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INTRODUCTION

The theory of optimal stopping was first formulated in connection with
the sequential analysis and can be found in the book "Sequential Analysis"
by A. Wald in 1947. A general theory of optimal stopping for stochastic
processes was developed éfter'the appearance of works by J.L. Snell in
1952. Snell's theory means the classical super martingale characterization
of the value process. Afterwards, in Markov proceséés with continuous time
parameter, the connection between optimal stopping and free boundary prob-
lems was discovered, and the methods to apply the theory of variational
inequalities to optimal stopping problems have been studied. The formula-
tion of a Markov decision process is fairly general, as it includes a broad
class of models of sequential optimization. An optimal stopping problem
can be formulated as a two-action Markov decision process, in which one may
either stop and receive a reward, or pay a cost and go to the next state.
If we ignore the finiteness of stopping times, then, the existence of an
optimal stopping time and the methods for finding the stopping time can be
discussed under the framework of Markov decision Processes.

In this thesis, the author studies the theory of optimal stopping in the
discrete time parameter processes, which have a new structure described in
terms of the observer's action and the system's decision. Under this
situation of the problem the optimality equation and the optimal policy are
discussed. The motivation of the model comes from the multi-variate stop-
ping problem and from the uncertain employment problem on secretary
choices. Concerning the best choice problem, which is a particular case of

the optimal stopping problem, an integral equation is given as an asympto-



tic form of the solution for the problem with a random number of objects.
Under conditions on the distribution of the number of objects the integral
equation is solved and consequently the asymptotic forms of optimal value
and optimal policy are explicitly obtained.

In chapter 1, the author considers a stopping problem in which the
observer's action and the system's two decisions are introduced. The
observer can select a strategy defined on an action space, and the decision
of the system to stop or continue is determined by a prescribed conditional
probability. For this model, it may happen that the strategy to stop is
refused, or to continue is forcibly stopped.

One of the typical application of the above model is the multi-variate
stopping problem. A monotone rule is introduced in chapter 2 to sum up
individual declarations. This is a reasonable generalization of the sim-
ple majority, veto power and hierarchical rules. The rule is defined by a
monotone logical function and turns out to be equivalent to the winning
class of Kadane. The existence of an equilibrium stopping strategy and the
associated gain are discussed for the finite and infinite horizon cases.

Chapter 3 treats the best choice problem with a random number of objects
provided its distribution is known. The optimality equation of the problem
is reduced to an integral equation by a scaling limit. The equation is
explicitly solved under some conditions on the distribution, which closely
relates to the conditions for an OLA policy to be optimal in Markov deci-
sion processes. Also this technique is applied to three different versions

of the problem and an exact form for asymptotic optimal strategy is de-

rived.



1. OPTIMAL STOPPING PROBLEM INVOLVING REFUSAL AND FORCED STOPPING

1.1. FORMULATION

Suppose that the discrete time parameter process Xn(=X(n)), n=1,2,... is
observed, and one selects a strategy from an action space A at each period.
This strategy determines stochastically the system's decision to stop or
continue. If the decision is to stop, one gets a reward for interrupting the
observationj if the desicion is to continue, one observes the next value, and
pays the cost. To be explicit, let X(n), n=1,2,.. be a stochastic process
with a state space E C R and let an action space A be a finite topological
space. To start the first observation, one must pay a cost ¢ € R. Then,
observing X(1), one selects a strategy Gié:A. Observing X(n) at the n-th
period and selecting a strategy Uhe»A, one gets a net gain X(n) - nc if
the process's decision is to stop. If not, one incurs the cost ¢ and

observes X(n+1).

The strategy 6, at the n-th period is an A-valued (ﬁ(Xl,..,Xn)—
measurable random variable with its distribution ¢n(a) = P(oh = a), ae A,
where (G2 ,d3, P ) is an underlying probability space and 53(Xl,..,Xn) C 63 .
The strategy ¢ denotes the infinite sequence (51,..,05,..), and 2; is the
set of all strategies.

Let us denote the system's desicion by the variables (Sn);
(1.1) 1 if the decision of the process is stop at the n-th period,

0 if continue.

The decision {Sn} is determined only by the strategy oa at the n-th period,
with the a conditional probability

(1.2) ‘1n(a) = P(Sﬂ:l’o;:a), ae A

where qh(a) is a given amount.



.

Assumption 1.1 We assume that 1n(a) is independent of n, so that
(1.3) 9(a) = 7h(a) for all n.

For the space A, there exist

(1.4) X = min Y (a) =‘x(ao), f = max ¥ (a) =’7(a1), ay, a; € A.
To avoid a trivial case, assume (a), a A is not constant so that
(1.5) 0 §O(<(3§_1.

According to the setup of our model in the finite N-horizon case, the

Vstopping time is defined by

(1.6) ty(@){= firstin < N; 5 =1}

N if { } is empty.

]

where G’ez is a strategy.
Our aim in the finite-horizon stopping problem is to maximize the
expected gain
E[X(ty(e)) - cty(e)]

subject to the strategy o—e-Z} The optimal value V_ is defined by

N

(1.7) VN = sup E[X(tN(y)) - ctN(G)].

The optimal strategy *s is such that E[X(tN(ﬂy)—ctN(ﬂy)] = VN.
The difference from the usual stopping problem is that a conditional
probability ¢/(a) has been introduced into the connection between the
observer's strategy and system's decision. Roughly, the observer's strategy,
which determines the system's decision is interrupted by this. Two extremal
probabilities are significant: 1 - @ = 1 - max % (a); that is, the probability
of refusal to stop the process, and ¢ = min </ (a); that is, the probability of
forced stopping. If o = O and P = 1 (no interruption), then the problem
reduces to the usual one. The model is motivated by the uncertain secretary

choice problem of Smith(1975) with P =p (0<p £1) and ( = 0, and also the

multi-variate stopping problem of Kurano, Yasuda, Nakagami(1980) including



both refusal and forced stopping. These secretary choice problem is discussed

in section 1.4.

1.2. OPTIMAL STRATEGY

ASSUMPTION 2.1 (i) Let X, X(n), n=1,2,... denote independent identically

distributed (i.i.d.) random variables with E\X‘ < 00, Denote their
distribution function by F and let F_:ﬁg:}dF(x) = E(X). (ii) Assume that rL
< sup {x;F(x)(l} .

The first assumption is not essential to our argument and we shall treat
the non-identically distributed case in the example of Section 1.4.

