenwald and Hall [16] for computer learning of equilibria in Mar-
kov games. These four concepts have been chosen by us because they describe natural aims or behaviour of
two decision makers in real life. There are many concepts of equilibrium selection and it is beyond the scope of
this article to formulate a general method or theory of correlated equilibria selection. It is a contribution to the
discussion about selection of solutions in models of competitive decision processes.

Definition 2.9. Let us formullate four different selection criteria for correlated equilibria in a stopping game.
n+ n
Denote I1° = {7, : (#,,q*" ) =¢*"}.
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sc cs

(SU) A Stepwise Utilitarian Correlated Equilibrium §i; = {(z:", 7", 7", )}, is an equilibrium
§={(z,m, 1%, 7)}Y_, € CE such that for every n < N + 1, the sum of the values of the restricted game to

the players is maximized, given this strategy is used at stages k, n <k <N+ 1.

max Z Zn’ Pn,x,qt"") Z ZTE "l (n,x,q%"") on {w: X, =x}, (11)

n,,eH" y0EB i= YO0EB  i=

where B = {ss,sc,cs,cc}.

(SE) A Stepwise Egahtarlan Correlated Equilibrium g5 = {(n*", n*", ", n;;“)}nN o is an equilibrium
g = {(m, 5, 7%, 1<)}, € CE such that for every n < N + 1, the minimum value is maximized, given this
strategy is used at stages k, n <k <N+ 1,

24’ (n, x, QE(M) = m11r21} 7"l (n, x, QE(M)) on {w: X, =x}. (12)
ie{ 96€B

max min b
_Hes
7pelt i€{l1,2} 10cB

cs n

(SR) A Stepw1se Repubhcan Correlated Equilibrium ¢ = {(z", =", " 7r“)}N0 is an equilibrium

n’n’n’n

g ={(m, e, n, n)} € CE such that for every n < N + | the maximum value of the restricted game is

max1mlzed given this strategy is used at stages k, n <k <N+ 1.

max max °ul(n,x,q2"") = max S 7w (n,x, ") on {w: X, =x}. (13)
7,enf ie{1,2} 10eB ie{l1,2} ocB

(SL-i) A Stepw1se Libertarian i Correlated Equilibrium ¢; = {(z*", 7", 7", 7*“)}"_, is an equilibrium

g ={(z*,m,n, 1)}, € CE such that for every n < N+ 1 the value of the restricted game to Player i is

n’n

max1mlzed, given this strategy is used at stages k,n<k<N-+1.

max wul’ (n, ’qu) Zn ul’(n x,Ale)) on {w:X, =x}. (14)

L
€l y0€B y0€B

If the horizon is finite, then a correlated equilibrium which fulfills one of the criterion (11)—(14) can be con-
structed recursively.

A solution which fulfills one of these stepwise criterion does not have to be optimal according to the cor-
responding global criterion. This is illustrated in the example below in which the players assess the value of the
objects differently and further explained in Section 5.4, which considers egalitarian equilibria. In the latter
case, the objective function is non-linear and hence stepwise optimization does not necessarily lead to global
optimization, even when players have the same assessment of the value of an object. In the case of the Liber-
tarian i criterion, it follows from the properties of dynamic programming that a global optimal correlated
strategy must be a stepwise optimal strategy. However, there may not be a unique stepwise optimal strategy
and in this case a stepwise optimal strategy is not necessarily globally optimal. This is illustrated in Section 5.3,
which considers utilitarian equilibria.

Example 2.7. Let the driven process &, of the game have three states 1, 2, 3 and the game will be played by two
players at ¢t =1,2,3. The process starts at =1 with state ; =1, and takes & =2 and &; = 3. The utility
functions Gy(t,i,j) are results of adaptation of the individual utility function defined on the state space to
evaluation of the observed states of the process and equal priority. The individual evaluation of the states are
{3.6;2.2;4} by Player 1 and {2.6;2.4;4} by Player 2 for states {1,2,3}, respectively. The stepwise utilitarian
value according to Definition 2.9 is (4,2.6). Global optimization over all correlated strategies leads to the
correlated value (3.6,4).

For bounded payoff functions the set of randomized equilibria is not empty (see [9,33]). This implies that
the set of correlated equilibria is non-empty, convex and compact. Based on these facts we come to the fol-
lowing conclusion.

Theorem 2.5. The set of correlated equilibrium points satisfying any one of the given criteria above is not
empty.
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Using these criteria in the finite horizon case, the appropriate correlated equilibria can be obtained by
recursively solving a set of linear programming problems. In the case of libertarian and utilitarian equilibria,
the linear objective functions are given by Egs. (14) and (11), respectively. The constraints are those used in
Definition 2.7. Since the feasible set of this linear programming problem is non-empty (a correlated rational
strategy always exists), such solutions always exist. In the case of the republican equilibrium, at each stage of
the recursion we can solve the following two linear programming problems:

(1) The maximization of the value of the game to Player 1 subject to the constraints from Definition 2.7,
together with the constraint that the value of the game to Player 1 is at least the value of the game to
Player 2.

(2) The maximization of the value of the game to Player 2 subject to the constraints from Definition 2.7,
together with the constraint that the value of the game to Player 2 is at least the value of the game to
Player 1.

In order to find a correlated strategy satisfying the republican criterion, it suffices to choose an appropriate
solution from the solutions to these two problems (maximizing the maximum value). It should be noted that
the union of the feasible sets of these two linear programming problems is the set of correlated rational strat-
egies. Hence, at least one of these feasible sets must be non-empty. In the case where only one feasible set is
non-empty, the solution of the corresponding linear programming problem maximizes the maximum value.

An analogical procedure using two linear programming problems can be used to find a correlated equilib-
rium satisfying the egalitarian criterion. When the objective function is defined by the maximization of the
value of the game to Player i, then the additional constraint in the linear programming problem is that the
value of the game to Player i is not greater than the value of the game to the other Player.

