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Abstract

We will discuss an expected utility of rewards which are generated by Markov
decision processes. This is applied to the optimal stopping problem with a util-
ity treatment. Also a combined model of the decision processes and the stopping
problem, called as a stopped Markov decision, is considered under the utility.

1 Introduction

Recently Stoky and Lucas[20] have applied Markov decision processes to ana-
lyze the economic dynamics. It has many attractive properties as Fishburn[5]
and Pratt[16] etc. discuss by using the utility treatment. Several authors an-
alyzed MDP’s with exponential utility functions. Howard and Matheson|[8]
studied the case of finite states and actions in the finite horizon planning.
They gave the policy improvement to find the policy that maximizes the time-
average equivalent returns of MDP’s. Chung and Sobel[3] considered the max-
imization of the expected utility of the total discount return random variable
(called the present value) for finite MDP’s and derived the optimality equa-
tions, by which an optimal policy was constructed. Porteus[15] and Denardo
and Rothblum[4] dealt with the problem from the other points of view.

In this paper, a utility optimization of Markov decision processes (MDP’s)
with countable state and compact action spaces is considered. Our aim is to
construct a new combined model of the decision processes and the stopping
problem, called as a stopped Markov decision, under the utility. In Section 2
some preliminaries are prepared to formulate Markov decision processes when
the utility function is general. An optimality equation for the general utility
and a necessary and sufficient condition of being optimal under the utility
are derived. In Section 3 an optimal stopping problem with general utility
is discussed. Inheriting the OLA policy from a usual stopping problem, the
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validity of the policy is shown under suitable conditions. A property of the
stopping time is characterized by the case of risk-averse or risk-seeking. These
results are summarized from our previous papers, Kadota et al.[10,11].

Section 4 treats the main problem of the paper. On the basis of these previous
arguments, the utility optimizations are induced by both of decision processes
and stopping problems. We could extend the problem in the framework of
general utility of discounted Markov decision processes.

2 A formulation of MDP with general utility functions

We consider standard Markov decision processes specified by

(S, {A(i) }ies. a,7), (2.1)

where S = {1,2,---} denotes the set of the states of the processes, A(i) is
the set of actions available at each state ¢ € S, ¢ = (¢;;(a)) is the matrix
of transition probabilities satisfying that Y ;cs¢;;(a) = 1 for all « € S and
a € A7), and r(7,a, j) is an immediate reward function defined on {(7,a, j)|i €

S,a € A(1),7 € S}.
Throughout this paper, the following assumptions will remain operative:

(i) For each i € S, A(7) is a closed set of a compact metric space.
(ii) For each i,7 € S, both ¢;;(-) and r(1,-,j) are continuous on A(1).
(iii) The function r is uniformly bounded, i.e., 0 < r(i,a,7) < M for alli,j € S
and a € A(1).

A sample space is the product space @ = (S x A)* such that the projections
Xiy Ay on the t-th factors S, A describe the state and the action of ¢-time
of the process (t > 0). A policy @ = (mg,m1,---) is a sequence of condi-
tional probabilities m; such that m;(A(:)|io, a0, ,2¢) = 1 for all histories
(t0,a0, - ,i:) € (S x A)' x S. The set of all policies is denoted by II. A
policy m = (mg,m,---) is called stationary if there exists a function f with
f(1) € A(2) for all 7 € S such that m,({f(¢)}|i0, ao, -, =1) =1 forall t >0
and (79, a0, -+ ,1) € (S x A)f x S. Such a policy is denoted by f>.

Let Hy = (Xo,Ao, -+, A1, X;) for t > 0. We assume that for each 7 =
(7‘{'0’7'['1’ .. ) E H’

Pﬂ(Xt+1 = j|Ht—17At—17Xt =i, Ay = Cl) = (]ij(a) (2-2)

forall t > 0,4,7 € S,a € A(1). For any Borel measurable set X, P(X) denotes
the set of all probability measures on X. Then, any initial probability measure



v € P(S) and policy m € II determine the probability measure P € P(£) by
a usual way.