Using the notation:
(2.1) T (%) = E(X-x)"8 - E(X-x)"a

where (a)+ = max(a,0) and (a) = (—a)+, define the sequence (}Ln) as follows:

(2.2)  w = E(X),

H =¥ -c+ T

n n-1 GF,B(pn—:_l - C), n=2,3...

In the special case, (3:1 and (=0, (2.1) implies TO 1(x) = E(X-x)V =
’

" ]
§ (y-x)dF(y). This appears frequently in the ordinary stopping problem.

X
Clearly leﬁ(x) = (F-d)To’l(x)-+u(%—x). Also Td,@(x) is a continuous,
convex function of x and has two asymptotes. If o =0, then T, @(x) 2 0 but

’

generally it varies over (- oo, oo ). Therefore we note that the sequence

(an) is not monotone increasing in the case of  # O.

THEOREM 2.1 The optimal strategy *g =(*g ,..,*aN,..) € z: is given by

1



(2.3) a, if X, (w) 2 ,'(N-'YL -c

*g ((ﬂ) =
n a
0 <
for n=1,2,..., and the optimal value is
(2.4) VN =}_LN - C.

Proof. 1In the case of N=1, the optimal value is clearly

Vl = E(Xl) - c = Ni - c

because the reward is X1 and the cost incurred for the observation is c. As

- the usual dynamic programming's procedure, we assume inductively that (2.4)

holds and consider the parameter N as a time-period left in the sequential
decision process. When N-n time-periods are left, one must select Gh = a from
ag€ A. If Sn = 1 occurs, then one gets Xn’ otherwise VN—n =/JN—n - ¢ since it
reduces to the (N-n)-th period problem. One selects a strategy Gh at the
n-th period so as to maximize

E [ X, P(Sy=1] Xp, 031) + Vy_ P(S,=0 | Xy, & )]

Since P(Sn=l an, Oh) = P(Sn=1| 0 ) and Y(a) = P(Sn=1‘ ch=a), one is to

maximize
5[ 3, (%n = Vo) ¥(@) f@) ] + Vyp
aeA
< - . _
for 0 & an(a) £ 1 over all the densities. Hence if X, - VN_nZ 0
¢h(a) =1lif a=a, and #%(a) =0 otherwise

£ _
and i Xn vN—n <0,

¢ (a) =1 if a = a_, and ¢ (a) =0 otherwise.
n n

O,
That is, the pure strategy (2.3) is optimal. Its maximum equals

E[(X, - Vy_ )78 - (X -V _)alsv

N—n) N—n
Ta,l MNon =€) + My —© = My e

The total optimal value is, with a cost c per observation, is
VNen+1 = Pener ~ ©
This proves the theorem by letting n=1.



1.3. INFINITE HORIZON PROBLEM
Define a stopping time t(5) by
(3.1) inf{n zl:8 = 13,
t(o) =
oo if {3} is empty
for the strategy 6-€eJ, . Let X(t(6)) = X(n) on t(¢)=n, X(t(¢)) = limsup X(n)
on t(¢r) =, The optimal value V* is defined by

(3.2) V* = sup E[x(t(c—)) - ct(o)].

ASSUMPTION 3.1 We assume (i) K > O and ¢ is any real number or

(ii) X = 0 and ¢ > O.
LEMMA 3.1 Under Assumptions 1.1, 2.1 and 3.1, the limit of the sequence
(H.) of (2.2) exists:
n

3 P *
(3.3) 1lim Fh =Vv* + C
where v* is the unique solution of the equation:
(3.4) Td)F(V) = C.

n-1

Proof. Let vn = Fh - c. The iteration (2.2) implies v, =V + Td,@(vn—l) -

c. It is clear that the function v + T v) of v is continuous, convex and

d,@(
monotone increasing. Also g(v), the asymptote of Td’P(V) as v — 00, is g(v) =
ol Jh+ (1-d)v. Therefore (3.4) has a unique finite solution for o > O and for
any c. Under the conditions o = O and ¢ > O, it holds similarly.

The property (3.3) is called stable by Ross(1970); we can therefore say
the forced stopping problem is stable.

A necessary and sufficient condition that the solution v* of (3.4)
satisfies v*z i is that E(X -p)TZz e/(B-). If c =0, the result is
trivial and it holds that
(3.5) s v sup { x; F(x) < 1}.

Examples of the solution v* in (3.4) with ¢ = O are as follows.

(i) Normal distribution N(0,1); O < v¥< 09,



i

Y(v) = ov/( p-x)
0
wherei?(v) = ¢(v) - v@(v), @(v) = j;¢(x)dx and ¢(x) is a density function.
(ii) Exponential distribution with a density function Aexp(-)x), A > 0;
/A& v¥g o0, (exp(-av))/(1-Av) = — /(B - ).

(iii) Uniform distribution on a unit interval (0,1); 0.5 gv*xg 1,

ve = 1/(1 + J(%/p)).
LEMMA 3.2 The functional equation of V(x), X € R:
(3.6)  V(x) = max(7 (a)x + (1-¢(a) {E(V(X) - c})
where ¥(a), a € A is in (1.4), has a unique solution in a functional space
{V(x), X €R ; E(V(X))<:Do} under Assumption 3.1. It is given by
(3.7) V(x) = (x - v*)+(3 - (x - v*)_o( + v*
where v* is determined by Lemma 3.1.
Proof. We can show by straightforward calculation that (3.7) satisfies
E(V(X)) <0 and (3.6). The uniqueness can be proved from the fundamental

property of 'max' mapping in (3.6), as in Bellman(1957).

THEOREM 3.3 In the infinite horizon case under Assumptions 1.1, 2.1 and

3.1, the strategy *s = (*g-'l,..,*a-'n,..)ez with

(3.8) a X (w) > v+,
1 n
6 (W) =
ao < v¥,
n=1,2,... is optimal and the optimal value V* is given by
(3.9) V* = V*,

Proof. Let V(x) denotes the optimal value when the first Xl = X is observed.
By the optimality principle, V(x) satisfies the optimality equation (3.6). It
follows that, with the incurred cost c, the optimal value equals V* = E[V(Xﬂ

- c. Hence (3.9) is immediately obtained from (3.7) and E[V(X)] = V* + c.



THEOREM 3.4 In the case of ¢ = 0, a sufficient condition that P(t(*3) < o)
= 1 is that « > 0.

Proof. Since X(k), k=1,2,.. are i.i.d.,

P(t(*s) = n) P(X(k) < v*, k=1,..,n-1, X(n)= v*)

(1 - F(v*=)) (F(v*-))"L,

Now c=0 implies that E(X-v*)*/E(X-v*)” = «/p . If & > O, then E(X-v¥)* > 0
yields v* sup{x;F(x) < 1} and so F(v*) < 1. From these, the conclusion is

immediate.

