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Abstract In many industries, managers face the problem of selling a given stock
of items by a deadline. We investigate the problem of dynamically pricing such
inventories when demand is price sensitive and stochastic and the firm’s objective is
to maximize expected revenues. Examples that fit this framework include retailers
selling fashion and seasonal goods and the travel and leisure industry, which mar-
kets space such as seats on airline flights, cabins on vacation cruises, hotels renting
rooms before midnight and theaters selling seats before curtain time that become
worthless if not sold by a specific time. Given a fixed number of seats, rooms, or
coats, the objective for these industries is to maximize revenues in excess of salvage
value. When demand is price sensitive and stochastic, pricing is an effective tool to
maximize revenues. In this paper, we address the problem of deciding the optimal
timing of a double price changes from a given initial price to given lower or higher
prices. Under mild conditions, it is shown that it is optimal to decrease the initial
price as soon as the time-to-go falls below a time threshold and increase the price
if time-to-go is longer than adequate time threshold. These thresholds depend on
the number of yet unsold items.
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1 Introduction

This paper studies a revenue management problem, in which a finite number of
commodities are sold in finite time horizon. The problem is formulated as sales
of the poissonian stream of goods on the predefined time, which can be chosen at
some random moments based on the time-to-go and on the number of yet unsold
items.

Many industries face the problem of selling a fixed stock of items over a finite
horizon. These industries include airlines selling seats before planes depart, ho-
tels renting rooms before midnight, theaters selling seats before curtain time and
retailers selling seasonal goods such as air-conditioners or winter coats before the
end of the season. Feng and Gallego (1995) considered the following optimization
problem: for given a fixed number of seats, rooms, or coats to maximize reve-
nues in excess of salvage value. They address the problem of deciding the optimal
timing of a single price change from a given initial price to either a given lower
or higher second price. They have shown that it is optimal to decrease (resp., to
increase) the initial price as soon as the time-to-go falls below (resp., above) a time
threshold that depends on the number of yet unsold items. Price adjustment should
be done with care since pricing that aim to run out of stock are not necessarily
optimal in maximizing expected revenues as has been pointed out by Gallego and
van Ryzin (1994). Anjos et al. (2005) studied similar problem but they have con-
sidered rather time-dependent than stock-dependent demand and they presented
descriptions of the time-dependent pricing functions under different assumptions
for customer behavior. They assume that pricing function is continuous in time.
This methodologies is much easier to determine the shape of the optimal price
curves for different demand and reservation price distribution but it is difficult to
practical realization.

Pricing decision is the minority of all important decisions, which can apparently
influence a firm’s profit-making within extremely short time. In an era of meagre
profit, firms cannot stand any more injury caused of mistake at pricing. However,
lots of managers still make pricing decision according to their experience or the
action of other competitors without any mechanism of price-determining based on
their firm’s resource condition.

The subject of this research is to probe the abiding price-reducing strategy for
fashion appearing firms. Fashion apparel is a kind of commodities with season-
ality and popularity and is an example of all perishable goods. For all sorts of
characteristic such as the need for long lead time before production, short time
span for sale and the low salvage value after season, it makes firms reduce price
to close out inventories by the end of seasons to evade value loss. When it comes
to price-reducing, the fashion apparel is quite different from other commodities. It
is a kind of commodity, which has speciality of phased and monotonicity on price
reduction. Therefore, it lacks two kinds of elasticity, which are price-adjusting at
any time and adjusting the price range at will. For the characteristic of close inter-
dependence between product and time and the normal demand on price-reducing,
fashion apparel firms need some decision tools which are more fast, correct, and
practical than any other ones.

With two main parameters, which are the levels of unsold inventory and the
length of season remaining this research constructs out an stochastic dynamic
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programming model to maximize profit by price change at two random moments,
which are constructed based on observation of the market. This model can be
proved to be able to extend to other similar industries with the same nature.

The yield management problems for perishable goods has been considered by
many authors. Let us recall the works by Rothstein (1971), which developed an
overbooking model for airlines and the model for a firm, which has inventories of a
set of components that are used to produce a set of products considered by Gallego
and van Ryzin (1997). In this last problem there is a finite horizon over which the
firm can sell its products. Demand for each product is a stochastic point process
with an intensity that is a function of the vector of prices for the products and the
time at which these prices are offered. The problem is to price the finished products
so as to maximize total expected revenue over the finite sales horizon. Aviv and
Pazgal (2005) proposed model of optimal pricing of fashion-like seasonal goods.
They took into consideration the effect of forward-looking consumer behavior and
find that sellers incorrectly assume that customers are myopic. They discussed also
some discounting strategies, which unlikely gave minimal improvement in revenue.
One of the extensions yield management problem are models with overbooking.
Karaesmen and van Ryzin (2004) considered model combining overbooking and
seat allocation decisions on a single flight. They create efficient algorithm to deter-
mine the optimal policy parameters. Several models connected with optimal pricing
are studied by Feng and Xiao. They widen problem proposed by Feng and Gallego
(1995) and solved the case with possibility of the multiple markdowns or markups
in Feng and Xiao (2000b). Later they considered model, which is similar to our
problem in Feng and Xiao (2000a), but they assumed that each of prescribed prices
can be active at any time. Another interesting model is problem of selling a finite
number of substitutable commodities to two different market segments at respective
prices Feng and Xiao (1999). The management closes the low price segment when
the chance of selling all items at the high price is promising. These authors also stud-
ied seat inventory control in Feng and Xiao (2001a) and further, they join capacity
allocation with pricing of perishable goods in article by Feng and Xiao (2001b).

