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ABSTRACT: This paper is a sequel to Kurano et al
[9], [10], in which the fuzzy perceptive models for optimal
stopping or discounted Markov decision process are pro-
posed and the methods of computing the corresponding
fuzzy perceptive values are given.

Here, we deal with the average case for Markov decisin
processes with fuzzy perceptive transition matrices and
characterize the optimal average expected reward, called
the average perceptive value, by a fuzzy optimality equa-
tion. Also, we give a numerical example.

Keywords : Fuzzy perceptive model, Markov decision
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1. Introduction and notation

In a real application of such a mathematical model as a
Markov decision process (MDP), it often occurs that the
required data is linguistically or roughly perceived (for
example, the probability of the transition from one state
to another is about 0.3 or considerably larger than 0.8,
etc.).

A possible way of handling such a perception-based
information is to use the fuzzy set (cf. [4], [17]), whose
membership function describes the level of the perception
of the required data. If the fuzzy perception of the transi-
tion matrices in MDPs is given, how can we estimate the
future expected reward, called a fuzzy perceptive value,
in advance of our actual decision, under the condition
that we can know the true value of the transition matri-
ces immediately before our decision making. The concept
of fuzzy perceptive values is the same as the perceptive
value (possibility distribution) of the objective function
under the possibility constraints proposed by Zadeh [18]
using a generalized extension principle.

In our previous works [9], [10], we have given the per-
ceptive models for an optimal stopping or discounted
MDPs and the corresponding fuzzy perceptive values are
characterized and calculated by the corresponding fuzzy
optimality equations. As for MDPs, the average case was
not treated there.

The objective of this paper is to formulate the per-
ceptive model for average reward MDPs and derive the
average fuzzy optimality equation by which the average
fuzzy perceptive values are obtained. In order to guaran-
tee the ergodicity of the process, we impose the minoriza-

tion condition (cf. [12]). Also, as a numerical example, a
machine maintenance problem is considered.

In remainder of this section, we will give some notation
and fundamental results on average reward MDPs, from
which the fuzzy perceptive model is formulated in the
sequel. For non-perception approaches to MDPs with
fuzzy imprecision refer to [8].

Let R,Rn and Rm×n be the sets of real numbers, real
n-dimensional vectors and real m × n matrices, respec-
tively. The sets Rn and Rm×n are endowed with the
norm ‖ · ‖, where for x = (x(1), x(2), . . . , x(n)) ∈ Rn,
‖x‖ =

∑n
j=1 |x(j)| and for y = (yij) ∈ Rm×n, ‖y‖ =

max1≤i≤m

∑n
j=1 |yij |.

For any set X, let F(X) be the set of all fuzzy sets
x̃ :→ [0, 1]. The α-cut of x̃ ∈ F(X) is given by x̃α :=
{x ∈ X | x̃(x) ≥ α} (α ∈ (0, 1]) and x̃0 := cl{x ∈ X |
x̃(x) > 0}, where cl is a closure of a set. Let R̃ be the set
of all fuzzy numbers, i.e., r̃ ∈ R̃ means that r̃ ∈ F(R) is
normal, upper semicontinuous and fuzzy convex and has
a compact support. Let C be the set of all bounded and
closed intervals of R. Then, for r̃ ∈ F(R), it holds that
r̃ ∈ R̃ if and only if r̃ normal and r̃α ∈ C for α ∈ [0, 1]).
So, for r̃ ∈ R̃, we write r̃α = [r̃−α , r̃+

α ] (α ∈ [0, 1]).
The binary relation 4 on F(R) is defined as follows:

For r̃, s̃ ∈ F(R), r̃ 4 s̃ if and only if (i) for any x ∈ R,
there exists y ∈ R such that x ≤ y and r̃(x) ≤ s̃(y); (ii)
for any y ∈ R, there exists x ∈ R such that x ≤ y and
s̃(y) ≤ r̃(x): Obviously, the binary relation 4 satisfies
the axioms of a partial order relation on F(R) (cf. [7],
[16]).