1.4. APPLICATION TO A BEST CHOICE PROBLEM

Let the observation cost ¢ = 0 and let X(n), n=1,..,N be independent
random variables such that
(4.1) n/N with probability 1/n,

{0 with probability 1-1/n.
The stopping problem for this process (4.1) is called the secretary choice
problem by Chow, Robbins and Siegmund(1971). We will not assume (1.3) and use

dn’ Fn instead of o, @ in (1.4). It is seen, indexing the time parameter,

that results similar to Theorem 2.1 hold. Define

(4.2)  {m)(y) _ g0 s (x) = E(xg_ - x)"B = E(X_ - x) o
n’'n

for n=0,..,N-1 in place of (2.1). From (4.1),
- if <0,
Bn/N B if x 32

My B /N - (o + (B -a )/N )x if O <x <N/N,

- i <
an/N e X if Nn/N < x,



where Nn = N - n. Since c=0, Vn = Fh holds by (2.4), and so consider the
following sequence similar to (2.2):
(4.3) v, E[xN] = 1/N,

- (n-1) -
Vo=V 4T (V). n=2,3,...

This is different from the usual problem; if “h # O, we note that the

sequence Vn is not generally monotone increasing.

ASSUMPTION 4.1 Let dn’ Pn satisfy the conditions:
i 05 o . <

(11) Bz f.

(iii) O(n - O(n+l + O(nO(n+l €0
for each n.
LEMMA 4.1 Under Assumption 4.1, if n/N Z-VN—n for some n, then it
holds also for later n.
Proof. If VN—n is concave in n, the lemma is immediately proved since the

boundary VN at n=0 is strictly positive, that is, the initial position is

above the straight line n/N. To prove this, it is enough to show that
(n) (n-1)
(4.4) T (vn) - T (Vn—l) < 0.

(n—lz

First, we show that T(n)(x) £ 7T x), 0 £ x<©; this follows because

T(n)(x) is a convex function of x and is composed of three line segments.

Hence it is sufficient to consider the inequality at x = Nn+1/N and x = Nn/N.

The result is immediate at these points for the increasing dh and decreasing
Pn following from Assumptions 4.1 (i),(iii).

To prove (4.4), we restrict Pn to be a constant in n, without loss of
generality. Because, for a general Fn' the gradient of T(n)(x) on O £x &
Nn/N decreases, the above arguments hold independently of ﬁh on x 2 Nn/N'

Consider a function of x:

10



sy ™D vy - () ()

(n)

where y = 7™ (x). on 0 S x< N /N, if y=T'"(x) 2 0, s(™ (x) 2 0 follows by

considering
o)
S (N /N) = ops( /N - ey (Ny /N+y) = (=6GNyyy /N)
= (d'n_- d\'n_.f' + o('n dn.'.! ) N’f\_+l /N é 0.

If y 2 0, clearly T(n+1)(x+y) ﬁkT(n+l)(x) §LT(n)(x) hclds by the monotone
decreasing property of T(n)(x) in n and x. For x > Nn/N, we easily see that
y=T(n)(x) < 0 and

) \

STTUX) = &pa /N = Opgy (x+Y) = ¥ = (op—~ Olmas + Ay &ns X (x-1/N) = O

Dy Assumption 4.1(iii). We have thus obtained S(n)

(x) £0 on 0 £ x and so
completed the procf of the lemma.

The optimal policy *g is, by (2.3) in Theorem 2.1, such that *oh =a; if
Xn;; VN—n occurs or n/N Z:VN-n; that is, we declare "stop" if the relative
best applicant has appeared. Define
(4.5) n* = inf{n ; n/N = vN—n}'
By Assumption 4.1 and Lemma 4.1, the optimal strategy of the considering

problem is the OLA policy(refer to Ross(1970)). The result is summarized as

follows.

Theorem 4.1 The optimal strategy of the secretary choice problem is *ch =
a0 for n=1,..,n*-1 and *Gh = a1 for n=n*,..,N. That is, observe applicants
until n*-1 and then declare "stop" if an appeared one is relatively the best

among the previous ones.
In the rest of the section, we study the limiting procedure by allowing N
tend to infinity. Two special cases of the coefficients dn and Pn are

considered.

11



(I) REFUSAL AND NO-FORCED STOPPING

Let
(4.6) p, =P and a4 =0
where p is a constant(0 < p<£1l). Sincé dn = 0, there occurs no-forced
stopping, and this is the uncertain employment case considered by Smith(1975).
By (4.3) and (4.5), we have

W e snegn g pd e @R L, (222 (14R) | (N34p) 1 ) -

ey M2yl o,

+

where p = 1 - p. If p=1, (4.7) becomes

n* = inf‘{n i 1/n + 1/(n+1) + .. + 1/(N-1) < 1 3
as is well-known.

If p< 1 and v, = p/N, (4.3) and (4.5) imply

(4.8) n* = inf{n ; p(1+5/n)(1+5/(nt1))..(145/(N-1)) < 1 3.

. This result is obtained by Smith(1975). The limit is

(4.9) lim n*/N = p!/¢=P)
This value holds for both the cases (4.7) and (4.8). This is seen in the next

generalized situation.

(I1) REFUSAL AND FORCED STOPPING

Let
(4.10) Fn = p and dn = q/(N-n)
where p and q are constants wifh 0 £g< pg 1.

The situation in this secretary choice problem is that there are two
observers, one is a young man who wants to choose a secretary and the other is

his grandmother who also observes applicants. Each of the applicants ranks

12



indedendently and also assume that there are no relation between two
components of the rank. The problem is to find the best one with respect to
the young man's rank. As a stopping rule, he could choose a candidate if he
thinks she is best, in accordance with the possibility of refusal p. Aside
from this case, there occurs forced stopping. That is, although he thinks
that a candidate is not the best, he is forcibly stopped and must accept her
when his grandmother thinks her the best one. The factor q denotes the
strength.of this effect.