It should be noted that although the existence of correlated equilibria of the types given above is guaran-
teed, it is possible that such equilibria are not unique.

3. Random priority in Markov stopping games

The problem of bilateral stopping of a Markov process can be used to model the decision process in which
two decision makers observe a Markov sequence sequentially to choose a state. If at some moment both would
like to accept the same state, then a random device selects one of them (see [28,51]). Let us recall the math-
ematical formulation of the problem.

Let (X,, 7., Px)f;/:0 be a homogeneous Markov process defined on a probability space (2, 7, P) with a state
space (E, #). At each moment n =0, 1,..., N the decision makers (henceforth called Player 1 and Player 2) are
able to observe the Markov chain sequentially. Each player has his own utility function G; : E — R, i=1,2,
and at each moment 7 each decides separately whether to accept or reject the realization x,, of X,,. We assume
the G; are measurable and bounded. If it happens that both players have selected the same moment n to accept
X,, then a lottery decides which player gets the right (priority) of acceptance. According to the lottery at
moment 7, Player 1 is chosen with probability «, and Player 2 with probability f, = 1 — a,. The player rejected
by the lottery may select any other realization x,, at any later moment n, T < n < N. Once accepted a realization
cannot be rejected, once rejected it cannot be reconsidered. If a player does not choose any realization of the
Markov process, he gets G; = inf,¢G;(x). The aim of each player is to choose a realization which maximizes
his expected utility. As in Section 2.2, correlated equilibria are adapted to this problem.

IY ={re 9" : 1>k}, where & is the set of stopping times with respect to {#,}" . One can define the
set of strategies AV = {(1'(q),{c!}):q € 2", {c!} € &V | for every n} and MY = {(2°(9),{0?}) : g € 2",

{62} € &V, for every n} for Player 1 and Player 2, respectively.

n+1

Let &, &y, .., &, be ii.d.r.v. uniformly distributed on [0, 1] and independent of VY #, and the lottery be
given by & = (o, 1, ..., 0y). Denote #, = a{H,, &, &y 6t

Definition 3.1. For every pair (s, 1) € AY x MV define

TP 15 1 1
u(s ) = 2@ g<eay T 4 @D, <) T 020N 000D i @=2a) T 920 0 @s20)
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and
2
w(st) = (g MW@y ()}Jr() (Q)“{Cv ) >%2(, }JFO'I ”{cz 1220, })”{A() (E])}+6),1(51)H{).1(q)<,12(q)}'

The Markov times 7,(s, t) and 7,(s, t) are the selection times of Player 1 and Player 2 when they use strategies
s € A and t € M, respectively, and the lottery is &.

For each (s,t) € 1~\N~ x MV and given & the payoff function for the ith player is defined as
fi(s,1) = Gi(X ). Let Ri(x, s,t) = Efi(s, 1) = E.G;(X 1)) be the expected gain of Player i, when the players
use (s,1).

Let 7;(n,X,) = esssup,.,vEx,G,(X,) and ¢* be a stopping time such that ;(0,x) = E,G;(X ) for every
xelk, i=1,2 Let I' ={x€E:h(nx)=Gi(x)}. We have ¢ =inf{n:X, €'} (cf. [43]). Denote

=inf{n >k:X,eI,}. The restricted sets of strategies AV ={(' @), {o'}):q€e 2",
{5:'} € ¥V, for every n} and MY = {(J%(g),{07?}) : g € 2", {07?} € &, for every n} for Player 1 and
Player 2, respectively, in the random priority game will be considered, taking into account the definition of

optimal behaviour of the players when one player has chosen a state. For a given g € 2" the pair of strategies
(5,1) € AY x MY is defined. Let

¢(q) = @1(§,{) =G (X )”{; @)<2(q }+h (/1 (@),X; 2( )” Y@)>2@)}

+[GI(XM Vo100 + (21 (@) X ) (1 = a1, } o (15a)
?,(q) = (/’2(§’»f) = Gz(X;?(q))”{;F(qwﬂ o T hz(/1 (q )aXﬂ(*))”{;Z(A)»‘(z])}

+ [GZ(XM )1 = o;1) + ha(A (@), X 1)) %10 )} [P (15b)
for each ¢ € 2", where h;(n, X,) = esssuptec,A Ey, G ( .) =Eyx hi(n+1,X,,1). Denote R;(x,q) = E,,(¢§) for
every x € E, i=1,2. For a given g € 2", n ,1,...,N, deﬁne

ulv(n,x,q) - EXn(pi(A)l]{)](q) 22(q)=nXn=x}>
”,S-C(nvxa q) = Ey, @i(fl)U{zl(q):n,zz(q)>n,x,,:x},
cs - - (16)
u;'(n,x,q) = Ey, Pi(‘])”{/zl(q)>n/ (§)=nX,=x}>
u(n,x,q) = EXn‘/’i(@)ﬂul(qu (@)>nX,=x}"

Definition 3.2. A pair of strategies (%*,f*) € AY x MY is a correlated equilibrium in the random priority
stopping game if ¢* € 2" fulfills the conditions given in Definition 2.7 with u; defined by (16).

The correctness of the definition is a consequence of Theorem 2.3.
4. Selection of equilibria in a game based on the best choice problem

We now consider examples based on a game theoretic version of the best choice problem. There are many
versions of the problem considered by many authors, e.g. Ben Abdelaziz and Krichen [2], Fushimi [13], Maza-
lov [21], Sakaguchi [37,39,40], Szajowski [51] (see [32,41] for reviews of alternative approaches). Two players
observe a sequence of N objects presented in random order. The nth object is observed at moment n,
(1 < n < N). The objective of each player is to obtain the most valuable object. They can only observe the rel-
ative rank of an object with respect to the objects already seen. If the nth object is the kth best seen so far, then
its relative rank R, is equal to k. At each moment n both players have two possible actions, reject the object
and continue inspecting (denoted ¢) and accept the object (denoted s). Each player can obtain at most one
object and on obtaining an object ceases searching. If just one player wishes to accept an object, then he
obtains that object. If both players wish to obtain an object, then Player 1 obtains it with probability o,
o € (0,1), otherwise Player 2 obtains it. The player not obtaining the object is free to carry on inspecting
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the sequence. Without loss of generality we can assume o > 0.5. Players should only accept an object, if its
relative rank is 1 (it is the best object seen so far). Such objects will be known as candidates.