The paper is organized as follows. In the next section the model of the retail
with double price changes of goods is formulated and the various assumption are
made. In Sect. 3 the technical, auxiliary investigation are performed. The main
theorem are in Sect. 4 and it gives the optimal strategy for price changes when two
changes are permitted. The numerical example is included in Sect. 4.1.

2 The double price changes problem

The double price changes problem is formulated as follows: we want to maximize
the expected revenue from a sale of fixed number of commodities by given deadline
when set of available prices is prescribed in advance and two changes to lower or
higher price are allowed.

2.1 Notations and assumptions

We assume that the firm works in a market with imperfect competition, which
affects that demand is price sensitive. Let n ∈ N be a number of items available
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for sales at time zero and let t ∈ R+ be the length of the sales horizon. Such model
of the market has been considered by Feng and Gallego (1995). They control the
demand by one change of price during the sales period. The set of available prices
P = {p0, p1, . . . , p6} is obtained from past experience or consensus in the indus-
try level. If observed demand for the commodities will be suitably high, it follows
the price increasing for the first time from p0 to p2 eventually if the demand is low
the price can be changed to p1 (p1 < p0 < p2). If the first change is to p1 the
second can be only to p3 or p4 (p3 < p1 < p4). Similarly if the first change is to
p2 the second should be to p5 or p6 (p5 < p2 < p6). Additionally, let us assume
p4 < p0 < p5. If observed demand is high enough (or suitable small) there is
an opportunity to change directly to p4 or p6 (p3 or p5) without pricing at p2 (or
p1). We assume that demand for the commodities is stochastic, price sensitive and
modeled by homogeneous Poisson process.

Let us consider Poisson processes {Ni (s), F i
s }∞s=0, i ∈ {0, . . . , 6}, defined on

probability space (Ω, F, P). It is assumed that Ni (s) are F i
s measurable, where

F i
s ⊂ F for all s ∈ [0, t], with intensity λi . The intensities λi , i ∈ {0, . . . , 6}, are

determined from market research. They strictly correspond to demand at price pi .
It can be observed that if pi < pk then λi > λk . Let us denote ri = λi pi , i ∈
{0, . . . , 6}, the revenue rate at price pi . We assume that ri > rk if pi < pk because
in other case there is no economical reason to decrease the price. Without loss
the generality we assume that the salvage value q of unsold items is zero because
we can simply transform the problem to zero salvage case by defining new prices
p′

i = pi − q .
The opportunity to choose the direction of price change makes possible to

respond to observed demand. Therefore, our model applies to pricing perishable
goods, which must be sold by a deadline and observed demand vary with time
for example. There are models with other assumptions about price changes. For
example Feng and Gallego (1995) solved similar problem with increasing the price
if demand is high enough. They have also investigated opportunity to choose the
direction of price change when the one change is allowed only.

Let us denote by J k
i (n, t; 0) the maximum expected revenue from sale of n

items during the time t if the price has been changed immediately from pi to pk .
Owing to two possibilities to chose from the prices, we define maximum expected
revenue in case of immediate change from pi to p2i+1 or p2i+2 as

Ji (n, t, 0) = max
{

J 2i+1
i (n, t, 0), J 2i+2

i (n, t, 0)
}
, (1)

i ∈ {0, 1, 2}. Let us notice that the revenue obtained in the case of the price changes
from pi to p2i+1 or p2i+2 at time s is equal to

Ii (n, t, s) = pi min{n, Ni (s)} + E
[
Ji (n − Ni (s), t − s, 0)|F i

s

]
. (2)

2.2 The double change price model as optimal double stopping problem

Our problem is to find two optimal times of markups or markdowns, which
maximizes expected revenue. From mathematical point of view such problem
can be considered as the optimal double stopping problem. The double stopping
problem with discrete time has been considered by Haggstrom (1967) and Stadje
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(1985). It is hard to find in the literature formulation of double stopping problem for
continuous time processes, adequate to our model. Davis (1993) has only consid-
ered single stopping problem for class of piecewise deterministic processes. Our
poissonian sale’s process is simple example from that class.

Let us define Fs = F0
s . We denote T the set of stopping times with respect to

{Fs}s≥0 and the set of strategies S = {(γs)s≥0}, Fs-adapted processes such that
for given τ ∈ T ,

γs(ω) = i 1I{τ≤s}(ω), i ∈ {1, 2}.
Further, let us define Fst = σ {Fs, γs, Nγs (u − s)1I{s≤u}(u) : u ≤ t} and Ts the set
of stopping times σ , such that {ω : σ > t} ∈ Fst for every s ≤ t . For given τ ∈ T ,
strategy (γs)s≥0 ∈ S and σ ∈ Tτ , the set of strategies Ss = {(δγs

t )t≥s}, such that
δ
γs
t is Fst -adapted for every s ≤ t is defined as follows

δ
γs
t (ω) = (2γs∧t (ω) + i) 1I{ω:s<σ(ω)≤t}(ω), i ∈ {1, 2}.

The two parameter decision process can be formulated

δst (ω) =
{

γs(ω) for s ≥ t ,
δ
γs
t (ω) for s < t .