Clearly this reduces to case(I) if q = O and (4.10) satisfies Assumption
4.1. Now we proceed fo calculate 1lim n*/N as before where n* is given in

(4.5). By (4.3), if N/N < V ,
n n

1 Vn : Nn+1 |
\' =V = - — -
n1 "Vt R P - eV,
n n
=p/N + n V
nn
where N =a + ( a - p)/Nn and a =1-o0_. Hence we have, from the

iteration (4.3) and the property of the optimal strategy, that

(4.11) V = p(1+nn+nnnn_

nel +..+nnnn_1..nl)/N + (1—p)nnnn_l..n1/N

1

(4.12) n_=1 - (p+q)/Nn + q/Ni =68 N _/N

n n+l’ ' n
where
5§ = p— = D -
n } + (p q){Nn+1 * cl/(NnNn+1) =1+ p/Nn+1 q/Nn
and p = 1 - p. Substituting (4.12) in (4.11), we obtain
N cse S oo
v _ D+l { ( 1, fg . Gnsn-l *nln-1 61) = nan—l % }
ntl = N P (§ N — + ... 4+ N + p N
n+1 n n-1 1 1

By (4.5), we must find {first n such that n/N ZvN—n} so

13



6 8
. N .o 1
1 1 1 —  n+l
4.13 i M - e e 0 LAY
( ) inf{ n ; p(n oy Tt + 8 8y ) ) + p ) <
n+l n+l n+2

In the limiting procedure, it is enough to consider the relation between n and

N:

(4.14) 1/p = 1/n +_(l + p;q + n(nil))/£n+l) o 8 N
P-q q p-g q _ p _n+l -
PO ) e e/ D e e

From the principal terms of Sn’ we can write

8y =1+ (p-q)/n + o(1/n)

where o(1/n) denotes terms of order smaller than 1/n. Hence (4.14) implies

9 )
= = - = °N 1
1/p = 1/n + (1+E§3)/(n+1) + oo + (1+B§9)..(1+§E§)/(N—1) + g n;il + o(1)

where o(1) is a term of negligible order as n — . Rearranging the sum in

(4.14), we have

= - N 1
(1-a)/p = (1 + B3, 1 + =) p(g'Q) “;il + o(1)

provided p + q # 1. The last two terms of the above equality are negligible.
Using the approximation 1+x = exp(x),
log((1-0)/p) = (p-a)§ K™ + o(1)
Therefore we have obtained the result that
(4.15) lim n*/N = (p/(1-q))Y/ (1P=9)  ¢op P +q# 1.
If p+q=1, by (4.14), we have

1/p = 1/n+ ... + 1/(N-1) + o(1)

14
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which implies
(4.16) lim n*/N = exp(-1/p).

In (4.15), since

1/(1-p-q) _ log(p) - log(1-q)
(p/(1-q)) = exp( - b - (1-q) )

when 1 - q — p, we have exp(-1/p). So there is no gap between (4.15) and
(4.16). Letting q = O in (4.15), this reduces to pl/(l_p) as in Smith's
(1975) refusal and no-forced stopping case, while letting p = 1 in (4.15), it
reduces to (1-—(;)1/q as in the forced stopping case. From this, we see that o)

and 1-q in Pn = p and dh = q/N have a dual property.

15



2. MULTI-VARIATE STOPPING PROBLEMS WITH A MONOTONE RULE

2.1. STATEMENT OF THE PROBLEM

Let Xn’ n=1,2,.. be p-dimentional random vectors on a probability space
(8., 8 , P ). The process { Xn] can be interpreted as the payoff to
a group of p players. Each of p players observes sequentially values of Xn .
Its distribution is assumed to be known to all of them. Players must make a
declaration to either "stop" or 'continue" on the basis of the observed value
at each stage. A group decision whether to stop the process or not is summed
up from the individual declarations by using a prescribed rule.

If the decision is to stop at stage n, then player i's net gain 1is
‘ ‘

(1.1) Y, = Xn - nc

<
n

where ¢’ is a constant observation cost. According to the individual

declarations, let define random variables d;, n=1,2,.., i=1,..,p by
(1.2) d; =={1. if player i declares to stop,
0 continue.

We assume, for each n and i,
(1.3) al e B(X)
n n
where 63(Xn) denotes the ¢ -algebra generated by Xn'

DEFINITION 1.1. An individual stopping strategy(abr. by ISS) is a

|
sequence of random variables
|

i i i
l,d2,..,dn,..)

(1.4) at = (q
satisfying (1.3). 131 denotes the set of all ISS's for player i. A p-
\

dimentional {O,l}—valued random vector

(1.5) d = (a},d%,..,d")
n n’ 'n n
denotes the declarations of p players at stage n. A stopping strategy(abr.

by SS) is the sequence

16



2,..,dn,..)

and ) denotes the whole set of the SS's.

(1.6) d = (dl,d

Now we shall define a stopping rule by which a group decision is
determined from the declarations of p players at each stage. A p-variate
{0,1}-valued logical function
(1.7) 7C=7C(xl,..,xp) : {0,13P>{0,1}
is said to be monotone (cf. Fishburn(1971)) if
(1.8) wxh.xP)g =iy vP)
whenever xié yi for each i.

DEFINITION 1.2. A stopping rule(abr. by SR) is a non-constant logical

function ™ and a monotone SR is an SR T with
(i) monotone and
(ii) m™(1,1,..,1) = 1.

In this paper an SR means not 'when to stop'" the process but "how to sum
up" the whole players' declarations. The property (ii) is called unanimity in
Fishburn(1971). 1Its dual property 1(0,0,..,0) = O is not needed to assume
here. A constant function makes the problem trivial because the decision is
always to stop from (ii).

The monotone SR has a wide variety in choice systems of our real life and
shows a natural requirement in the analysis of our problem. Some examples for
the monotone SR are given as follows.

EXAMPLE 1.1. (i) (Equal majority rule) In the group of p players, if no less

than r(g p) members declare to stop, then the group decision is to stop the
process. That is,
1 p R
(1.9) T ,...,d)) = 1 (0) 1fZL_ldn 2 (<) r.
For instance, a simple majority for three players, (p,r)=(3,2), is
1 2 .3 1 .2 2 3 3 .1

w(d_,d ,d7) =4 -4 + d_-d_ + d_-d
n’'n’n n n n n n n

17




where + is a logical sum and - is a logical product. The stopping problem of
the majority rule was discussed in Kurano, Yasuda and Nakagami (1980).
(ii) (Unequal majority rule) A straightforward extension of (1.9) is
(1.10) R(di,...,dg)= 1 ifZ:_'wld; zZ r

0] if < r
where wi = O, i=1,..,p are given weighting constants. Including these cases,
monotone rules have wide varieties. See Table 3.1 in Section2.3 for.several
rules with p=3.
(iii) (Hierarchical rule) A hierarchical system or Murakami's representative
system(cf. Fishburn(1971)) is regarded as a composed rule. Since a
composition of two monotone logical functions is monotone and (ii) of Def.1.2
holds,_the hierarchical rule is also a monotone SR.