For r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} and m̃in{r̃, s̃} are defined by

m̃ax{r̃, s̃}(y) := sup
x1,x2∈R
y=x1∨x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

and

m̃in{r̃, s̃}(y) := sup
x1,x2∈R
y=x1∧x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

where a ∧ b = min{a, b} and a ∨ b = max{a, b} for any
a, b ∈ R. It is easy proved that for r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} ∈ R̃
and m̃in{r̃, s̃} ∈ R̃.

Also, for r̃, s̃ ∈ R̃, the following (i)–(iv) are equivalent
(cf. [7]): (i) r̃ 4 s̃; (ii) r̃−α ≤ s̃−α and r̃+

α ≤ s̃+
α (α ∈ [0, 1]);

(iii) m̃ax{r̃, s̃} = s̃; (iv) m̃in{r̃, s̃} = r̃.
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For any r̃, s̃ ∈ R̃,

(r̃ + s̃)(y) := sup
x1,x2∈R
y=x1+x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

When r̃, s̃ ∈ R̃, it holds (cf. [4]) that r̃ + s̃ ∈ R̃ and
(r̃ + s̃)−α = r̃−α + s̃−α and (r̃ + s̃)+α = r̃+

α + s̃+
α (α ∈ [0, 1]).

We denote by R+ and Rn
+ the subsets of entrywise non-

negative elements in R and Rn respectively. Let C+ be
the set of all bounded and closed intervals of R+ and Cn

+

the set of all n-dimensional vectors whose elements are
in C+.

We have the following.

Lemma 1.1 ([6]) For any non-empty convex and com-
pact set G ⊂ Rn

+ and D = (D1, D2, . . . , Dn) ∈ Cn
+, it

holds that

GD = {g · d | g ∈ G, d ∈ D} ∈ C+

where g ·d =
∑n

j=1 gjdj for g = (g1, g2, . . . , gn) ∈ Rn
+ and

d = (d1, d2, . . . , dn) ∈ D.

Here, we define average reward MDPs whose extension
to the fuzzy perceptive model will be done in Section 2.
Consider finite state and action spaces, S and A, contain-
ing n < ∞ and k < ∞ elements with S = {1, 2, . . . , n}
and A = {1, 2, . . . , k}.

Let P(S) ⊂ Rn and P(S|SA) ⊂ Rn×nk be the sets of
all probabilities on S and conditional probabilities on S
given S ×A, that is,

P(S) := {q = (q(1), q(2), . . . , q(n)) |

q(i) ≥ 0,

n∑

i=1

q(i) = 1, i ∈ S},

P(S|SA) := {Q = (qia(·) : i ∈ S, a ∈ A) |
qia(·) = (qia(1), qia(2), . . . , qia(n))
∈ P(S), i ∈ S, a ∈ A}.

For any Q = (qia(·)) ∈ P(S|SA), we define a controlled
dynamic system M(Q), called a Markov decision pro-
cess(MDP), specified by {S, A,Q, r}, where r : S × A →
R+ is an immediate reward function.

When the system is in state i ∈ S and action a ∈
A is taken, then the system moves to a new state j ∈
S selected according to qia(·) and the reward r(i, a) is
obtained. The process is repeated from the new state
j ∈ S.

The sample space is the product space Ω = (S × A)∞

such that the projections Xt,∆t on the factors S,A de-
scribe that the state and the action at the t-th time of
the process (t ≥ 0).