Let Jk(n, t), k ∈ {0, . . . , 6}, be the maximum expected revenue (revenue function)
if the sale is at price pk and it remains n items and t units of time to deadline of
sales period. In particular, if there are no possibility to change price we have

Jk(n, t) = pkE min{Nk(t), n}, k ∈ {3, 4, 5, 6}. (3)

The compound structure of double stopping model follows that J k
i (n, t, 0) =

Jk(n, t), for all i ∈ {0, 1, 2} and k ∈ {2i + 1, 2i + 2}.
Let us notice by T the class of stopping times with respect to F0

s , such that
0 ≤ τ ≤ t and N0(τ ) ≤ n. Our goal is to find stopping time τ ∗ ∈ T , which
maximizes the expected revenue and

J0(n, t) = EI0(n, t, τ ∗) = sup
τ∈T

EI0(n, t, τ ). (4)

From properties of conditional expectation and (2) we obtain

J0(n, t) = p0E
[

min{n, N0(τ
∗)} + J0(n − N0(τ

∗), t − τ ∗, 0)
]
. (5)

Foregoing equation and (1) follows

J0(n, t) = p0E
[

min{n, N0(τ
∗)}

+ max{J1(n − N0(τ
∗), t − τ ∗), J2(n − N0(τ

∗), t − τ ∗)}].
It is easy to see that revenue function in double markup or markdown problem is
compound of revenues from sale at price p0 and maximum of the expected revenues
from the single markup or markdown models with shorter horizon, fewer number
of items and different initial price. The single markup or markdown problem has
been solved by Feng and Gallego (1995). They have found two sequences of time
thresholds xi

n and zi
n . In their paper the sequences of time thresholds has been
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determined such that it is optimal to change the price to lower if the number of
unsold items is equal n and the time-to-go is shorter than xi

n and similarly it is opti-
mal switch the price to higher if the time-to-go is longer than zi

n corresponding the
number of unsold items. Aforementioned revenue functions J1(n, t) and J2(n, t)
are determined in following theorem.

Theorem 1 (Feng and Gallego 1995, Sect. 5) When p2i+1 < pi < p2i+2, i ∈
{1, 2}, there exist two strictly increasing sequences xi

n and zi
n, n ∈ N, satisfying

xi
n < t i

n < zi
n, such that optimal revenue function is given by equation

Ji (n, t) =
{

Ji (n, t, 0) + Fi (n, t) if xi
n ≤ t ≤ zi

n,

Ji (n, t, 0) otherwise

and

Fi (n, t) =

⎧
⎪⎨

⎪⎩

H2i+1(n, t) if xi
n ≤ t ≤ t i

n,

H2i+2(n, t) if t i
n < t ≤ zi

n,

0 otherwise,

where t i
n = inf{t > 0 : J2i+1(n, t) − J2i+2(n, t) = 0} and H2i+1(n, t) is the

solution to the differential equation

∂ H2i+1(n, t)

∂t
= −λi H2i+1(n, t) + L2i+1(n, t) (6)

with boundary condition H2i+1(n, xi
n) = 0.

However, H2i+2(n, t) is the solution to the differential equation

∂ H2i+2(n, t)

∂t
= −λi H2i+2(n, t) + L2i+2(n, t) (7)

with boundary condition H2i+2(n, t i
n) = H2i+1(n, t i

n),
where

Lk(n, t) = Gk(n, t)+λi [Ji (n − 1, t) − Jk(n − 1, t)], k ∈{2i + 1, 2i + 2},
Gk(n, t) = ri − rk + pk(λk − λi )P(Nk(t) ≥ n). (8)

The thresholds are given by

xi
n = inf{t ≥ 0 : L2i+1(n, t) = 0}

and

zi
n = inf

{
t ≥ t i

n : H2i+2(n, t) ≤ 0
}
.

The form of the function Gk(n, t) will be explained in Lemma 2. On the basis of
results described in Feng and Gallego (1995), we will find only stopping times for
the first change to lower or higher price.
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3 Auxiliary results

The main result is based on technical theorems, lemmas and remarks. They are
collected in this section. Before showing the solution of our problem we make
several preliminary remarks and cite facts, which are necessary to solve the model.

Lemma 1 (Feng and Xiao 2000b, Sect. 3) Let Ji (n, t) be an optimal revenue from
the price change from pi to pi+1, given by equation

Ji (n, t) = sup
τ∈T

E
[

pi min{n, Ni (τ )} + J i+1
i (n − Ni (τ ), t − τ, 0)

]
,

then Ji (n, t) can be represented as

Ji (n, t) = J i+1
i (n, t, 0) + F̃i (n, t), (9)

where F̃i (n, t) is maximum premium resulting from optimal behavior.

Theorem 2 (Feng and Xiao 2000b, Sect. 3) Let Ji (n, t) be an optimal expected
revenue from the price change from pi to pi+1. Suppose there exist a function
Fi (n, t) such that for each n ∈ N, Fi (n, t) is absolutely continuous, uniformly
bounded and piecewise differentiable in t ∈ R+ with right continuous partial
derivatives. If Fi (n, t) satisfies:

(i) Fi (n, t) ≥ 0 for all n ∈ N, t ∈ R+,
(ii) Fi (0, t) = 0 and Fi (n, 0) = 0,

(iii) Fi (n, t) = 0 implies

∂ Ji (n, t)

∂t
≥ ri − λi [Ji (n, t) − Ji (n − 1, t)] , (10)

(iv) Fi (n, t) > 0 implies

∂ Ji (n, t)

∂t
= ri − λi [Ji (n, t) − Ji (n − 1, t)] , (11)

then Fi (n, t) = F̃i (n, t).

The proof of the theorem is based on general theory of optimal stopping (see
Theorem T1 on page 203 in Brémaud 1981).