The payoff matrix for the game played when both players are still searching and a candidate appears at
moment n is denoted by M,. A vector of values of such a game to the players is denoted by
(v1(n,q), v2(n,q)). Let W, denote the optimal expected reward of a lone searcher after rejecting n objects.
Considering the arrival time of the first candidate after time n, denoted by k, uf(n,q) = Y p_,., ZL(,f’jf;,

€ {1,2}. It should be noted that the functions «{° and v; are independent of x,, and this is reflected in the sim-

plified notation. M,, is given by
= (110000 wmaw@M®):<%+m—w VW )
ui(n,q), us (n,q)
(17)

ui'(n, ), us’(n,q) i (n, ), us(n,q) W,

2|=

It can be seen that in order to solve the 2-player game we must first solve the problem faced by a lone searcher.
This is the standard secretary (best choice) problem. For finite N the optimal reward function W, can be cal-
culated by recursion. We have W, =0 and

-hHw, 1
W1 :u—k—max{ﬁ, Wn}.
n n N

It can be shown that a lone searcher should accept a candidate iff n > n”*, where n” is the smallest n satisfying
% = W,. The values of the game played at a decision point, v;(n,§), and the expected rewards from future
search, u¢“(n, ¢), are also calculated recursively. The criteria for selecting an equilibrium are based on the ex-
pected rewards from future search u¢“(n,g). Conditioning on whether the nth object is a candidate or not, it
follows that

,C R 1 . n—1 L
uIL (n_17Q):;vi(naQ)+ n ( q)

For ease of defining an equilibrium, it is assumed that if a player is indifferent to accepting and rejecting an
object, then he accepts that object. The pair of actions (s, s) constitutes a Nash equilibrium in the game given
by M, when uj(n,q) = uf (n g) and u5'(n,q) = us(n,q). It follows that (s,s) is a Nash equilibrium when
n/N = W,. The strategy pair (s,c) is a Nash equilibrium when u}°(n,¢) = u{(n,q) and u(n,q) > u5(n,q).
It follows that u{“(n,q) < n/N < W,. Similarly, (c,s) is a Nash equlhbrlum when u5°(n,q) < n/N < W,. The
strategy pair (¢, ¢) is a Nash equilibrium when n/N < u$“(n, g) for i € {1,2}.

It can be shown by recursion that the (intuitively clear) inequality u{°(n,g) < W, holds for n < N. Hence,
con51der1ng the conditions given above, there are 2 pure Nash equilibria when u{‘(n,q) < n/N < W, and

u5¢(n,g) < n/N. In all other cases there is exactly one Nash equilibrium in pure strategies. In this case this
is the unique correlated equilibrium. Hence, there is no problem of equilibrium selection.

The conditions for a correlated equilibrium in the game given by M, can be expressed as follows:

Sl (1,G) — u (0,)] + e[ (n, ) — o5 (n,)

7| ] 1> 0

R (1,3) — w5, ) + 71, ) — (1, 8)] > 0,

70 (1, ) — w5 (n, )] + 1 (1, ) — 150, 3)] > 0, (18)
T (1,3) — w3 (m, )] + 7 (1, 3) — P (1,3)] > O

When both (c, s) and (s, ¢) constitute Nash equilibria it follows that 7’ and n¢° are always associated with non-
negative coefficients in the inequalities given above. Hence, in this case, any distribution satisfying
¢ 4+ n¢ =1 defines a correlated equilibrium (this is a sufficient, but not necessary, condition).

For ﬁmte N the definition of a correlated equilibrium based on one of the criteria given leads to a set of
linear programming problems to be solved by recursion The constraints are given by the inequalities (18),
together with the condltlons required for 7, ©¥°, 7% and 7% to define a probability distribution referred to

n’n’n

asm, = (7%, ', 1%, 1°°). The objective function is defined by the criterion used. In the remainder of this article,

n?n? n7 n

distributions which are concentrated at one point will often be described by the pair of actions taken. For
example the pair of actions (c,s) taken at moment n corresponds to =, = (0,0, 1,0).
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5. Examples of equilibrium selection
In this section we consider equilibrium selection from the following sets

(1) The class of pure equilibria.

(i1) The class of mixed equilibria.
(iii) The class obtained by randomization over mixed equilibria.
(iv) The class of correlated equilibria.

The four selection criteria introduced in Section 2.3 are adopted.
5.1. Libertarian equilibria

5.1.1. Libertarian 1 equilibria

At a Stepwise Libertarian 1 Equilibrium, u{°(n — 1, ¢) is maximized at each step in the recursion procedure.
It can be seen from Eq. (4) that this is equivalent to the maximization of v|(n, g).

We first consider selection from the class of pure strategies. From the conditions for a Nash equilibria, it
follows that for n > n*, the only equilibrium is given by the pair (s,s). This strategy pair constitutes the equi-
librium chosen for n > n*, independently of the criterion used.

Independently of n and «, it follows from Eq. (17) and the equilibrium conditions that whenever (c, s) and
(s,c) are both Nash equilibria, Player 1 obtains his maximum payoff when the strategy pair (c,s) is chosen.
Since u{‘(n,g;,) > u5°(n, ¢}, ), the general form of the Stepwise Libertarian 1 Equilibrium is: (c,c) for n <nj,
(c,s) for ny <n<n" and (s,s) for n > n".