A policy π = (π1, π2, . . .) is a sequence of conditional
probabilities πt(A|x0, a0, . . . , xt) = 1 for all histories
(x0, a0, . . . , xt) ∈ (S × A)t × S. The set of all policies is
denoted by Π. A policy π = (π0, π1, . . .) is called random-
ized stationary if there exists a conditional probability
γ = (γ(·|i), i ∈ S) given S for which π(·|x0, a0, . . . , xt) =
γ(·|xt) for all t ≥ 0 and (x0, a0, . . . , xt) ∈ (S × A)t × S.
Such a policy is simply denoted by γ. We denote by F

the set of functions from S to A. A randomized station-
ary policy γ is called stationary if there exists a function
f ∈ F such that γ({f(i)}|i) = 1, for all i ∈ S, which is
denoted by f .

For each π ∈ Π, stating state X0 = i and transition
matrix Q ∈ P(S|SA), the probability measure Pπ(·|X0 =
i, Q) on Ω is defined in an usual way. The problem we
are concerned with is the maximization of the long-run
expected average reward per unit time, ϕ(i, π|Q), which
is defined, as a function of Q ∈ P(S|SA), by

(1.1) ϕ(i, π|Q) = lim inf
T→∞

1
T

Eπ(ϕT |X0 = i, Q)

(i ∈ S, π ∈ Π), where Eπ(·|X0 = i, Q) is the expectation
w. r. t. Pπ(·|X0 = i, Q) and ϕT =

∑T−1
t=0 r(Xt, ∆t) (T ≥

1).
For any Q ∈ P(S|SA), a policy π∗ satisfying that

ϕ(i, π∗|Q) = sup
π∈Π

ϕ(i, π|Q) := ϕ(i|Q) for all i ∈ S

is called to be Q-average optimal (simply Q-optimal).
In order to insure the ergodicity of the process, we

introduce the minorization condition M (cf. [12]). We
say that the transition matrix Q = (qia(·) : i ∈ S, a ∈
A) ∈ P(S|SA) satisfies Condition M if

δ(Q) := min
i,j∈S, a∈A

qia(j) > 0.

Let B(S) be the set of all functions u := S → R. For
any Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA), we define the
map U{Q} : B(S) → B(S) by

(1.2) U{Q}u(i) = max
a∈A

{r(i, a) +
∑

j∈S

(qia(j)− δ(Q))u(j)

for all i ∈ S. Then, if Q ∈ P(S|SA) satisfies Condition
M, the map U{Q} is a contraction, so that there exists a
unique fixed point v = v(Q) ∈ B(S) such that

(1.3) U{Q}v = v.

Putting ϕ(Q) = δ(Q)
∑

j∈S v(j) in (1.3), we obtain the
optimality equation for the average expected reward:

(1.4) v(Q)(i)+ϕ(Q) = max
a∈A

{r(i, a)+
∑

j∈S

qia(j)v(Q)(j)}.

The following lemma follows from (2.3) (cf. [1, 3, 5,
13]).

Lemma 1.2 Suppose that Q ∈ P(S|SA) satis-
fies Condition M. Then, ϕ(Q) = ϕ(i|Q) (not de-
pend on i ∈ S) and f(i) ∈ A∗(i|Q) for all i ∈
S, f is Q-optimal, where A∗(i|Q) := {a ∈ A |
a maximizes the right-hand side of (1.4)}.

Let PM be the set of all Q ∈ P(S|SA) which satisfies
Condition M. Then, we have the following used in the
sequel.

Lemma 1.3 (cf. [14, 15]) The optimal average reward
ϕ(Q) is continuous in PM .

In Section 2, we define a fuzzy perceptive model for
average reward MDPs, which is analyzed in Section 3
with a numerical example.



2. Fuzzy perceptive model

We define a fuzzy-perceptive model, in which fuzzy per-
ception of the transition probabilities in MDPs is accom-
modated. In a concrete form, we use the fuzzy set on
P(S|SA) whose membership function Q̃ describes the
perception value of the transition probability.