DEFINITION 1.3. For an SS d=(d.,d

. ! p
1 2,..) ed) with dn_(dn,..,dn),

n=1,2,.. and a monotone SR T, a stopping time tp(d) is defined by
(s 1 P, _
(1.11) tr(d) ={first n such that Kidn,..,dn) =1,
©0 if no such n exists.

For any stopping time tnjd), let

i i
(1.12) thfd) = Yn on tl(

lim sup Y

i
on t,(d) =o0.
n sup Y (d)

i

When the group decision is to stop at the time tnfd), player i gets Yt (d)
(

as a net gain.

DEFINITION 1.4. Let 7T be a monotone SR. We call *d= (*dl,..,*dp)

an equilibrium SS with respect to T if, for each i and any dle 431,

(1.13) E[Yim(*d)] 2 E[Yi,c(*d(i))]

where *d(i) =(*al,..,*a'™ 1, gt xai*1 .. x4P).

In this paper we treat the vector valued expected net gain

(1.14) E [th(d)]’ ded
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and our objective is to fined an equilibrium SS *d¢f) for a given monotone

SR TTC. The notion of equilibrium owes to the non-cooperative game theory by
Nash(1951).

In order to denote a stopping event of the system for a given SR, we need a

set valued function on g3p(Xn). For an SS d=(d1,d ..), we call

2!
i i

(1.15) D = fweQ [ 4 (w) =1 ] € $3(x)

an individual stopping event(abr. by ISE) for player i at stage n. If

D; occurs, i.e., W€ D;, then player i declares to stop. So

(1.16) at =1
n D
n
where ID is an indicator of a set D on §,. Hence there exists a set valued

function TT on K3p(Xn) corresponding to a logical function T on {0,1ip, such

that
(1.17)  w=(d},..,d®) = m(I.1,..,1.p) = I— 1 D..
n n D7'°°7D (p-,..,D)
n n n n
Clearly two functions T and Tr are related to each other. For example,
1 2 1.2 .3 3

1 .2 .3 3 1 2
- ) = v .
?L(dn,dn,dn) = dn+ dn dn corresponds to[[ (D ’Dn) Dn (Dn/\Dn)

,D
n’ n
The stopping event(abr. by SE) of the process at stage n is denoted by
_ 1 Py_.1 _ 1 p

(1.18) D _{weQ]'Ic(dn,..,dn)_l} =T(D_,..,D ).

We note that, if an SR w is monotone, Alc Bl for each i implies
1

(1.19)  T[(al,..,A") c T8, .. ,BP)

from (1.8).

DEFINITION 1.5. For a given (monotone) SR W, a corresponding set valued

function TT is called a (monotone) stopping event rule(abr. by SER).

Next, a one-stage stopping model is considered to clarify an SS of our
problem. Each player observes a random variable X =(X1,..,Xp) with E\Xi|<<n
and player i receives a net gain Xi - ci if the group decision is to stop, or
vi - ci if not, where vi is a given constant. If they use a monotone SR TG,

the SE of the system becomes TT(Dl,..,Dp) for ISE Dl, i=1l,..,p. Then the
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expected net gain for player i is expressed by

(1.20) E[(Xi—ci)ln.(Dl o] P(T(DY,..,0P)) (vi-ch)
i i i i '
=E[(X -v )IHTDl,..,Dp)] + VvV - c .

Since a logical function can be written generally as
i v —_ T
A 4 ~
Kixl,..,xp) = x{lt(xl,..,l,..,xp) + xl-7C(xl,..,O,..,xp),
it holds ,
1

1 i 1 =
(1.21) T ,..,0°)={p'ATT(0},..,Q,..,D")}
J— &
i 1
Vip'ATID ... 8,...0") ]
in terms of the SER. Substituting this into the last expression of (1.20),

it becomes '

i i
(1.22) SDi(X I it gy Py mo,...8,..,0%)} &

i i i i
+ 'H(Dl,.., ,..Dp)(X ~v7)dP + v - ¢ .

B 1.19), it is clear that I 1 -1 1 0.
y (1.19) mot, .., ,..,0°” Imot,.., .. 0P)
Therefore we can derive the next proposition.

PROPOSITION 1.1. When DY,..,0 72,0 "1, .. DP are fixed, player i's

maximum expected net gain subject to DIGAS(X) is attained by
(1.23) *p*={x'z v'},
and it equals

i i+ i i.-
(1.24) =TI 1 dP - | (XvH71; 1 dP

I no?, ... Q,...,0P) Jo ) Tneot, ... @, ... ,DP)

i i
+v -c,

+ - . 1 p
where x =max(x,0) and x =max(-x,0). Especially, when T[(D s e oS, .., DY)
='H(D1,..,¢,..,Dp), player i's expected net gain (1.22) or (1.24) is
constant not depending on D*.

By Prop.1.1, we have solved a one-stage problem where the seeking
equilibrium SS is given as (1.23) and we showed that player i's ISS depends on

the i-th component x* only among the p-dimensional vector X. In fact, it is

seen intuitively as follows. Because the larger he observes his value, the
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larger he obtains his net gain, so he is eager to declare to stop. This
situation holds under a monotonicity of the rule, but does not hold under
another rule including negation. The negation is quite the opposite of one's
intention. It is known that the monotone logical function does not include
negation and vice versa. Other essential one is ''non-cooperative" character
in a reward, so other players' net gains do not affect his gain. Therefore,
he observes his own value closely.

In the end of this section we refer to the winning class of Kadane
(19778). He proved the conjecture of Sakaguchi(1978), that is, the
reversibility in the juror problem by the choice of many persons. To prove
the reversibility affirmative, he used a notion of the winning class as a
choice rule.

DEFINITION 1.6. Let p denotes a number of players. A family WJ of

subsets of integers {1,2,..,p} is called a winning class if
(1) {1,2,..,p3 eW
(ii1) WeW, W'D W implies W'e W.

Assume that r players, e.g., player il""ir declare to stop. Then the
process must be stopped if a set Zil,..,iri is an element of 7, or continued
if otherwise.

For a non-empty subset w={i1""ir1 of {1,2,..,p} there corresponds a
vertex x of the p-dimensional unit cube whose il—,iz—,.. and ir—th component
are equal to 1 and remaining components 0. For two correspondences between

w W_ and xl, X

1 respectively, a necessary and sufficient condition that wl

2

C w2 is that x1 < x2 (component-wise). Let V be a set of vertices

corresponding to a winning class W . Define a logical function 71T by
K(xl,..,xp)=1 if (x7,..,x%

=0 otherwise.
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Then the following proposition holds immediately.