Since (¢, s) is a Nash equilibrium, it is also a correlated equilibrium. Whenever the problem of equilibrium
selection exists, arguing as above, Player’s 1 payoff is maximized by selecting this strategy pair. Hence, the
Stepwise Libertarian 1 Equilibrium from the class of pure strategies is also the Stepwise Libertarian 1 Equi-
librium from the class of correlated equilibria (and hence from any of the classes considered). Since this is the
unique Stepwise Libertarian 1 Equilibrium, it follows by the principles of dynamic programming, that it is also
the Global Libertarian 1 Equilibrium.

5.1.2. Libertarian 2 equilibria

The form of the Stepwise Libertarian 2 Equilibrium depends on the value of «. Arguing as above, whenever
two pure equilibria exist the stepwise choice criterion chooses the strategy pair (s, c), which maximizes the
expected payoff of Player 2. Define Ay to be the set of o for which the expected payoff of Player 1 is greater
than the expected payoff of Player 2 at any equilibrium when the horizon is N (see [51]). If a € A, the Stepwise
Libertarian 2 Equilibrium is of the following form: (c,¢) for n <ny, (c,s) for n; < n <ny, (s,c) for n, < n<n”
and (s,s) for n > n*. Otherwise, the Stepwise Libertarian 2 Equilibrium is of the form: (¢, ¢) for n <ny, (s, ¢) for
ny <n<n"and (s,s) for n > n*. Since the Stepwise Libertarian 2 Equilibrium is unique, it is also the Global
Libertarian 2 Equilibrium. Henceforth, such equilibria will simply be referred to as Libertarian Equilibria.

It should be noted that at moments when there are two Nash equilibria, at least one of the players accepts a
candidate. At such points the sum of the expected payoffs of the players on the appearance of a candidate is
n/N + W, regardless of which player obtains such a candidate. It follows that the stepwise maximization of
one player’s expected payoff is equivalent to the stepwise minimization of the other player’s expected payoff
subject to the equilibrium constraints.

5.1.3. Asymptotic solutions
Let ¢ be the proportion of objects already observed (¢ is referred to as the time). It follows that the asymp-
totic forms of these equilibria when N — oo are of the form (see [51]):

1 1

(1) Libertarian 1: (c,c) for t <ty, (¢c,s) for t; <t<e” and (s,s) fort > e .
(2) Libertarian 2 for « < o~ 0.5299: (¢, ¢) for t < t, (s,¢) for t» <t <e ' and (s,s) for t > e .
(3) Libertarian 2 for « > oy: (c,c) for 1 <13, (c,s) for t3 <t <t, (s,¢) for t <t <e ' and (s,5) for t = e !,
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where t; = e T2 1, = ¢~ (-2 (1=)/2 _ 5/2]. The values of the games to the players at these equi-

libria are as follows:

> t3 = exp[e

(1) Libertarian 1: #5°(0,4;) = e™' — 202 450, 47) = 1,
(2) Libertarian 2 for o < og: u$°(0,4;) = t, us£(0,4;) = e ! — %
(3) Libertarian 2 for o> og: u$¢(0,4;) = e~ — [e2 — 1]t3, u(0,4;) = ts.

5.2. Republican equilibria

A Stepwise Republican Equilibrium can be obtained by choosing the appropriate Libertarian Equilibrium.
When o = 0.5, the Libertarian 1 and Libertarian 2 Equilibria are both Stepwise Republican Equilibria. When
o> 0.5, the Libertarian 1 Equilibrium defines the unique Stepwise Republican Equilibrium. At each moment
the future expected reward of the player whose payoff is being maximized is at least as great as the future
expected reward of the other player. It follows that these stepwise equilibria are the only Global Republican
Equilibria.

5.3. Utilitarian equilibria
The sum 3 ,u%(n — 1,4;,) can be maximized by maximizing the sum > v;(n, §};) recursively.

5.3.1. Stepwise utilitarian equilibria in the class of pure equilibria

Suppose (¢, s) and (s, c) are both Nash equilibria at moment 7. From the form of the payoff matrix, it fol-
lows that the sum of the expected payoffs is independent of the Nash equilibrium chosen. Therefore, in the
class of pure equilibria any pure equilibrium is a Stepwise Utilitarian Equilibrium. However, the value of such
a game (and hence the global form of the equilibrium) depends on the equilibrium chosen. Hence, a Stepwise
Utilitarian Equilibrium need not be a Global Utilitarian Equilibrium.

5.3.2. Stepwise utilitarian equilibria in the classes of mixed equilibria and randomization over mixed equilibria

Now consider the class of mixed strategies. Suppose both (¢, s) and (s, ¢) are Nash equilibria at moment 7.
At any essentially mixed equilibrium there is a positive probability that the strategy pair (c,¢) is played. It fol-
lows that at such an equilibrium the sum of the expected payoffs is less than the sum of the expected payoffs at
a pure equilibrium. Hence, the set of Stepwise Ultilitarian Equilibria is simply the set of pure equilibria.

Arguing in a similar manner, the set of Stepwise Utilitarian Equilibria in the class of randomizations over
the set of mixed equilibria are randomizations satisfying ©i° + 7% = 1 (randomizations concentrated on the
pure equilibria).

5.3.3. Stepwise utilitarian equilibria in the class of correlated equilibria
Whenever both (¢, s) and (s, ¢) are Nash equilibria, the linear programming problem to be solved is the max-
imization of

2
S uilmay) = (W2 ) (w3 4w+ 70) + [w (0, 3) + (0, 3]

i=1

subject to the constraints given by the system of inequalities given by (18). The maximum (obtained by setting
¥ + ¢ + n = 1) is attainable, since any correlation with 7° 4 2 = 1 satisfies the constraints. It follows
that ¢ = 0. Also, from the equilibrium conditions

£ < min {ﬂi;"[zﬁ“(nié) — @) 70 () ~ q)}}.
ui(n,q) — ui’(n,q) uy (n,q) —us'(n,q)
It should be noted that at each moment there are an infinite number of correlations satisfying the optimality
criterion.