The discounted present value of the state-action process { Xy, Ayt =0,1,2,---}
is defined by

B = Zﬁtr(Xt,At,Xt_l_l), (23)
t=0
and .
Bt = E ﬁkT(Xk,Ak,Xk_H) for ¢ 2 0 (24)
k=0

where 3(0 < # < 1) is a discount factor. Let Mz := M/(1 — 3). Then, for
each v € P(S) and 7 € II, B is a random variable from the probability space
(Q, PT) into the interval [0, Mgz]. We denote by C[0, Mj3] the set of all bounded
continuous functions on [0, Ms]. Let g € C[0, Mg] be arbitrary. Then, inter-
preting this ¢ as a utility function, our problem is to maximize the expected
utility E7[g(B)] over all policies 7 € II, where E7 is the expectation with
respect to PT.

In order to analyze the above problem, it is convenient to rewrite E][g(B)]
by using the distribution function of B corresponding to PJ. Let, for each
ve P(S)and m eIl

Fi(z):= P/ (B < z), (2.5)

v

O(v) == {F7()|m € I},

For any g € C[0, Mg] and v € P(S), we say that #* € Il is (v, g)-optimal if
E™ [g(B)] > ET[g(B)] for all 7 € TI. When 7* is (v, g)-optimal for all v € P(S),

m* is simply called g-optimal.

Now we will derive the optimality equation under arbitrary continuous func-
tion g, which constructs a g-optimal policy. By weak-compactness of ®(v), the
following existence theorem holds.

Theorem 2.1. For any v € P(S) and g € C[0, Mp], there exists a (v,g)-
optimal policy.

For simplicity of the notation, let

Mg
Udgl}(s,i,a,7) = Fmg(x) / g(s+B'r(i,a,5)+ B1'2) F(dz) (2.7)
€0(j
0
for t > 0,9 € C[0,Mg],s € [0, Ms(1 — 3")],4,5 € S and a € A(i). And, if
v € P(S) is degenerate at {j}, v is simply denoted by j and ®(v) by ®(j)
similarly.



Now, we can state one of our main results, which gives a necessary condition
for (v, g)-optimality.

Theorem 2.2. For any v € P(S) and g € C[0, Mg|, let n* € 1I be (v,g)-
optimal. Then for each t > 0, the following optimal equation holds.

EXg(B)] = EI'[ max > qx,j(a)U{g}(Bi-1, X1, a, )], (2.8)
where B_; := 0.

In order to give a sufficient condition for g-optimality, we define the sequence

{AI =0 by

A:‘K(Sv Z) ‘= arg mnaxX, e 4(;) Z qij(a>Ut{g}(Sv ia Cl,j)- (29)

JjES

Theorem 2.3. For any v € P(S) and g € C[0, Mpg], the following (i) and (ii)
hold.

(i) Let m* = (wg, my,--+) be any (v, g)-optimal, then

P (A, € Ai(Bioy, Xi)) =1 forall t>0.
(ii) Let #* = (n}, 7y, - -+) be any policy satisfying

i (A7 (Bio1, X¢)|Hy) =1 for all Hy and t > 0.

Then, ©* is g-optimal.

3  Utility-Optimal Stopping Problem

This section is concerned with a general utility of the optimal stopping problem
for denumerable Markov chains. The optimality of the one-step look ahead
(OLA) policy is shown under suitable conditions.

As for the utility theory, so many authors analyzed decision processes with it.
For such examples of Markov decision processes, see Howard and Matheson([8]
and Chung and Sobel[3]. The analysis under a general utility criterion has been
done, for example, in Rieder[17] and our previous paper[10], which is expected
to enlarge the practical applications of the utility. To our knowledge, Denardo
and Rothbluml[4] is the only work related with utility treatment of optimal
stopping problem. They analyze the problem in a finite Markov decision chain



with the exponential utility and give a linear programming corresponding to
an optimal stopping time.

Let us designate a transition law as @) = (gij;¢,7 € S) and the underlying
process as {X;} by dropping the action since the decision does not imposed
in this section, for a denumerable state space S.

A stopping time is a random variable o : Q@ = S*° — {0,1,2,---} such P,(0 <
oo) = 1 and {0 = t} is measurable with respect to the o-algebra induced by
{Xo, X1, -+, Xy} fort =0,1,2,- - where v is an initial distribution on S. Let
denote by ¥, the set of all stopping times starting with the initial distribution
v € P(S). Let R be the set of all real numbers. The terminal reward at the
state 1 € S, r; = (i), is a function from S to R and the observation cost per
unit time is a constant ¢ > 0. The total reward when the system is stopped
at time ¢ is given by the random variable

Bt = Ct —|— T(Xt), (31)
where ¢; := —ct.