PROPOSITION 1.2. The stopping rule by a winning class of players, Def.1.6,

is equivalent to the one by a monotone logical function, Def.1.2.
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2.2. A FINITE HORIZON CASE

Consider the finite horizon case restricted by a prescribed number W < 69,
Our object is to find an equilibrium SS for a given SR and determine the
associated expected net gain under the situation formulated in the previous
section.

ASSUMPTION 2.1.

(a) For any SS d=(d,..,d ,..) edD, d; =1 for i=1,..,p with prob.1.
(b) Random vectors Xl,..,XN are independent and EIX$}<:MJf0r each n,i.

(c) A logical function 7t is a monotone SR.

Let us consider a sequence of vectors V =(vi,..,v§) defined by
i i i i 1+ M) i} 1
(2.1) v o=vi-c 4 E[(xN v ) Ba V7 xg )]

—E[(Xan oﬂ“”(v‘l}lxN )1, a2,
i

(2.2) v] E[XN] -ct
i _i-1 i+l -1
where v{ }=(Vn""’vn ’vn ,“,,vﬁ) € RP , 1=1,..,p,

S L I L KRR JRTF I

(2.a) Mgl o PCTT (4D~ *Dy 0, @, #p2 L xpP y|xE )

and ]T' is the SER corresponding to the SR TC and
i i ‘e
= {XN_nzvn}e (B(XN_n), i=1,..,p.
From Assump.2.1 (a) and (c), P(tp(d)SN) = 1 holds for all SS deX) even if

the observation cost is negative.

THEOREM 2.1. By a sequence Vn =(vi,..,v§),rlzl in (2.1) and (2.2),
let us define an SS *d ¢ as follows: For n=1,..,N-1,
(2.5) *at(w) ={ 1 if Wwe*D: , i.e., X (W) = vi |
n n n = 'N-n
(0] otherwise

and
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(zs)-m;w)=1,a£.uwg.
Then *d is an equilibrium SS under the monotone SR T and

(2.7)  E[Y, g Vy
T

holds. That is, v.

N is the equilibrium expected net gain for player i.

Proof. Define

t; = tn(*d) = flrstﬂnzrl such that m(*dm)=1§
for n=1 ,N. Clearly n _s_t;flg_ N and t*{ = t(*d). Where t(*d) = tp(*d)
and U is fixed. We will show that

i i i,

(2.8) E[Yt; ]_ VNens1™ (n-1)c™, i=1,..,p
by backward induction on n.

From t* = N and (2.2), it is trivial for n=N. Assume that it is true

N
for n+l. From the definition of SE *Dn=TT(*Di,..,*D§) € J3(Xn),

t* = n on *D ,
n n
= t* on *D .
n+1 n

Hence .
i —_—
E[Y ] = E[Y s*D 1 + E[Y 3*D_]
n
n n+1

where E[X;D] =.SX-I dP. Since X X ,.. ‘are independent of Xn,

n+l’ "n+2

E[Y ;ﬁ-]“P(*D )E[Y ] . Therefore we have the iteration:
n+l n+l

E Yi - i, e~ i
[Yg,) = ELvi;*p ] + PGDE(YE, 1.
n n+l

It equals, by induction,

i i — i
E[X -nel:* _ _ i | i i
[Xn nc”; Dn] + P(*Dn)(vN nc ) E[X ~VNen’ *Dn] + (VN—n—c ) - (n—l)ci

The first term of the right hand side in the above equation is rewritten as

i+, 1 P i S
Nen) 3 TM(*D s eee 38l 5 wee ,*D 2] = E[(X vy

-n
- i_ i + ﬂ{l} {1}
E[(Xn vN n N- n N n’x )1 -

E[(X —v )-;TT(*DIJ;,...,QS e DD ]

. LIS L P § S £
E[(Xn VN-n) O(N n(VN nlxn)]
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So, from (2.1),
vi
N-n+1

i i
;%D 1 + ve -t
n

i
= E[Xn-v N-n

N-n
This implies (2.8) and we have proved the latter part of the theorem by
letting n=1 in (2.8).

Next we must show that, for fixed i,

i i
(2.9) EIY, eq(i))) € El¥(xqy]

where *d(i):(*dl,..,dl,..,*dp) and dl=(di,..,d;) is any ISS for player 1i.
V Define ndl ,n=0,1,..,N by
n.i i i i i, .
d* =(dy,..,dp,*d .., %dg) if n=l,..,N
= *di if n=0

using da* and *d*. This ISS for player i is consistent with *d*  after
n-th period. Also define a strategy nd(i) by
Pa(i) =(*at,..,Rat ,..,*d®).
N.,. . 0.,.
Clearly d(i)= *d(i) and d(i)= *d.
We show
(2.10) E[Yi n ] g,E[Yi n-1.,..\]
t("d(1)) £("d(L))

for n=1,..,N because (2.9) is proved immediately from (2.10). By the strategy

nd(i), it is enough to consider a stopping time tn instead of t. It is seen

that i . i
E[YS n ] = E[Y-;D ] + P(D )E[Y n ]
tn( d(i)) n’’n n tn+l( d(i))
where Dn is an SE with respect to *dl,..,ndl,..,*dp. Since tn+1(nd(i)) =

i
t

t (*d) on D and E[Y
n
n+1

- vi —nci it becomes
n+1 (*d)|{~ 'N-n ’

i i —. 1 _ i i i i_ el .
E[X:—cl;Dn] + P(Dn)(v;_n—c )y - (n-1)c1 < Vyont+l -(n-1)c E[Ytn(n 1d(i))l

Q.E.D.
This is an extension of Theorem 3.1 in our previous work, Kurano, Yasuda

Nakagami(1980). 1In the result, the player i's region for declaring to stop
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has the form of X; = {a certain value } . It is intuitively natural and
this rule is called a critical 1level strategy. In the proof of the theorem
we can see the following corollary.

COROLLARY 2.1. A necessary condition for

{*di = 1} = {Xl 2 a certain value}, nz1
n n
. o 1 p 1 p
is that an SR w satisfies 1t(*dn,..,0,..,*dn) < 7c(*dn,..,1,..,*dn), nz1,
for the equilibrium SS *d.
If we impose further assumptions, then next two corollaries are obtained
immediately.