D.M. Ramsey, K. Szajowski | European Journal of Operational Research 184 (2008) 185-206 199

5.3.4. Global utilitarian equilibria

Now we derive the form of a correlated equilibrium which is always a Global Utilitarian Equilibrium. Con-
sider two equilibria where at least one player always accepts a candidate for n > ny. Furthermore, suppose that
when n = 5y at the first equilibrium (denoted §') at least one player accepts a candidate and at the other equi-
librium (denoted §?) there is a positive probability that neither candidate accepts a candidate. From the argu-
ments presented above u¢¢(ng, q') + us (no, ') = us®(no, ¢*) + u§ (ng, ¢*). Conditional on the event that both
players reject a candidate at moment #n, at the second equilibrium, the sum of expected payoffs is given by
uf(ng — 1,8%) + us (no — 1,4%) = us¢(no, ¢%) + us (no, ¢*). At the first equilibrium

1o

cc ~ cc ~ —1 cc ~ cc ~ 1 no
o = 1.4') (0 = 1.4') = (n0.') + 5 (0,00 4 [

At this equilibrium at least one of the two pairs of actions (c,s) and (s, ¢) must constitute a Nash equilibrium.
Suppose (¢, s) constitutes a Nash equilibrium. From the stability conditions it follows that ny/N > u$(no,q").
It can also be shown by induction that W, > u{(n, ¢'). Hence, it follows that the sum of the expected future
payoffs at moment ny — 1 is greater at the first equilibrium than at the second equilibrium. The proof that this
inequality is also satisfied when (s, ¢) constitutes a Nash equilibrium is analogous.

It follows that an equilibrium which maximizes the period of time over which at least one player accepts a
candidate is a Global Utilitarian Equilibrium. Considering the form of the payoff matrices and the stability
conditions for at least one of (c,s) and (s, ¢) to be a Nash equilibrium, it can be seen that this can be achieved
by minimizing the expected reward of the player with the least expected reward subject to the equilibrium con-
ditions. This is equivalent to maximising the expected reward of the player with the greatest expected reward
(i.e. the Libertarian 1 Equilibrium). However, it can be shown that, for example, the Libertarian 2 Equilibrium
for N =20, o = 0.6 is also a Global Utilitarian Equilibrium. However, the asymptotic form of a Global Util-
itarian Equilibrium for N — oo is unique (ignoring deviations on a set of zero measure). This is due to the fact
that deviations will increase the payoff of the player obtaining the smaller payoff and hence decrease the length
of the interval on which at least one player accepts a candidate.

It follows that the Libertarian 1 Equilibrium is a Global Utilitarian Equilibrium for all the classes of strat-
egies considered.

5.4. Egalitarian equilibria

Szajowski [51] presents examples of equilibria which equalize the values of the game to the players. Such
equilibria can be treated as a correlated equilibrium according to the definition of Solan and Vohra [48]. These
strategies derived are not Stepwise Egalitarian Equilibria, since the appropriate maximization is not carried
out at each moment 7.

5.4.1. Stepwise egalitarian equilibria in the class of pure equilibria

As in the case of Libertarian Equilibria, the form of such an equilibrium depends on «. Suppose o € Ay. It
follows that the Libertarian 2 Equilibrium is the unique Stepwise Egalitarian Equilibrium and hence the
unique Global Egalitarian Equilibrium.

Now suppose « & Ay and both (¢, s) and (s, ¢) are pure Nash equilibrium for n; <n < n*. In this case, step-
wise application of the choice criterion selects (c,s) when u$‘(n,q) > ui°(n,g) and (s,c¢) when
ust(n,q) < us(n,q). When u (n, §) = ui(n, §), either equilibrium can be chosen. We now show that the players
alternate between (¢, ) and (s, ¢) for n; <n < n, (the initial strategy pair to be used on this set depends on n and
o and can determined by the recursive procedure, it is assumed that the final strategy pair used on this set is
(¢,s)) and (s,¢) is used when n, <n <n". To prove this statement, it should be noted that from the selection
criterion n, is defined to be the first moment at which Player 2’s expected payoff from future search exceeds
Player 1’s expected payoff from future search at the Libertarian 2 Equilibrium. Hence, (s, ¢) satisfies the selec-
tion criterion for n, < n <n*. We now show that the strategy pair used should alternate on the set n; <n < n..
First note that by assumption u{“(ny,q) < us(n2,q) and u{(na+1,4) = uy(n, +1,4). Assume that
u(n,q) <usf(n,q) and uf(n+1,3) = u(n+1,g). It follows that (c,s) and (s,c¢) should be chosen at
moments # and n + 1, respectively. Thus,
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cc ~ cc ~ 1 I’l+1 cc 0 cc 0 1 Wﬂ
uy(n, q) — us (’77‘1):n_’_1( N = W +nfui(n+1,q) — uj (”+1’q)]> >N_n++i'

Hence,

= 1,8) (= 1,8) = (W (= D0, d) — w5 (1,9)])

1 n 1 Wn+l 2Wn+l 1
= (w, -2 rm-1)|~— - >0
n( N+(n ){N n—l—l}) nin+1) nN

This follows from the equilibrium conditions W, = W, > %

Similarly, it can be shown that if u{°(n,g) > u5°(n,¢) and u*(n+1,9) < u5(n+1,g), then u(n —1,9) <
usf(n—1,g). It follows by reverse induction that the equilibrium is of the required form. It should be noted
that since, in general, values of the game to the players cannot be equalized, at moment »; either (c,s) or
(s,¢) could be a unique Nash equilibrium.