Let Ni (s) denote a Poisson process with known, constant intensity λi . Then
the following equation is satisfied:

E min{n, Ni (s)} =
n∑

k=1

P(Ni (s) ≥ k). (12)

Let us notice that

E min{n, Ni (s)} =
n−1∑

k=0

k P(Ni (s) = k) + n P(Ni (s) ≥ n).
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Thus

E min{n, Ni (s)} = (n − 1)P(Ni (s) < n)−
n−1∑

k=0

P(Ni (s) < k)+n P(Ni (s) ≥ n)

= −1 + P(Ni (s) ≥ n)+
n−1∑

k=0

P(Ni (s) ≥ k)=
n∑

k=1

P(Ni (s) ≥ k).

Let us notice that

∂

∂s
P(Ni (s) ≥ n) = λi P(Ni (s) = n − 1). (13)

It is easy to see that

∂

∂s
P(Ni (s) ≥ n) = − ∂

∂s

n−1∑

k=0

P(Ni (s) = k) = − ∂

∂s

n−1∑

k=0

(λi s)k

k! e−λi s

= λi P(Ni (s)=0)+λi

n−1∑

k=1

[P(Ni (s) = k)−P(Ni (s) = k − 1)]

= λi P(Ni (s) = n − 1).

From what has already been proved we obtain

∂

∂s

n∑

k=1

P(Ni (s) ≥ k) = λi [1 − P(Ni (s) ≥ n)] (14)

and

∂2

∂s2

n∑

k=1

P(Ni (s) ≥ k) = −λ2
i P(Ni (s) = n − 1). (15)

We define functions G2i+1(n, t) and G2i+2(n, t) for every i ∈ {0, 1, 2} as

G2i+1(n, t) = ri − λi [J2i+1(n, t) − J2i+1(n − 1, t)] − ∂ J2i+1(n, t)

∂t
, (16)

G2i+2(n, t) = ri − λi [J2i+2(n, t) − J2i+2(n − 1, t)] − ∂ J2i+2(n, t)

∂t
. (17)

Lemma 2 The functions G3(n, t) and G5(n, t) (G4(n, t) and G6(n, t)) are
continuous and strictly decreasing (increasing) in n and strictly increasing
(decreasing) in t .

Proof Applying (16), (3), (12) and (14), we have for i ∈ {1, 2}

G2i+1(n, t) = ri − λi p2i+1 P(N2i+1(t) ≥ n) − ∂

∂t
p2i+1

n∑

k=1

P(N2i+1(t) ≥ k)

= ri − r2i+1 + p2i+1(λ2i+1 − λi )P(N2i+1(t) ≥ n). (18)
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By assumptions about intensities λ2i+1 > λi so G2i+1(n, t) is continuous, strictly
decreasing in n and increasing in t . Similarly,

G2i+2(n, t) = ri − r2i+2 + p2i+2(λ2i+2 − λi )P(N2i+2(t) ≥ n) (19)

and λ2i+2 < λi , hence G2i+2(n, t) is continuous, strictly increasing in n and
decreasing in t . 	


Let us mention two consequences of the Theorem 1.

Remark 1 The function Ji (n, t), i ∈ {1, 2}, has the form

Ji (n, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J2i+1(n, t) if t < xi
n,

J2i+1(n, t) + H2i+1(n, t) if xi
n ≤ t ≤ t i

n ,

J2i+2(n, t) + H2i+2(n, t) if t i
n < t ≤ zi

n ,

J2i+2(n, t) if zi
n < t .

(20)

Proof By assumptions about revenue rates for suitably small δt

J2i+1(n, δt) − J2i+2(n, δt) = p2i+1E min{n, N2i+1(δt)}
− p2i+2E min{n, N2i+2(δt)}

= (p2i+1λ2i+1 − p2i+2λ2i+2)δt

= (r2i+1 − r2i+2)δt > 0

and when t is big enough we get J2i+1(n, t)− J2i+2(n, t) = (p2i+1− p2i+2)n < 0.
Because J2i+1(n, t) and J2i+2(n, t) are continuous, increasing in t and strictly

concave we can observe that J2i+1(n, t) ≥ J2i+2(n, t) for t ∈ [0, t i
n] and

J2i+1(n, t) < J2i+2(n, t) for t ∈ (t i
n, ∞), hence we have

max{J2i+1(n, t), J2i+2(n, t)} =
{

J2i+1(n, t) if t ≤ t i
n ,

J2i+2(n, t) if t i
n < t ,

which proves (20). 	

Remark 2 The functions Ji (n, t), i ∈ {1, 2}, have the form

Ji (n, t) =
⎧
⎨

⎩

J2i+1(n, t) if t < xi
n,

J2i+1(n, t) + H2i+1(n, t) if xi
n ≤ t ≤ zi

n ,
J2i+2(n, t) if zi

n < t
(21)

or

Ji (n, t) =
⎧
⎨

⎩

J2i+1(n, t) if t < xi
n,

J2i+2(n, t) + H2i+2(n, t) if xi
n ≤ t ≤ zi

n ,
J2i+2(n, t) if zi

n < t .
(22)

It is a consequence of the fact that

H2i+2(n, t) = H2i+1(n, t) + J2i+1(n, t) − J2i+2(n, t) for t ∈ [xi
n, zi

n],
(23)

which has been proved in Feng and Gallego (1995).
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Lemma 3 The functions Ji (n, t), i ∈ {1, 2}, are continuous for t ∈ R+ and differ-
entiable for all t ∈ R+\{zi

n}.
Proof Let us use the form of Ji (n, t), which is given by Eq. (21). Solving differ-
ential equation (6) with respect to boundary condition, we obtain

H2i+1(n, t) =
t∫

xi
n

L2i+1(n, u)e−λi (t−u)du.