Firstly, for each i ∈ S and a ∈ A, we give a fuzzy
perception of qia(·) = (qia(1), qia(2), . . . , qia(n)), Q̃ia(·),
which is a fuzzy set on P(S) and will be assumed to
satisfy the following conditions (i)–(ii):

(i) (Normality) There exists a q = qia(·) ∈ P(S) with
Q̃ia(q) = 1;

(ii) (Convexity and compactness) The α-cut Q̃ia,α(·) =
{q = qia(·) ∈ P(S) | Q̃ia(q) ≥ α} is a convex and
compact subset in P(S) (α ∈ [0, 1]).

Secondly, from a family of fuzzy-perceptions {Q̃ia(·) :
i ∈ S, a ∈ A}, we define the fuzzy set Q̃ on P(S|SA),
called fuzzy perception of the transition probability in
MDPs, as follows:

(2.1) Q̃(Q) = min
i∈S,a∈A

Q̃ia(qia(·)),

where Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA).
The α-cut of the fuzzy perception Q̃ is described ex-

plicitly in the following:

(2.2) Q̃α = {Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA) |

qia(·) ∈ Q̃ia,α for i ∈ S, a ∈ A}

=
∏

i∈S,a∈A

Q̃ia,α (α ∈ [0, 1]).

Remark For each i ∈ S and a ∈ A, in place of giving
the fuzzy perception Q̃ia on P(S), it may be convenient

to give the fuzzy set q̃ia(j) ∈ R̃ (j ∈ S) on [0, 1], which
represents the fuzzy perception of qia(j) (the probability
that the state moves to j ∈ S when the action a ∈ A is
taken in state i ∈ S).

Then, Q̃ia(·) is defined by

(2.3) Q̃ia(q) = min
j∈S

q̃ia(j)(qia(j)),

where q = (qia(1), qia(2), . . . , qia(n)) ∈ P(S).
For any fuzzy perception Q̃ on P(S|SA), our fuzzy-

perceptive model is denoted by M(Q̃), in which for any
Q ∈ P(S|SA) the corresponding MDPs M(Q) is per-
ceived with perception level Q̃(Q).

The map δ on P(S|SA) with δ(Q) ∈ Π for all Q ∈
P(S|SA) is called a policy function. The set of all policy
functions will be denoted by ∆. For any δ ∈ ∆, the fuzzy
perceptive reward ϕ̃ is a fuzzy set on R denoted by

(2.4) ϕ̃(i, δ)(x) = sup
Q∈P(S|PS)

x=ϕ(i,δ(Q)|Q)

Q̃(Q) (i ∈ S).

The policy function δ∗ ∈ ∆ is said to be optimal if
ϕ̃(i, δ) 4 ϕ̃(i, δ∗) for all i ∈ S and δ ∈ ∆, where the partial
order 4 is defined in Section 1. If there exists an opti-
mal policy function δ∗, we put ϕ̃ = (ϕ̃(1), ϕ̃(2), . . . , ϕ̃(n))
will be called a fuzzy perceptive value, where ϕ̃(i) =
ϕ̃(i, δ∗) (i ∈ S).

Here, we can specify the fuzzy perceptive problem in-
vestigated in the next section: The problem is to find the
optimal policy function δ∗ and to characterize the fuzzy
perceptive value.

3. Perceptive analysis

In this section, we derive a new fuzzy optimality relation
for solving our perceptive problem. The sufficient condi-
tion for the fuzzy perceptive reward ϕ̃(i, δ) to be a fuzzy
number is given in the following lemma.

Lemma 3.1 For any δ ∈ ∆, if ϕ(i, δ|Q) is continuous

in Q ∈ Q̃0, then ϕ̃(i, δ) ∈ R̃, where Q̃0 is the 0-cut of Q̃.

Proof. ¿From normality of Q̃, there exists Q∗ ∈
P(S|SA) with Q̃(Q∗) = 1, such that ϕ̃(i, δ)(x∗) = 1 for
x∗ = ϕ(i, δ|Q∗). For any α ∈ [0, 1], we observed that

ϕ̃(i, δ)α = {ϕ(i, δ|Q) | Q ∈ Q̃α}.