5.4.2. Global egalitarian equilibria in the class of pure equilibria

In the case where o & Ay, a Stepwise Egalitarian Equilibrium is not necessarily a Global Egalitarian Equi-
librium. For example for N = 35 and o = 0.5, the following strategy is a Stepwise Egalitarian Equilibrium (by
symmetry the other can be obtained by reversing the role of the players): (s,s) for n = 14, (¢,s) for n =11 and
n=13, (s,¢) for n=12 and (c¢,¢) for n<10. The values of the game to the players are
u$€(0,4) = 0.2994, u5(0,g) = 0.2959.

In general, to derive the Global Egalitarian Equilibrium in pure equilibria, one should consider a set of
order 2* pure equilibria, where k is the maximum number of moments at which two pure equilibria exist.
In particular cases the number of equilibria to be considered can be reduced by simple arguments.

Considering the example given above, taking into account the symmetry of the game and the fact that the
Global Utilitarian Equilibrium cannot be a Global Egalitarian Equilibrium, we must consider the three equi-
libria at which between n = 11 and n = 13, (¢, s) is played twice and (s, c) once. Numerical calculation of these
equilibria indicates that one of the two Global Egalitarian Equilibria is as follows (the other is obtained by
reversing the role of the players): (s,s) for n > 14, (¢,s) for n = 12,13, (s,¢) for n =11, (¢,c) for n < 10. The
values of the game to the players are u{°(0,§) = 0.2962, u5°(0,g) = 0.2990.

Due to the discrete nature of the search space, it seems quite possible that any algorithm for finding the
Global Egalitarian Equilibrium will be of exponential complexity with respect to N (since any stepwise equi-
librium can be calculated by recursion with a bounded number of operations at each step, the calculation of
such an equilibrium will be of linear complexity).

5.4.3. Stepwise egalitarian equilibria in the class of mixed equilibria

Arguing as before, if o € 4y, then the Libertarian 2 Equilibrium is the unique Stepwise (and Global) Egal-
itarian Equilibrium.

When both (¢, s) and (s, ¢) are Nash equilibria at moment #, there also exists a mixed equilibrium at which
Player 1 plays s with probability p,, and Player 2 plays s with probability r, (0 < p,, r, <1, p, and r,, depend on
the exact form of the equilibrium used, but for notational ease this dependence is not reflected in the notation).
From the Bishop—Cannings Theorem [3], it can be shown that when a candidate appears at moment #n the
expected payoff of Player 1 is given by

(I=r)n _n

cC an
Wy + (1 —r)uf(n,q) =r, N—I— (1-—a)yw, —|—T >N.

It follows that
. n— Nu$“(n, q)
" oan+N(1— o)W, — Nu(n,q)

It can be shown in a similar way that the expected payoff of Player 2 at such a decision point is strictly greater
than §; (the minimum payoff at either of the pure Nash equilibria) and



D.M. Ramsey, K. Szajowski | European Journal of Operational Research 184 (2008) 185-206 201

n — Nu (n, q)
1 —o)n+ NaW, — Nu§(n,q)

pn:
(

Hence, at the unique Stepwise Egalitarian Equilibrium, when o = 0.5 the mixed equilibrium is chosen when-
ever more than one Nash equilibrium exists. For the problem with N = 35 and « = 0.5 it can be shown that
(s,s) is used for n = 14, p;3 =0.9706, p;, = 0.7668 and p;; =0.4101, r=p,, i=11,12,13, (c,c) is used for
n < 10 and u$°(0,g) = 0.2956, i = 1, 2. It follows that extending the class of strategies to mixed strategies actu-
ally lowers the value of the game to the players at the Stepwise Egalitarian Equilibrium!

Now consider o & Ay, but o # 0.5 and suppose there are two pure Nash equilibria. Due to the discrete nat-
ure of the class of equilibria, it is difficult to make general statements about the form of the Stepwise Egali-
tarian Equilibrium without extensive calculations. However, we present an intuitive idea of the form of such
an equilibrium.

Whenever
W, n—-1 _ I n—-1
7 n U (nvq) <N+ n Uy (n,q),

the stepwise mechanism chooses (s, ¢) [the expression on the left (right) hand side is the maximum (minimum)
future expected reward of Player 2 (Player 1) before observing the nth object]. It follows that calculating recur-
sively, the stepwise mechanism will initially choose (s, ¢) until the future expected payoffs of the two players are
very similar. Thereafter, a mixed strategy will be chosen. Suppose equilibrium selection is required for
ny < n<n". Then for n; < n < n, a mixed strategy will be used and for n, <n <n" (s, c) will be used. It should
be noted that at moment n; — 1 it is possible that either (¢, s) or (s, ¢) is the unique Nash equilibrium, since such
a procedure cannot ensure equalization of the value of the game to the players.

5.4.4. Global egalitarian equilibria in the class of mixed equilibria

In general the number of equilibria to select from is of order 3%, where k is the maximum number of
moments at which equilibrium selection is required. Consider the problem with N = 35 and « = 0.5. In this
class of equilibria when o = 0.5 the maximum number of moments at which equilibrium selection is required
is the number of such moments at the Stepwise Egalitarian Equilibrium (at such an equilibrium the maximum
expected payoff is minimized subject to the equilibrium conditions). The minimum number is achieved at the
Republican Equilibrium. Since at both equilibria selection is required three times, there are 3° = 27 equilibria
to select from. Using the symmetry of the game, this number is reduced to 14. Furthermore, it can be seen that
an equilibrium at which only (s, ¢) and mixed equilibria are used gives Player 1 a lower expected payoff than at
the Stepwise Egalitarian Equilibrium. It follows that it is sufficient to consider the following seven cases:

(a) the three cases for which (c,s) is chosen twice and (s, c) once.
(b) the three cases for which (c,s), (s,¢) and a mixed equilibrium are all chosen once.
(c) a mixed equilibrium is chosen for n = 11,12, 13.