Let us observe that H2i+1(n, t), J2i+1(n, t), J2i+2(n, t) are continuous and
H2i+1(n, xi

n) = 0. By (23) it is obvious that J2i+1(n, zi
n) + H2i+1(n, zi

n) =
J2i+1(n, zi

n), therefore Ji (n, t) is continuous for t ∈ R+.
It is easy to check that H2i+1(n, t) and J2i+1(n, t) are differentiable for

t ∈ [xi
n, zi

n] and it follows that Ji (n, t) is differentiable for t ∈ (xi
n, zi

n). Using
boundary condition we have

[
∂ Ji (n, t)

∂t

]

xi
n

− lim
t→xi

n
−

∂ Ji (n, t)

∂t
=

[
∂ Ji (n, t)

∂t

]

xi
n

−
[
∂ J2i+1(n, t)

∂t

]

xi
n

= L2i+1(n, xi
n) − λi H2i+1(n, xi

n) = 0.

In the presence of above equation, Ji (n, t) is differentiable at xi
n as well. On the

other side Ji (n, t) has only one-sided derivatives at zi
n . Let us notice, that on the

basis of Theorem 1 we have Ji (n − 1, zi
n) = J2i+2(n − 1, zi

n). Using the form of
Ji (n, t), given by Eq. (22) we obtain
[
∂ Ji (n, t)

∂t

]

zi
n

− lim
t→zi

n
+

∂ Ji (n, t)

∂t
= ∂

∂t

[
J2i+2(n, t) + H2i+2(n, t) − J2i+2(n, t)

]
zi

n

= −λi H2i+2(n, zi
n) + L2i+2(n, zi

n)

= G2i+2(n, zi
n) < 0,

hence Ji (n, t) is not differentiable at zi
n . 	


Lemma 4 If ρ(s) is monotone decreasing (increasing) function of s ∈ R, then
for λ > 0, t ≥ 0, the function f (t) = ∫ t

−∞ ρ(s)e−λ(t−s)ds is also monotone
decreasing (increasing).

Proof Because ρ(s) is decreasing (increasing) we obtain

λ f (t) ≥ λρ(t)

t∫

−∞
e−λ(t−s)ds = ρ(t) (λ f (t) ≤ ρ(t)).

Let us notice that f ′(t) = −λ f (t) + ρ(t), hence f ′(t) ≤ 0 ( f ′(t) ≥ 0). 	

Let us define the marginal expected revenue as

∆i (n, t) = Ji (n, t) − Ji (n − 1, t). (24)
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Lemma 5 ∆i (n, t), i ∈ {1, 2}, is increasing in t for t ∈ [xi
n, zi

n−1] if and only if
∆i (n, t) is decreasing in n and for t ∈ (zi

n−1, zi
n] if and only if

λi∆i (n, t) ≤ ri − r2i+2 + r2i+2 P(N2i+2(t) ≥ n − 1). (25)

Proof Using the fact that H2i+1(n, t) = Ji (n, t) − J2i+1(n, t) for t ≤ zi
n , we

calculate

∂∆i (n, t)

∂t
= r2i+1 P(N2i+1(t) = n − 1) − λi [H2i+1(n, t) − H2i+1(n − 1, t)]

+ L2i+1(n, t) − L2i+1(n − 1, t)

= r2i+1 P(N2i+1(t) = n − 1) + G2i+1(n, t) − G2i+1(n − 1, t)

− λi [∆i (n, t) − ∆i (n − 1, t) + p2i+1 P(N2i+1(t) = n − 1)]
= −λi [∆i (n, t) − ∆i (n − 1, t)]. (26)

However, if t ∈ (zi
n−1, zi

n] we obtain

∂∆i (n, t)

∂t
= ∂

∂t
[J2i+2(n, t) + H2i+2(n, t) − J2i+2(n − 1, t)]

= r2i+2 P(N2i+2(t) = n − 1) + G2i+2(n, t) − λi∆i (n, t)

+ λi [J2i+2(n, t) − J2i+2(n − 1, t)]
= −λi∆i (n, t) + ri − r2i+2 + r2i+2 P(N2i+2(t) ≥ n − 1)

and it cause that the lemma is true. 	

Lemma 6 If ∂

∂t [∆i (n, t)]xi
n

≥ 0 and ∂
∂t [∆i (n, t)]zi+

n−1
≥ 0, then ∆i (n, t), i ∈

{1, 2}, is increasing in t and decreasing in n for t ∈ [xi
n, zi

n].
Proof Theorem 2 implies that

∂ Ji (n, t)

∂t
= ri − λi [Ji (n, t) − Ji (n − 1, t)] for t ∈ [xi

n, zi
n]. (27)

Differentiating (27) with respect to t , yields

∂2 Ji (n, t)

∂t2 = −λi
∂

∂t
[Ji (n, t) − Ji (n − 1, t)] for t ∈ [xi

n, zi
n]. (28)

Multiplying (28) by e−λi (t−s) and taking integral from xi
n to t when t ≤ zi

n−1,
we get

∂ Ji (n, t)

∂t
= ce−λi (t−xi

n) +
t∫

xi
n

λi
∂ Ji (n − 1, s)

∂s
e−λi (t−s)ds, (29)

where c = [ ∂
∂s Ji (n, s)]xi

n
= r2i+1 P(N2i+1(xi

n) ≤ n − 1). Now let us define

ρ(t) =
{

0 if t < xi
n,

∂

∂t
Ji (n − 1, t) − c if xi

n ≤ t ≤ zi
n−1.