A utility g is a Borel measurable function from R to itself. Let denote by
E,[Y] the expectation of a random variable Y with respect to P,. For any
utility ¢ and the initial distribution v € P(5), our optimal stopping problem
is to maximize the expected utility £,[g (B,)] over all o € ¥,,.

For any g and v € P(S), the stopping time ¢* € ¥, is called (v, g)-optimal, if
Ey[g(Bo+)] = Ey g (Bo)] (3.2)

for all o € X,. The 0* € N, ep(s) ¥ is called g-optimal if it is (v, g)-optimal
for all v € P(S).

In the subsequent discussion, it is convenient to rewrite the expected utility
FE.,[g (B,)] by using the distribution function of B, with respect to P,. For this
purpose, we define

o0

Udg}(a,i) := sup / gla+ ) F(dx) (3.3)
Fed(7)

fora € Rand i € S, where ®(z) denotes ®(v) for v such that v({¢}) = 1. This
class of ®(v) is defined similarly as (2.6).

The validity of the OLA stopping times is discussed. In order to characterize
the optimal stopping time, we consider the following set and its hitting time.



For each t =0,1,2,---, let

S{g} ={i € Slglee+7:) = 3 a;;U{g}(cr1,5) } (34)
Jj€s
and
o* := { the first time ¢ such that X; € S;{g}}. (3.5)

The next assumption is fundamental for a general theory in the optimal stop-
ping.

Assumption 3.1. For any v € P(S5),

E,[ sup g(B;)t] < 0. (3.6)
{t>0}

By applying the result in Chow, Robbins and Siegmund[2] to the sequence of
random variables {¢g(B;) }:=0,12,..., we can show the next theorem.

Theorem 3.2. (refer Theorem 4.5 in [2] )

(i) Suppose Assumption 3.1 and P,(0* < 0o ) =1 for any v € P(S). Then,
o* € ¥, and o* is (v, g )-optimal.

(ii) Suppose that Assumption 4.1 and that lim;—., g(B:) = —occ P,-a.s. holds
for any v € P(S). Then, 0* € N, ep(s) ¥v and 0* is g-optimal.

Now, using an idea of the OLA stopping time for optimal stopping problems
with additive utility functions (for example, see [18]), we derive some results
on the general utility case. For each ¢, let

Silat ={i € Slglec+ri) 2 Y aijglcrer + i)} (3.7)

JjES

Notice, from (3.3) and (3.4), that Si{g} C S;{g} for all {. The OLA stopping
time is a stopping time whose value is determined by the first hitting time ¢
such that X; € Sf{g}. Here, we introduce an assumption to get useful results
on the validity of the OLA stopping time.

Assumption 3.3. For eacht =0,1,2,---, Q = (¢;;) and S;{g} satisfy that

gi; =0 if 1 € 57{g} and j & 57, {g}. (3.8)

If S3{g} = Si{g} for all t, Assumption 3.3 assures the closedness of Si{g}.
Notice that if S;{g} # 0 for some ¢, then Sy, {g} #0 forn =1,2,---.



Let denote F, and ¥, for v € P(S) such that v({:}) = 1 by F; and ¥,
respectively. In the following lemma, the relation (3.10) is sometimes called
the monotone property.

Assumption 3.4. Suppose that

E;[ sup g(e: + Br)t] < o (3.9)
{k20}

for any 1 € Sf{g} and t =0,1,2,---
Lemma 3.5. Assumption 3.3 and 3.4 imply that

U{g}(cl‘?]) :g(Ct—|-T]‘) for aan € S;‘k{g}t:()vlaQa (310)

The next theorem gives a sufficient condition for the OLA stopping time to
be optimal under the general utility.

Theorem 3.6. If Assumption 3.3 and 3.4 hold, then it holds that S;{g} =
Se{g} fort =0,1,2,---.

In case of a linear utility function g(z) = z, it is reduced to

S = S{ay={ieS|c+r>Y qrl, (3.11)

JjES

which is independent of ¢ and so we denote it as 5*. The next theorem shows
a property of the OLA stopping times characterized by the non-decreasing
utility.