The four cases mentioned in (a) and (c¢) have already been considered. Consideration of the three remaining
equilibria leads to the conclusion that the two Global Egalitarian Equilibria in the class of pure equilibria are
also Global Egalitarian Equilibria in the class of mixed equilibria.

It seems likely that a Global Egalitarian Equilibrium in the class of mixed strategies will consist of a
sequence of pure equilibria chosen in such a way as to minimize the difference between the payoffs of the
two players, since using a mixed equilibrium risks the choice of (¢, ¢), which is the worst outcome for both
players. It is possible that a mixed equilibrium is used at a small number of points, since switching between
pure Nash equilibria does not ensure equalization of the players’ payoffs.

5.4.5. Stepwise egalitarian equilibria in the class of correlated equilibria
In order to derive a Stepwise Egalitarian Equilibrium, we have to recursively solve the following linear pro-
gramming problem of maximizing the expected payoff of Player 2, namely

02(n,Gg) = muy (n, Gg) + mouy (n, gg) + mlus’ (n, g) + w65 (0, g)
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subject to the equilibrium conditions (18), together with the conditions stating that =, is a probability distri-
bution and that if both players are still searching at moment #, then the future expected reward of Player 2 is
not greater than the future expected reward of Player 1. This condition can be expressed as

loa(nsdi) + (n = D (o, 6] < 01 (n,d3) + (= i, ) (19)

It should be noted that, in general, we should also consider the analogous linear programming problem of
maximizing the future expected reward of Player 1 subject to his future reward being not greater than the fu-
ture expected reward of Player 2 and choose the appropriate solution from these two solutions. However, from
the assumption that o > 0.5, the definition of such an equilibrium and the convexity and closedness of the set
of correlated equilibria, it follows that the future expected reward of Player 1 will never be smaller than the
future expected reward of Player 2.

Suppose a non-trivial correlated equilibrium exists at moment n. The payoff of Player 2 is maximized by
setting 7 = 1. If at such an equilibrium Player 2’s future expected payoff is less than Player 1’s future
expected payoff, then this is the unique Egalitarian correlation at moment n. Suppose the future expected pay-
offs at moment » are equal. A Stepwise Egalitarian Equilibrium can be obtained by simultaneously maximiz-
ing the sum of the payoffs and equalizing them. This may be achieved by setting nf* = m* = 0.5 at moments j
(j <n) where equilibrium selection is necessary. Note that this is not the only solution.

Finally, there may exist a moment j at which the payoffs become equalized. This may be achieved by setting
¢ =1—nf, n = 7% = 0 and calculating the value of 7}, for which equality is obtained in Condition (19)
(again, this will not be the unique solution).

If o € Ay, it follows that the Libertarian 2 Equilibrium is the unique Stepwise Egalitarian Equilibrium.

It should be noted that in cases where a Stepwise Egalitarian Equilibrium is not uniquely defined, such an
equilibrium must equalize the expected future payoffs of the players subject to the condition that at least one
of the players accepts a candidate. It follows that such a recursive definition of the value functions is well
defined.

Considering the class obtained by randomization over mixed equilibria, the Stepwise Egalitarian Equilib-
rium is given by choosing one of the two pure Nash equilibria according to the procedure described above.

5.4.6. Global egalitarian equilibria in the class of correlated equilibria

For o € Ay the Libertarian 2 Equilibrium is the unique Global Egalitarian Equilibrium. Whenever o ¢ A4y,
one can derive the Global Egalitarian Equilibrium by considering the properties of Libertarian Equilibria. The
Libertarian 1 Equilibrium is the Global Utilitarian Equilibrium (maximizes the sum of the values) and the
Libertarian 2 Equilibrium maximizes the sum of the values subject to the condition that Player 2 obtains at
least the same expected payoff as Player 1 (this strategy maximises the length of the period over which at least
one player accepts a candidate given that Player 2 obtains at least the same payoff as Player 1). It follows that
using a correlation device to randomize over the Libertarian Equilibria in such a way that the expected payoff
of the players is equal constitutes the Global Egalitarian Equilibrium.

Remark 5.1. It should be noted that such a correlated strategy is a randomization over the set of pure Nash
equilibria, that is to say that it can be obtained by using a correlating device. It is not of the form given by
Definition 2.5. This definition assumes that the players choose their action at each moment based on a signal
which is dependent only on the present state of the process and not on any of the previous signals. Hence,
when using such a weak correlating device, the players have no recall of the signals sent at previous moments
and so cannot base their actions on a signal sent before the game commences.

For example consider the game with N = 100 and o = 0.52. Calculating recursively, it can be shown that the
following strategy is a Stepwise Egalitarian Equilibrium: (s,s) for n = 38, (s,¢) for 32 <n<38,
(0,0.9437,0.0563,0) for n =31, (0,0.5,0.5,0) for n =30 and (¢, c) for n < 29. The value of the game to both
players is 0.2930.

To calculate the Global Egalitarian Equilibrium, we first derive the Libertarian Equilibria. The Libertarian
1 Equilibrium is as follows: (s,s) for n = 38, (¢, s) for 29 < n <38 and (¢, ¢) for n < 28. The values of the game
are given by u5°(0,¢L;) = 0.3027, u5°(0,gr;) = 0.2860. The Libertarian 2 Equilibrium is as follows: (s,s) for
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n <38, (s,¢) for 30 <n<38 and (c,c) for n<29. The values of the game are given by u$°(0,g.) =
0.2918, u5°(0,g12) = 0.2943.