Since Q̃α is convex and compact, the continuity of
ϕ(i, δ|·) means the convexity and compactness of ϕ̃(i, δ)α

(α ∈ [0.1]). 2

Lemma 1.2 in Section 1 guarantees that for each
Q ∈ P(S|SA) satisfying Condition M there exists a Q-
optimal stationary policy f∗ (f∗ ∈ F ). Thus, for each
Q ∈ P(S|SA), we denote by δ∗(Q) the corresponding Q-
optimal stationary policy, which is thought as a policy
function.

Here we introduce a Minorization condition for the per-
ceptive modelM(Q̃). we say that Q̃ on P(S|SA) satisfies
Condition M if Q̃0 ⊂ PM , where Q̃0 is the 0-cut of Q̃.

Lemma 3.2 Suppose that Q̃ satisfies Condition M.
Then, ϕ(i, δ∗) is independent of i ∈ S and ϕ̃ := ϕ̃(i, δ∗) ∈
R̃.

Proof. By Lemma 1.2, ϕ̃(i, δ∗|Q) is continuous in Q̃0,
so that ϕ̃(i, δ∗) ∈ R̃ follows from Lemma 3.1. Also, from
Lemma 1.1, ϕ(i, δ∗) is clearly independent of i ∈ S 2

Theorem 3.1 The policy function δ∗ is optimal.

Proof. Let δ ∈ ∆. Since δ∗(Q) is Q-optimal, for any
Q ∈ P(S|SA) it holds that

(3.1) ϕ(i, δ|Q) ≤ ϕ(i, δ∗|Q) (i ∈ S).

For any x ∈ R, let α := ϕ̃(i, δ)(x). Then, from the defi-
nition there exists Q ∈ Q̃α with x = ϕ(i, δ|Q). By (3,1),
y := ϕ(i, δ∗|Q) ≥ x, which implies ϕ̃(i, δ∗)(y) ≥ α.



On the other hand, for y ∈ R, let α := ϕ̃(i, δ∗)(y).
Then, there exists Q ∈ Q̃α such that y = ϕ(i, δ∗|Q).
¿From (3.1), we have that y ≥ x := ϕ(i, δ|Q). This
implies ϕ̃(i, δ|Q) ≤ α. The above discussion yields that
ϕ̃(i, δ) 4 ϕ̃(i, δ∗). 2

¿From Lemma 3.2, ϕ̃ ∈ R̃ (i ∈ S), so that we denote by
ϕ̃α := [ϕ̃−α , ϕ̃+

α (i)] ∈ C, the α-cut of ϕ̃. In the following
theorem, the fuzzy perceptive value ϕ̃ is characterized by
the fuzzy optimality relation.

Theorem 3.2 Suppose that Q̃ ∈ P(S|SA) satisfies

Condition M. Then, the fuzzy perceptive value ϕ̃ ∈ R̃ is
a unique solution to the following fuzzy optimality rela-
tions:

(3.2) ṽi + ϕ̃ = m̃ax
a∈A

{1{r(i,a)} + Q̃ia · ṽ},

where ṽ = (ṽ1, ṽ2, . . . , ṽn) ∈ R̃n and Q̃ia · ṽ(x) =
sup Q̃ia(q)∧ṽ(ϕ) and the supremum is taken on the range
{(q, ϕ) | x =

∑n
j=1 q(j)ϕ(j), q = (q(1), q(2), . . . , q(n)) ∈

P(S), ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) ∈ Rn)} and ṽ(ϕ) =
ṽ1(ϕ(1)) ∧ · · · ∧ ṽn(ϕ(n)).