COROLLARY 2.2. For each n, if components of (xi,..,xg) are mutually

independent and identically distributed with Xg, then (2.1) implies

i i i Ji{i} o] i+ i} 0 i -
2.11 = - - - -
( ) Vo v, -¢ + n E(XN-n vn) dn E(X - vn)

where

1) _ gy i)y _ 1 P
S I R CAGDIEE 16 § G R L P

and

. . . P
dlﬂl\ - o[g{l\ (Vill) = P(TT (*D:i._n, ooe 975 3 oo ’*DN-—n)) °

COROLLARY 2.3. In additon, if the stopping rule 7T is symmetric

for i and j, that is,

(2.12) tlo,at, a9, 0 = —..,ad,..6h .0

and if ci= cj, then vi = vg for each n. If @ is symmetric for any pairs,
this leads to the majority case discussed in Kuramo, Yasuda and Nakagami

(1980).

EXAMPLE 2.1. Similar to Example 4.2 in Kurano, Yasuda and Nakagami (1980),

we consider a variant of the the secretary problem(cf. Chow, Robbins and
Siegmund(1971), Gilbert and Mosteller(1966)) with a monotone rule. Three
players want to choose one secretary and we impose the following unequal SR:

1.2 .3 1

(2.13) T(x",x",x") = x +x2x3, x* 6{0,1}, i=1,2,3.
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This means that a secretary is accepted only when either player 1 says 'yes",
or both of player 2 and player 3 say "yes'".
From Thm.2.1, the equilibrium SS *d is determined by the sequence of {vi
; n=1,2,..} in (2.11) where ci=0 and vi:l/N. Since the SR T of (2.13) is
symmetric for players 2 and 3, vi =v3 from Cor.2.3. Define
1 2

r' = inf {r ; v} I‘=<__r‘/N}, r~ = inf{r ; v

2
N— _rg r/N }.

N
The strategy for player 1 is that he observes until the (rl—l)th stage and
then declares to accept if the relative best one appears. For players 2 and

3, the strategy is similar. Numerical results are as follows.

N rl vl r2 v2

N N
10 3 .3642 1 .1685
30 10 . 3649 2 .0801
100 36 .3673 3 .0322
300 110 .3677 4 .0135
1000 367 .3678 5 .0050
10000 3678 .3679 6 .0007

We have applied our result to a secretary problem with an unequal SR and
showed the equilibrium SS is a critical level strategy. But, as a remark,
the asymptotic numerical results for N= 00 is non-interesting. Under the
SR (2.13), player 1 behaves as if it were a one-person-game and player 2, 3
are neglected. A modified setting of the secretary problem is discussed

by Presman and Sonin(1975) and Sakaguchi(1980).
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2;3. AN INfIﬁITE HORIZON CASE

In this section we treat an infinite horizon case N = oe. The SS's class
is therefore {d e-I);P(tﬁ(d) £00) = 1}. The problem is worth studying when
the observation cost is non-negative. Theorem 3.1 discusses the case of ci
O for all i, in which case the stopping time is finite. 1In case of ci = 0,
i=1,..,p, some trouble occures in the multi-variate problem. Though we have
defined Yi = lia’fgp Yi in (1.12) on the analogy of one dimentional problem,
appafently this definition is not natural for all players under some SR's. To
avoid this, we assume that the equilibrium stopping time is finite. Then we
can establish the continuity from the finite horizon case and compare the
expected gains between rules and between players. From the formulation of our
model, this assumption is often satisfied because the process is forced to
stop by the conflict among players.

ASSUMPTION 3.1.

(a) Random vectors Xl’ XZ"" X=(X1,..,Xp) are independent and
identically distributed with E|X'|<o for all i.
(b) Each element of a cost vector C =(cl,..,cp) is strictly positive.

(c) The SR T is monotone and let T| be the corresponding SER.

(d) The following simultaneous equation of V =(v1,..,vp)

(3.1 E[@=DHTE (v gy L oppdty T ) gty Lt

{i} 1 i-1 i+1

i=1,..,p has a solution. Where V =(v ,..,v7 ,v ,..,vp)e Rp_l,

BTD i | xhyp(mol, .., o, 0P x5,
A A PSS 1o ,® 5, DD XD

and D'= { X' v'1,i=1,2,..,p.

THEOREM 3.1. Under Assump.3.1, an SS *d =(*d1,..,*dp) determined by
(3.2) *d:(w) = 1 (0) if x;(w) Z (<) =*'

for each n and i, is the equilibrium SS for the class {d&f);P(tm(d)swhl}
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and

(3.3) P(tm(*d)<‘w) =1,
(3.4) E[y*t ()] = X' , i=1,..,p
hold where *V =(*v1,..,*vp) is a solution of (3.1).

By (3.4), *V is called an equilibrium expected net gain. The proof is

similar to that of Thm.5.3, 5.4 of Kurano, Yasuda and Nakagami (1980). So
we omit ‘it here.

In the rest of the section we restrict our attension to the case of

(b') C = o.
Under the assumption (b'), it may happen that thevequilibrium stopping time is
not finite. But if we assume the next (e), the following corollaries hold.

(e) P(tp(*d)<e) =1 where *d is defined by (3.2).
It is seen in Example 3.2 that there are cases which satisfy (e).

COROLLARY 3.1. Assume (a), (b'), (c), (d) and (e). If X is bounded with

prob.1, then *d is an equilibrium SS for the restricted class {d e d;
P(tp(d)<®)=1] and (3.4) holds.

The proof is immediate by Thm.5.3, 5.4 of Kurano, Yassuda and Nakagami
(1980). Hereafter we assume that

(a') (a) and components of (Xl,..,Xp) are independent.

COROLLARY 3.2. Under assumptions (a'), (b'), (c), (d) and (e), if

P(X'= y)=0 where y=sup{y;P(X' > y)>0 } , then *d is an equilibrium SS
for the class {_d eH,; P(tm(d)soo)zl} and (3.4) holds.

’ . 1 P i i i
Proof. By Assumption(e), P(T[(*D7,..,*D")) > O where *D =£X 2 *v } If we
assume that P(]T(*Dl,.., @ ,..,*Dp))=0, then P(H(*Dl,..,SL,..,*Dp))‘>'O from
the monotonicity of the rule. From (3.1), (a') and P(TT(*DI,..,SZ,.., *Dp))>0
and P(]T(*Dl,.., ¢,..,*Dp))=0 implies (x*- *vl)+ =0 a.e., that is, *yt 2y

This means *D' = ¢, a.e.. by the assumption. We have
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P(T(*0%,..,*p%, .., *0P))=P(TT(*D},.., &, ..,*DP)).

This is a contradiction because the left hand side is " > 0" but the right one

equals zero. Hence we obtain P(TT(*Dl,.., ¢,..,*Dp)).> 0. For the SS
*d{i}=(*d1,..,di, .,*d”) where di is any ISS, it is seen that P(tn(*d{i}) <™)
=1. Hence the proof is immediately completed from Thm.3.1.