Theorem 3.7. Let g be a non-decreasing function.

(i) If it is concave, then Sf{g} D S* for each t.
(ii) If it is convex, then S;{g} C S* for each t.

We note that the concave function is risk-averse and the convex one is risk-
seeking. The OLA stopping time of a risk-averse decision maker has a tendency
to stop earlier than that of a risk seeking one.



4 Stopped decision processes with general utility

In this section we will discuss the problem, so called as stopped decision process
by Furukawa[6], Furukawa and Iwamoto[7], under the frame work of general
utility.

Following the notation of Section 2, the standard Markov decision process

(Sv {A(i)}iesa q, T)

are assumed to be given as (2.1). Let define a stopping timeo : Q@ — {0,1,2,---}
by the following condition:

(i) For each n, {oc =n} € F,,
(ii) Pl(o < o) =1,
(i) Frlg(B)] < oo,
where v € P(S),m € Il and {F,} is a given o-algebra. For each v € P(5), 7 €

I, we call this a stopping time o with respect to (v, 7) with a fixed g. Denote
the class of a stopping time o and that of a pair (7, o) by

Y, = { a stopping time o w.r.t. (v,7)} (4.1)

and
A, = {(m,0)|lo € Bpmy, m € 11} (4.2)

respectively.

Our problem is to find a pair of a policy 7 and a stopping time ¢ which
maximize the expected utility;

Elg(B,)] = EI [g(S7_8" " r(Xocr, Aucr, X0)|
over (m,0) € A, for each v € P(S) where r(X_1,A_1, Xo) = 0.
Definition 4.1. The pair of (1*,0*) € A, is (v, g)-optimal or simply v-optimal
if
E7 [9(Bo+)] = E7[9(B,)] (4.3)
for all (w,0) € A,.

To consider an optimality equation, define

Udg}(s,1) := maxrea() / g(s + B'z) F(dz)

Ut{g}(57 ia Cl,j) = maXFECD(j) / g(S + /BtT(’i, Cl,j) + ﬁt-}_lz) F(dZ)

—00



where ®(i) = O({i}), d(v) = {F?, | (m,7) € A}, FZ,(2) i= PY(B, < ) as
similar to (2.7). However we note that this class of distributions is not compact
since the domain is not bounded.

Assumption 4.2.

1) For each 1,7 € S, we assume that ¢;;(-) and r(z,-,7) are continuous Iin
7.] 2 QJ 9 7.]
a € A(7).
ii) The general utility function g(z),z € S is differentiable and | ¢'(x) | is
g
uniformly bounded.
111) The initial distribution v € P(S) has a finite support.
(iii) pp
(iv) EJ[supsse 9(B)*] < co.

We note that this assumption is satisfied when it is a neutral or a risk averse
case.

Lemma 4.3. Under Assumption 4.2, the following (i) and (ii) are hold.

(1) Ui{g}(s,2) is continuous in s € R for eachi € S.
(i1) Xjesqi(a)Ud{g}(s,1,a,j) is continuous in a € A(1) for each i € S and t.

In order to characterize the optimal pair in the recursive form, let define a
sequence of sets of the pairs by a truncation of the time horizon.

Definition 4.4. For n > 1,

Ay ={(m,nVo)|(r,0)€ A} (4.4)

Note that A = A, and A D A2 5 A3 O --- holds clearly. By using
a shift operator 6, for a history Hy = (Xo,Ag, X1, -+, Xy), let 6, H, :=
(Xn, Ay Xog1, -+, Xy) for n < ¢ and 6;H; := X;. A truncated policy n"
at n-th is

"= (o, Ty M) (4.5)
for m = (mg, m1,--+) and (m,0) € AZ. A conditional pair is the pair of a policy
n[H,] := (7[Hu]1,7[Hy)z,---) and a conditional stopping time o[H,](w) :=
o(w') — (n — 1) with a given history H,, where w = (X', Ay, ) and ' =
(Hny X', A, -2) € Q. Let us denote that B, = Y1 8'r(X], A}, X{,,) for
n > 0.