The α-cut expression of (3.2) is as follows:
(3.3)
ṽ−i,α + ϕ̃− = max

a∈A
{r(i, a) + min

qia∈ eQia,α

qia · ṽ−α } (α ∈ [0, 1]);

(3.4)
ṽ+

i,α + ϕ̃+ = max
a∈A

{r(i, a) + max
qia∈ eQia,α

qia · ṽ+
α } (α ∈ [0, 1]);

where ṽi,α = [ṽ−i,α, ṽ+
i,α], ϕ̃∓α = (ϕ̃∓1,α, . . . , ϕ̃∓n,α), ṽ∓α =

(ṽ∓1,α, . . . , ṽ∓n,α), and qia · ṽ∓α =
∑

j∈S qia(j)ṽ∓j,α.

We note that α-cut of Q̃ia · ṽ in (3.2) is in C from
Lemma 1.1, so that Q̃ia · ṽ ∈ R̃. Thus, the right hand of
(3.2) is well-defined.

Proof. Under Condition M, Q̃0 ⊂ PM , such that δ :=
minQ∈ eQ0

δ(Q) > 0 and qia(j) ≥ δ for all q = (qia(·)) ∈
Q̃ia,α (α ∈ [0, 1]).

For any α ∈ [0, 1], we define maps Uα, U
α

: B(S) →
B(S) by
(3.5)

Uαu(i) = min
qia∈ eQia,α

max
a∈A

{r(i, a)+
n∑

j=1

(qia(j)−δ)u(j)} (i ∈ S),
(3.6)

U
α
u(i) = max

qia∈ eQia,α

max
a∈A

{r(i, a)+
n∑

j=1

(qia(j)−δ)u(j)} (i ∈ S),

for any u ∈ B(S).
Then, it is easily proved that the maps Uα and U

α

are contractions with modulas β = 1 − δ (< 1). Thus,
the unique fixed points exist for Uα and U

α
. Let denote

the fixed points of Uα and U
α

respectively by vα and
vα ∈ B(S). Also, by the same discussion as Lemma 4.2
in [10], we observe that vα and vα satisfy that
(3.7)

vα(i) = max
a∈A

{r(i, a)+ min
qia∈ eQia,α

n∑

j=1

(qia(j)−δ)vα(j)} (i ∈ S),

(3.8)

vα(i) = max
a∈A

{r(i, a)+ max
qia∈ eQia,α

n∑

j=1

(qia(j)−δ)vα(j)} (i ∈ S).

Putting ϕ−α =
∑

j∈S vα(j) and ϕ+
α =

∑
j∈S vα(j) in (3,7)

and (3.8), we get that
(3.9)

vα(i)+ϕ−α = max
a∈A

{r(i, a)+ min
qia∈ eQia,α

n∑

j=1

qia(j)vα(j)} (i ∈ S),

(3.10)

vα(i)+ϕ+
α = max

a∈A
{r(i, a)+ max

qia∈ eQia,α

n∑

j=1

qia(j)vα(j)} (i ∈ S).

It is easily shown that vα ≥ vα′ , vα ≤ vα′ (0 ≤ α′ ≤
α ≤ 1). Also we have that vα and vα are continuous
from below in α ∈ [0, 1] (cf. [4]). So, applying the rep-
resentative theorem (cf. [4]), we can construct the fuzzy
numbers ṽi (i ∈ S) and ϕ̃ by

(3.11) ṽi(x) = sup
α∈[0,1]

{α ∧ 1[vα(i),vα(i)](x)} (x ∈ R),

(3.12) ϕ̃(x) = sup
α∈[0,1]

{α ∧ 1[ϕ−α (i),ϕ+
α ](x)} (x ∈ R).

Then, ϕ̃ and ṽi (i ∈ S) satisfy (3.2). In fact, by
(3.11) and (3.12), the α-cuts of ṽi and ϕ̃ are equal to
ṽiα = [vα(i), vα(i)] and ϕ̃α = [ϕ̃−α , ϕ̃+

α ]. So, the α-cut
representation of (3.2) becomes (3.9) and (3.10). Also,
the uniqueness of ϕ̃ in (3.2) follows from the uniqueness
of ϕ−α and ϕ+

α in (3.9) and (3.10). 2

As a simple example, we consider a fuzzy perceptive
model of a machine maintenance problem dealt with in
([11], p.17–18).