(30)
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It is easy to calculate that

∂

∂t
Ji (1, t) =

⎧
⎪⎨

⎪⎩

r2i+1[1 − P(N2i+1(t) ≥ 1)] if t < xi
1,

ri − λi Ji (1, t) if xi
1 ≤ t ≤ zi

1,

r2i+2[1 − P(N2i+2(t) ≥ 1)] if zi
1 < t.

(31)

Because Ji (1, t) is increasing in t , we conclude that ∂
∂t Ji (1, t) is decreasing for

t ∈ R+.
Assuming that ∂

∂t Ji (n − 1, t) is decreasing for t ∈ [xi
n, zi

n−1] and
∂
∂t [∆i (n, t)]xi

n
≥ 0 we deduce that ρ(t) is also decreasing. Let us notice that

∂ Ji (n, t)

∂t
= c +

t∫

−∞
ρ(s)e−λ(t−s)ds

and according to Lemma 4 ∂
∂t Ji (n, t) is decreasing for t ∈ [xi

n, zi
n−1]. In the same

manner we can see that if ∂
∂t [∆i (n, t)]zi+

n−1
≥ 0, then ∂

∂t Ji (n, t) is decreasing for

t ∈ (zi
n−1, zi

n]. From what has already been proved and Eq. (28) we conclude that
∂
∂t [Ji (n, t) − Ji (n − 1, t)] ≥ 0 and ∆i (n, t) is increasing in t . The decreasingness
in n of ∆i (n, t) follows easily from Theorem 2 and Lemma 5. 	

Remark 3 The condition ∂

∂t [∆i (n, t)]xi
n

≥ 0, i ∈ {1, 2}, is equivalent to

Ji (n − 1, xi
n) ≥ 1

2

[
Ji (n, xi

n) + Ji (n − 2, xi
n)

]
(32)

and the condition ∂
∂t [∆i (n, t)]zi+

n−1
≥ 0, i ∈ {1, 2}, is equivalent to

λi
[
Ji (n, zi

n−1)− J2i+2(n−1, zi
n−1)

] ≤ ri −r2i+2+r2i+2 P(N2i+2(z
i
n−1)≥n−1).

(33)

Equations (32) and (33) simply result from Lemma 5.

Lemma 7 The function G1(n, t) (G2(n, t)) is continuous except for t = z1
n (t =

z2
n) and

lim
t→z1

n
+ G1(n, t) − G1(n, z1

n) < 0

(
lim

t→z2
n
+ G2(n, t) − G2(n, z2

n) < 0

)
.

Additionally, if the following conditions are fulfilled

(i) ∂
∂t [∆i (n, t)]xi

n
≥ 0 and ∂

∂t [∆i (n, t)]zi+
n−1

≥ 0 for i = 1 (i = 2)

(ii) ∆2(n − 1, t) ≥ max{W1(n, t), W2(n, t)} for t ∈ [xi
n−1, xi

n ∧ zi
n−1], where

W1(n, t) = 1

λ0λ2
{r5(λ5 − λ0)P(N5(t) = n − 1)

+λ0[r2 − r5 + r5 P(N5(t) ≥ n − 1)]}, (34)

W2(n, t) = 1

λ0 − λ2
{λ0∆2(n, t) + r5 − r2 − r5 P(N5(t) ≥ n)}, (35)
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(iii) r6 P(N6(t) ≥ n − 1) − r5 P(N5(t) ≥ n − 1) ≥ max{Z1(n, t), Z2(n, t)} for
t ∈ (xi

n ∧ zi
n−1, xi

n), where

Z1(n, t) = 1

λ0
{r5(λ5 − λ0)P(N5(t) = n − 1) + λ0(r6 − r5)}, (36)

Z2(n, t) = r6 − r5 − r5 P(N5(t) = n − 1)

+ λ0[p6 P(N6(t) ≥ n − 1) − ∆2(n, t)], (37)

then G1(n, t)(G2(n, t)) is piecewise decreasing (increasing) in n and piecewise
increasing (decreasing) in t .

Proof Directly from definitions Gk(n, t), k ∈ {1, 2}, given by (16) and (17), these
functions are not continuous at t = zk

n , because from Lemma 3 ∂
∂t Jk(n, t) is not

continuous at t = zk
n and

lim
t→zi

n
+ Gi (n, t) − Gi (n, zi

n) = lim
t→zi

n
+

∂ Ji (n, t)

∂t
−

[
∂ Ji (n, t)

∂t

]

zi
n

= G2i+2(n, zi
n) < 0.

The properties included in Theorem 1, Remark 21, Remark 22, Eqs. (16), (17)
applied to i = 0 make obvious that

Gk(n, t) = r0 − r2k+1 + p2k+1(λ2k+1 − λ0)P(N2k+1(t) ≥ n) for t ∈ [0, xk
n−1)

(38)

Gk(n, t) = r0 − r2k+2 + p2k+2(λ2k+2 − λ0)P(N2k+2(t) ≥ n) for t ∈ (zk
n, ∞).