Lemma 4.5. If (7,0) € A", then
(n[H,],c[H,]) € Ax, PJ-as. (4.6)

where Ay, means the initial distribution v of A, is degenerated at X,,.



Proof. Assume contrarily that PJ((n[H,],c[H,]) ¢ Ax,) > 0. Since (7,0) €
A,

= BI[PRU (0[H,) < co)1p] + PI (D).
The last term is divided to the two cases such that D := {(n[H,],0o[H,]) ¢

Ax,} and its negation D° using the indicator function 1. The assumption
that 0 < PrH=l(g[H,] < o0) < 1 and PT(D) > 0 imply PrH=l(o[H,] <
o) = 1, PTHnl _a5.0on D. On the other hand, using by Assumption 4.2(ii),
there exist a constant M, and K such that |B;| < M, and ¢g(B, + z) <
g(z) + KM, for all z. Using this evaluation and E][g(B,)”] < oo, we obtain

7

that E:[E;T([f"](g(Bg[Hn])_] < 0. So PI((n[H,),o[H,]) ¢ Ax,) = 0 follows.
This completes the proof.

For the rest of assertion its proof is omitted for sake of shrinking the pages.

Lemma 4.6. For an arbitrary initial state 1 € S and m € II, we select a pair
(7%,0%) € A;. Define (n',0") by 7' := (7", @} 1y, 7} s, ) with 7T;+k(Hn+k) =
770, H,yr) (k> 1) and o'(w) := 0%"(0,w)+n for any w in the sample space
and any fixed n > 1. Then

(', 0') € A (4.7)

provided Assumption 4.2 holds.

Definition 4.7. Define a conditional maximum reward by

Yy = €ssSup(z yean B0 [9(Bs) | Ful  (n>1) (4.8)

Henceforth we write esssup by sup for a short.

Lemma 4.8. For each n > 1,

(i) In = U{g}(Ban)
(ii) In = maX{Q(Bn)v SUPren E:(7n+1 |Fn)}

(iii) SUPrem1 E:(’Yn+1 |5"—n)}

= MaXae A(X,) 2je5GXn,i (@) Unig}(Br, Xn,a,j)

where 7, =~ for a sake of simplicity.

10



Let 0* = the first time ¢ such that g(B:) = sup,cp E] (y:41]F:)} and define,
forse R, 1€ S,

Af(s,1) 1= argmax, ¢ 4y Xjesqi;Ui{g}(s, 1, a, 7). (4.9)

Theorem 4.9. If a policy n* = (7}, 7}, ) satisfies
(A (B, X,) | Hy) =1 (4.10)
for n > 1, the next iterative relation
Yo = max{g(Bn), B} [yat1 | Fal} (0 >1) (4.11)

is obtained.

Lemma 4.10. For 7 satisfying (4.10),
{f)/n/\a*afn;n:1727"'} (412)

is a martingale with respect to PT".

Theorem 4.11. Assume the previous Assumption 4.2 and (4.10). Then;

(i) If P™(0* < o0) = 1, then (7*,0*) is a v-optimal pair.
(ii) The above condition (i) is satisfied when

g(B,) = —oco(asn — o) PT -as.

Example 4.12. (Markov deteriorating system and exponential utility)

A simple example for Markov deteriorating system and exponential utility is
illustrated. This system is formulated by the following conditions:

(i) The feasible action space is independent of 1 € S, that is, A(i) = A for a
compact set A.
(ii) The utility function is an exponential type; g(x) :== 1 — e () > 0).
(iii) For the transition probability, P,j(a) = 0,7 > j for alla € A and i,5 € S.
(iv) For the reward function, r(i',a,7) < r(i,a,j),t <" < jforalli,i',j €58.

Under these assumptions, we immediately calculate the optimal stopping time
by using the monotone case of Chow, Robbins and Siegmund|[2] and the OLA
policy by Ross[18].

Let

ke i=min{i > 0|min )~ gij(a) exp{=AB'r(i,a, j)} = 1} (1 2 0).

11



Then kg > ki > ky > ---. The optimal stopping time ¢* defined by the
first hitting time ¢ such that X; > k;, which is independent of B; , is finite
P -a.s. for each 1 € S and the initial distribution v of a finite support. The
optimal policy could not described explicitly in this situation but it is possible
numerically because the optimal stopping region have been determined.
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