The Global Egalitarian Equilibrium is obtained by randomizing over these equilibria in such a way as to
equalize the values of the game to the players. Suppose that Libertarian 1 is played with probability p, other-
wise Libertarian 2 is played. It follows that

u5(0,g7,) — ui(0,47,) .
us*(0,47,) — ui(0,q1,) +ui(0,41y) — ui(0,41,)
It follows that for this game p = 0.1340 and u¢“(0,45) = 0.2932, i = 1,2.
It can be seen that the selection criterion for a Global Egalitarian Equilibrium can be satisfied using a ran-

domization over global Nash equilibria. Hence, this is the Global Egalitarian Equilibrium in the class obtained
by randomization over mixed equilibria.

pP= (20)

5.4.7. Asymptotic results for the class of correlated equilibria

Szajowski [51] showed that the payoffs of the players can be equalized at equilibrium, iff o < g ~ 0.5299. It
follows that when o > o the Libertarian 2 Equilibrium presented earlier is the unique Stepwise (and Global)
Egalitarian Equilibrium. For o € (0.5, 09), a strategy of the following form can be used as a Stepwise Egalitar-
ian Equilibrium:

n(t) =(1,0,0,0), ¢

>el,
(0,1,0,0), 6 <t<e,

n(t) =

n(t):(O,l,l,O), H <t<t,
22

n(t) = (0,0,0,1), <1.

As far as we know, no equilibrium of such a form has yet been derived, hence we give a sketch of the
derivation.

Let W(t) be the expected reward of a lone searcher after rejecting a proportion ¢ of the objects. Gilbert and
Mosteller [14] (see also [50]) showed that for r > e~ !, W(r) = —tInt and for t <e™', W(f) =e '. Define the
future expected reward of Player i given that both players are still inspecting at time ¢ to be V(z). The payoff
matrix for such a game on the appearance of a candidate is of the form

(at+ (L =)W (2), (1 — o) + oW (1) t, W(t)
o = ( W, A7) 2y
From the definition of u{“(n, g) it follows that
Vi(t) = / ’”"(:2) dr (22)

where (v1(¢), v2(2)) is the appropriate vector of the values of the game with payoff matrix M(7) to Players 1 and
2, respectively.

Considering the conditions for a Nash equilibrium, the strategy pair (s, s) constitutes the unique Nash equi-
librium when ¢ > W(r). Thus, (s,s) is the Nash equilibrium when 7 >e '. On this time interval
v1(f) = at + (1 — 2) W(t) and vy(t) = (1 — a)t + o W(¢). By dividing Eq. (22) by ¢ and then differentiating with
respect to ¢, we obtain two differential equations for V(z) and V(7). Together with the boundary conditions
V(1) = V5(1) = 0, these differential equations lead to

Vi) = "5 e (1 - o n),
Va() =~ 001 Z ) — aind.

2
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This part of the solution is common to all the types of correlated equilibrium under investigation. For

1> <t<e ', the pair of actions carried out is (s,c). It follows that v;(f) =t and v,(f) =e~'. Solving Eq. (22)
1

and using the boundary conditions at t =¢™ °, we obtain
1 — o)t
Vi(t) = _(1=9) —tlnt,
_ ot
Vz(t) =¢C T 5 .

At time 7, the future expected payoffs of the two players are equal. Hence, ¢, satisfies V(#,) = V»(t,), which can
be solved numerically. For ¢, < 1 < t,, v;(f) = va(1) = 0.5(t + ¢ ). Solving Eq. (22), together with the boundary
conditions at ¢t = t,, we obtain

t e!'—tlnt
4 + 2 '
At time ¢, V(t;) = t;. This equation can be solved numerically. For ¢ < ¢, Vi(t) = V(t) = t; =~ 0.2908.
Calculating in a similar way, for « = o, the unique Stepwise Egalitarian Equilibrium strategy is as follows:
(s,s) for t > e L (s,c) for 1y <t < e !and (¢c,c) for t <t.
Finally for o =0.5 the following is a Stepwise Egalitarian Equilibrium: n(7) = (1,0,0,0) for ¢ > ¢ !,
n(f) = (0,0.5,0.5,0) for 1, < r<e ' and n(r) = (0,0,0, 1) for 7 < ¢,.
It should be noted that #;, the value of the game to both players, is independent of o for o € [0.5, a].
Now we consider the Global Egalitarian Equilibrium for o < og. Such equilibria can be obtained by ran-
domly choosing one of the two Libertarian Equilibria in such a way as to equalize the values of the game
to the players. Considering the asymptotic forms of these equilibria, it follows from Eq. (20) that the proba-
bility p of selecting the Libertarian 1 Equilibrium is given by

Vi) =V,(t) =—

B 2e ' — 62+ )
T N i pN e

where

24+ 3—«
t; = exXp —T; hh=¢exp|— 5 .

When o = 0.5, p =0.5. The value of the game at the Global Egalitarian Equilibrium is approximately 0.2914
and the relative gain compared to the stepwise equilibrium is approximately 0.2%. In order to achieve such an
equilibrium, it suffices to observe a signal at the beginning of the game. Forges [11] refers to such a method as a
correlation device.

5.5. Conclusions and final remarks

It can be seen that for each of the criteria considered the class obtained by randomization over mixed equi-
libria is rich enough to contain stepwise and global solutions for the two-person best choice problems consid-
ered. This is due to the form of the payoff matrices, no advantage can be obtained by choosing (s,s) with a
positive probability. However, in other games this may not be the case (see [1]). Also, even if an optimal solu-
tion is from a “‘simpler” class of strategies, selecting from the set of correlated strategies is always mathemat-
ically tractable, as it involves solving a set of linear programming problems.

Stepwise derivation of equilibria is simpler than finding a global optimum according to a given criterion,
but may well lead to equilibria which are not globally optimal. However, the final example shows that for cer-
tain problems global optima can be derived by combining stepwise equilibria in an appropriate way.

Concerning selection criteria, there are other concepts that could be applied. For example, solutions to the
bargaining problem. In this paper our intention has been to present the concepts of correlated equilibria and
some new ideas of equilibrium selection in stopping games. We hope that our approach will induce researchers
to compare such approaches. The important feature of these criteria is that they should be a consequence of
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some pre-play discussion between players concerning their aims. Other concepts and comparison of methods
will be subject of further research by the authors.
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