An example (a machine maintenance problem). A ma-
chine can be operated synchronously, say, once an hour.
At each period there are two states; one is operating(state
1), and the other is in failure(state 2). If the machine
fails, it can be restored to perfect functioning by repair.
At each period, if the machine is running, we earn the
return of $ 3.00 per period; the fuzzy set of probability of
being in state 1 at the next step is (0.6/0.7/0.8) and that
of the probability of moving to state 2 is (0.2/0.3/0.4),
where for any 0 ≤ a < b < c ≤ 1, the triangular fuzzy
number (a/b/c) on [0, 1] is defined by

(a/b/c)(x) =
{

(x− a)/(b− a) ∨ 0 if 0 ≤ x ≤ b,
(x− c)/(b− c) ∨ 0 if b ≤ x ≤ 1.

If the machine is in failure, we have two actions to repair
the failed machine; one is a rapid repair, denoted by 1,
that yields the cost of $ 2.00(that is, a return of −$2.00)
with the fuzzy set (0.5/0.6/0.7) of the probability moving
in state 1 and the fuzzy set (0.3/0.4/0.5) of the proba-
bility being in state 2; another is a usual repair, denoted
by 2, that requires the cost of $1.00(that is, a return of
−$1.00) with the fuzzy set (0.3/0.4/0.5) of the probabil-
ity moving in state 1 and the fuzzy set (0.5/0.6/0.7) of
the probability being in state 2.



For the model considered, S = {1, 2} and there exists
two stationary policies, F = {f1, f2} with f1(2) = 1 and
f2(2) = 2, where f1 denotes a policy of the usual repair
and f2 a policy of the rapid repair. The state transition
diagrams of two policies are shown in Figure 1.

(0.6/0.7/0.8) (0.2/0.3/0.4) (0.3/0.4/0.5)

(0.5/0.6/0.7)

1 2

(a) Rapid repair f1

(0.6/0.7/0.8) (0.2/0.3/0.4) (0.5/0.6/0.7)

(0.3/0.4/0.5)

1 2

(b) Usual repair f2

Figure.1 Transition diagrams.

Using (2.3), we obtain Q̃ia(·) (i ∈ S, a ∈ A), whose
α-cut is given as follows(cf. [6]):

Q̃11,α = co{(.6 + .1α, .4− .1α), (.8− .1α, .2 + .1α)},
Q̃21,α = co{(.5 + .1α, .5− .1α), (.7− .1α, .3 + .1α)},
Q̃22,α = co{(.3 + .1α, .7− .1α), (.5− .1α, .5 + .1α)},

where coX is a convex hull of a set X.
So, putting x1 = ṽ−1α, x2 = ṽ+

1α, ṽ−2α = 0, ṽ+
2α = 0,

y1 = ϕ̃−α , y2 = ϕ̃+
α , the α-cut optimality equations (3.3)

and (3.10) become:

x1 + y1 = 3 + min{(.6 + .1α)x1, (.8− .1α)x1},
y1 = max

[− 2 + min{(.5 + .1α)x1, (.7− .1α)x1},
−1 + min{(.3 + .1α)x1, (.5− .1α)x1}

]
,

x2 + y2 = 3 + .9max{(.6 + .1α)x2, (.8− .1α)x2},
y2 = max

[− 2 + max{(.5 + .1α)x2, (.7− .1α)x2},
−1 + max{(.3 + .1α)x2, (.5− .1α)x2}

]
,

After a simple calculation, we get

x1 = x2 =
50
9

, y1 =
7
9

+
5
9
α, y2 =

17
9
− 5

9
α.

Thus, the average fuzzy perceptive value is

ϕ̃ = (
7
9
/
12
9

/
17
9

).
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