(39)

Our assumptions that λ3 > λ0, λ4 > λ0 and λ5 < λ0, λ6 < λ0 make it obvious
that G1(n, t) (G2(n, t)) is increasing (decreasing) in t and decreasing (increasing)
in n for t ∈ [0, xk

n−1) ∪ (zk
n, ∞). According to Theorem 1 we have for t ∈ [xi

n, zi
n]

Gk(n, t) = r0 − rk + (λk − λ0)[Jk(n, t) − Jk(n − 1, t)]. (40)

By assumptions that λ1 > λ0, λ2 < λ0 and from Lemma 6, G1(n, t) and G2(n, t)
fulfill the thesis of Lemma 7 on the suitable interval. The form of Gk(n, t) for
t ∈ [xi

n−1, xi
n) is following

Gk(n, t) = r0 − r2k+1 + p2k+1(λ2k+1 − λ0)P(N2k+1(t) ≥ n)

+ λ0[J2k+2(n − 1, t) − J2k+1(n − 1, t)].

Feng and Gallego (1995) showed that J2k+2(n − 1, t)− J2k+1(n − 1, t) is increas-
ing function of t and decreasing function of n, so G1(n, t) fulfills the thesis of the
lemma. Unfortunately G2(n, t) perhaps is increasing in t and decreasing in n. Our
next goal is to determine the conditions, which guarantee suitable properties of
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G2(n, t). Let us calculate that

∂G2(n, t)

∂t
= r5(λ5 − λ0)P(N5(t) = n − 1)

+ λ0[G5(n − 1, t) + λ2 p5 P(N5(t) ≥ n − 1) − λ2∆2(n − 1, t)]
= r5(λ5 − λ0)P(N5(t) = n − 1) + λ0[r2 − r5 + r5 P(N5(t) ≥ n − 1)

− λ2∆2(n − 1, t)]
for t ∈ [xi

n−1, xi
n ∧ zi

n−1] and the derivative with respect to t is negative if and
only if

λ0λ2∆2(n − 1, t) ≥ r5(λ5 − λ0)P(N5(t) = n − 1)

+ λ0[r2 − r5+r5 P(N5(t) ≥ n − 1)] (41)

for t ∈ [xi
n−1, xi

n ∧ zi
n−1]. Similarly for t ∈ (xi

n ∧ zi
n−1, xi

n)

∂G2(n, t)

∂t
= λ0[r6 − r5 + r5 P(N5(t) ≥ n − 1) − r6 P(N6(t) ≥ n − 1)]

+ r5(λ5 − λ0)P(N5(t) = n − 1).

So we conclude that by our assumptions G2(n, t) is decreasing in t . Let us observe
that

G2(n − 1, t) = r0 − r2 + (λ2 − λ0)[J2(n − 1, t) − J2(n − 2, t)]
for t ∈ [xi

n−1, xi
n). We conclude that for t ∈ [xi

n−1, xi
n ∧ zi

n−1]
G2(n, t) − G2(n − 1, t) = r2 − r5 + p5(λ5 − λ0)P(N5(t) ≥ n)

+ λ0[J2(n − 1, t) − J5(n − 1, t)] − (λ2 − λ0)∆2(n − 1, t),

however, for t ∈ (xi
n ∧ zi

n−1, xi
n)

G2(n, t) − G2(n − 1, t) = r6 − r5 + p5[λ5 P(N5(t) ≥ n) − λ0 P(N5(t) ≥ n)]
+ λ0[J6(n − 1, t) − J5(n − 1, t)]
+ p6[λ0 P(N6(t) ≥ n − 1) − λ6 P(N6(t) ≥ n − 1)]

therefore the assumptions of Lemma 7 ensure that G2(n, t) is increasing in n. This
completes the proof. 	


4 Double reversible price change problem

Similarly as in single stopping problem solved by Feng and Gallego (1995), we can
formulate theorem, which characterize the optimal policy. Unfortunately, owing to
fact that functions Ji (n, t) not always are concave we have to add two assumptions,
which guarantee concavity for t ∈ [zi

n−1, zi
n]. The values of time thresholds x0

n and
z0

n are calculated in following theorem.
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Theorem 3 If p1 < p0 < p2 and

(i) ∂
∂t [∆i (n, t)]xi

n
≥ 0 and ∂

∂t [∆i (n, t)]zi+
n−1

≥ 0 for i ∈ {1, 2},
(ii) ∆2(n − 1, t) ≥ max{W1(n, t), W2(n, t)} for t ∈ [xi

n−1, xi
n ∧ zi

n−1],
(iii) r6 P(N6(t) ≥ n − 1) − r5 P(N5(t) ≥ n − 1) ≥ max{Z1(n, t), Z2(n, t)} for

t ∈ (xi
n ∧ zi

n−1, xi
n),

then the optimal revenue function J0(n, t) in double reversible price change
problem is determined as follows.

For fixed n, let

t0
n = inf{t > 0 : J1(n, t) − J2(n, t) = 0},

L1(n, t) = G1(n, t) + λ0[J0(n − 1, t) − J1(n − 1, t)],
L2(n, t) = G2(n, t) + λ0[J0(n − 1, t) − J2(n − 1, t)],

then

J0(n, t) =
{

max{J1(n, t), J2(n, t)} + F0(n, t) if x0
n ≤ t ≤ z0

n,
max{J1(n, t), J2(n, t)} otherwise,

where

F0(n, t) =

⎧
⎪⎨

⎪⎩

H1(n, t) if x0
n ≤ t ≤ t0

n ,

H2(n, t) if t0
n < t ≤ z0

n,
0 otherwise

and

H2(n, t) = H1(n, t0
n )e−λ0(t−t0

n ) +
t∫

t0
n

L2(n, u)e−λ0(t−u)du.

(i) If L1(n, z1
n)L1(n, z1

n+) > 0, then

H1(n, t) =
t∫

x0
n

L1(n, u)e−λ0(t−u)du (42)

and the thresholds are given by

x0
n = inf{t ≥ 0 : L1(n, t) = 0}, (43)

z0
n = inf{t ≥ t0

n : H2(n, t) ≤ 0}. (44)

(ii) If L1(n, z1
n)L1(n, z1

n+) ≤ 0, then let

x01
n = inf

{
0≤ t ≤ z1

n : L1(n, t) = 0
}
, x02

n = inf
{
z1

n < t : L1(n, t) = 0
}
,

A = inf

{
z1

n < t ≤ x02
n :

t∫

x01
n

L1(n, u)e−λ0(t−u)du < 0

}
.
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If A = ∅ then H1(n, t) is given by (42), x0
n by (43) and z0

n by (44). If the set
A is not empty then let y0

n = inf A. The function H1(n, t) can be noticed as

H1(n, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫

x01
n

L1(n, u)e−λ0(t−u)du if t ≤ y0
n ,

0 if y0
n < t ≤ x02

n ,
t∫

x02
n

L1(n, u)e−λ0(t−u)du if x02
n < t

and the threshold x0
n is given by

x0
n = x01

n 1I{t≤z1
n} + x02

n 1I{t>z1
n , x02

n ≤t0
n }

and z0
n is given by (44).

The proof is analogous to proof of Theorem 3 in Feng and Gallego (1995).
The proof consist in showing that function F0(n, t) fulfills the assumptions of
Theorem 2. Monotone structure of solution result from monotone properties of
G1(n, t) and G2(n, t). It is optimal to change the price for the first time to p1 if
the time-to-go is less than the corresponding threshold x0

n and there is n unsold
items yet and it is optimal to change the price from starting price p0 to p2 if the
time-to-go is more than z0

n and there are n unsold items. Let us pay attention that
in some cases we obtain two different solutions for t ∈ [0, zi

n] and t ∈ (zi
n, ∞].

It is a consequence of discontinuity of the function G1(n, t) at t = z1
n . After first

change we proceed according to policy described by Feng and Gallego (1995) in
Theorem 1.

4.1 Numerical examples

The developer has three houses to sell. The current price of one house stand at
p0 = 20. Market analyze results that demand intensity at this price is equal λ0 = 2.
The developer can change the price for the first time to p1 = 16 or p2 = 22. The
suitable intensities are equal λ1 = 3 and λ2 = 1.5. Then the seller is considering
price changes to lower or higher one more time. If he sells the houses by p1 he can
choose one from prices p3 = 14 or p4 = 18 with suitable intensities λ3 = 3.5 and
λ4 = 2.5. If he changed the price to p2 for the first time then he can choose one
price from p5 = 21 or p6 = 23 with suitable demand intensities λ5 = 1.75 and
λ6 = 1. The prices and intensities satisfies our model assumptions that ri < r j
when pi > p j . The assumptions of Theorem 3 are fulfilled for our data. Now using
this theorem and Theorem 1 we will solve the double stopping problem and obtain
maximal expected revenue and optimal policy. We compute six time threshold
sequences: concerning first change {x0

n , z0
n} and concerning second change {x1

n ,
z1

n , x2
n , z2

n}. The values are given in Tables 1 and 2.
Let us notice that we obtained two solutions for n = 1 because L1(n, z1

n)L1

(n, z1
n+) < 0. Figure 1 shows the graph of L1(1, t) in time-to-go. It is easy to

construct optimal policy using foregoing tables. For example if the developer has
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Table 1 The values of optimal time thresholds for the first price change

n x0
n z0

n

1 0.2301I{t≤0.304} + 0.3241I{t>0.304} 0.9821I{t≤0.304} + 0.9891I{t>0.304}
2 0.557 1.850
3 0.876 2.629

Table 2 The values of optimal time thresholds for the second price change

n x1
n z1

n x2
n z2

n

1 0.044 0.304 0.716 2.901
2 0.153 0.732 1.268 4.497
3 0.297 1.148 1.831 5.924

Fig. 1 L1(1, t) as a function of t

Fig. 2 J0(3, t) as a function of t

still three houses to sell, he should decrease the price for the first time if time to
go is less than threshold x0

3 = 0.876 or increase if the time to go is more than
z0

3 = 2.629. For the second time he should proceed similarly taking into consider-
ation thresholds suitable to remaining items. Figure 2 shows the graph of optimal
expected revenue function in time-to-go.
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5 Final remarks

The double stopping problem has been used as a tool in mathematical economics
very rarely. Recently, the authors has investigated the application of such approach
to the risk process (see Karpowicz and Szajowski 2006). An insurance company,
endowed with an initial capital a > 0, receives insurance premiums and pays out
successive claims. The losses occur according to renewal process. At any moment
the company may broaden or narrow down the offer, which entail the change of
the parameters. This change concerns the rate of income, the intensity of renewal
process and the distribution of claims. After the change the management wants to
know the moment of the maximal value of the capital assets. The goal is to find two
optimal stopping times: the best moment of change the parameters and the moment
of maximal value of the capital assets. The double stopping problem is usually the
simplest form of the impulse control (see Chap. 5 of Øksendal and Sulem 2005).
The review of such models in financial mathematics, a cash management problem,
optimal control of an exchange rate and portfolio optimization under transaction
costs has been given by Korn (1999). These models are based on the fundamental
process X (t), which is given as the solution of some stochastic differential equa-
tion. The controller is allowed to choose intervention times θi , where he can shift
the process X (t) to another value. The yield management problems for perishable
goods, which we consider in this paper, are another example of application of the
multiple optimal stopping problem or the impulse control models.
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