Q.E.D.

In the case of SR ™ with P(tnj*d)=u0=1, there is a player i such that
(3.5) syt o sup { y;P(Xi> y) > 0 3.
Clearly (3.4) is satisfied for player i by (1.12). But for other player
j(#£1), *vj does not necessarily satisfy (3.4). Therefore the solution of
(3.1) does not always consist with the equilibrium expected gain in this case.
In order to discuss the associated gain including this case, we simply call an
expected gain (omifting "equilibrium'") by the solution *V which is the
limiting value as N 5o in the finite horizon case. Refer to Figure 4.1 in
Kurano, Yasuda and Nakagami(1980) and Table 3.1.

Now we shall give the bound of the expected gain by varying SR. The
expected gain vi=vi(m) associated with an SR satisfies that
(3.6) Exis vig sup{y;P(Xi>y)>O}
for any monotone SR TC. In fact, this is proved by using a ratio (3.8) as

follows. By (a') and (b'), the equation (3.1) implies

.7 e eiadah ] = P18 Yy
where
(3-8) F{T:rt} iy o (T iy, ﬁﬁ{iﬁ with
= RO, e, @, P /(T O, DPY)
provided the denominator is non-zero. Since the SR 7L is monotone,

(3.9) 0 < g{#(v‘“) <1

30



holds. Therefore (3.9) implies (3.6) immediately.
{i}
™

implies vl=sup {y;P(X1:>y)'> 073. The second assertion corresponds to P(t

13):0

From the above argument, § (V{l})=1 implies vl=EX1,and jﬁﬁ)(vil
(*d)==)=1 as remarked at (3.5). Here these two extreme cases are interpreted
as follows.

. 1Y o {id . . 1 P, _ '

Firstly fﬁw (v )=0 is equivalent to'ﬂXD vy B,..,D0) = ¢ a.e. and
also to 1t(d1,..,0,..,dp)=0 with prob.1. This means that whenever player i
- declares to continue, the decision process surely continues. But it does not
mean that declaring to stop causes to stop the process. Player i is endowed
the veto power. This brings him the maximum expected gain. Secondlyfx%?(v{l}

. . 1 p 1 p
)=1 is equivalent to T[(D",.., %,..,D") = T[(D",.., §2,..,DP) a.e. and also
1 p 1 p . . .
to ®(d™,..,0,..,8")=m®(d",..,1,..,d") with prob.1. For player i, declaring to
stop or to continue does not affect to the resulting process. He is ranked as
the outsider of the game and his expected gain EX' is the least one.

Now we shall make a comparison of gains between players under a fixed
rule in Cor.3.3 and also between two different rules in Cor.3.4. The next
theorem is immediately proved from (3.7).

THEOREM 3.2. Let V_ =(v1,..,vP) and Vs =(v2,..,vE) be expected
m m T L

7

gains corresponding to SER's ][ and ﬁ: respectively. For player i, j,

assume fg;s and fﬁ%k are defined by (3.8). If X' and X’ are identically

distributed, we have

. > .
1 J
(3.10) UTT — Uﬂ‘

—3

<

if and only if

<
(3.11) 9{%\)(\,%)) — 9{%}(\,{%3),

COROLLARY 3.3.  Under a fixed SER [[, if X' and X’ are
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identically distributed and if

Gl fE i) o y%%v#%

i J
then v“. pa VTT .

COROLLARY 3.4. If, for player i,

(3.13)  Trot,..,2,..,0°) > To,..,,..,0P)

and T, .., 6,..,0°) ¢ Tfot,.., é,..,0°)
- for every Dk e §3(X), k#i, or
{iy, . 1il {i3 , 1)
(3.14) P (U ) = SDﬁ.(U )
for every U{1}=(ul,..,ul_l,ul+l,..,up) such that Exkél}(g sup{y;P(Xk >y)>
0}, k#i, then v.[ir_z_ vé']_f,- holds

2.4. EXAMPLES

EXAMPLE 3.1. Consider a majority rulef[f]=(p,r) of p players, where r (1grg¢p)

is a majority level. Let Xl, i=1,..,p be independent, identically distributed
with X. If EX<supIy;P(X>y)x8,then the equilibrium expected gains for each
rule are

(3.15) vTT[p] > vTT[p—l] > >V.”.[1] .

In fact, since the SR is symmetric, we can set the players' gains being

equal:
= i -
va[r] = VTT[r] , 1=1,2,..,p.
Hence
1it {i -
Pn-[r](v 1‘) = fn-[r] (V) =1 - Vl(r,v),
where
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1w = Epaw™ P Pl @y pk gkl

and ;=P(X;§ v). Since Q(r,;) is increasing in v and Z(r,;) < 7(r+1,;),
we can see ﬂﬁj(v) is decreasing in v and f}ur](v) > fTﬂ?+13(V) for each v.
Similarly as Cor.3.4, it implies (3.15).

Figure 4.1, in Kurano, Yasuda and Nakagami, shows each expected gain of
(3.15) for p=5 players. For r=1,..,p-1, T[r7 is an equilibrium SR and VWIP]
is an equilibrium expected gain from Cor.3.2. But for r=p , each player has
the veto power and so v

oy P

P(tTnp1=v®=1 » the associated expected gain is equilibrium directly from

{y;P(X > y)>0}. Thougth its stopping time is

(1.12), (1.13) and (3.4).

Example 3.2. Let components of random processes be independent, identically

distributed with a common uniform distribution U(0,1). Table 3.1 shows a
numerical example with p=3 for non-trivial monotone SR's. In the first four
rules P(tm(*d) < ©® )=1, but in other cases not so. From (3.5), there exist
players who attain its maximum expected gain unity in the last four rules.
Each expected gain is the limiting value of the finite horizon case. Except

5-th,6-th,7-th rule, the value is an equilibrium one by Cor.3.2.
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Table 3.1 Monotone SR's with p=3.

Monotone SR
ﬂle,xz,x3) x1+x2+x3 xl+x2 x1+x2x3 xlx2+x2x3+x3x1
Comments majority pl.3 is asymmetric majority
for the rule rule for an case rule for
(p,r)=(3,1) outsider (p,r)=(3,2)
(Equi- v o0.5437 (3-1/2  [372 /2
: librium) ~ £0.6180 50.7071
expected v2|0.5437 ([5-1372  2-[2 (272
gain vl %0.5858
v3|0.5437 0.5 2-[2 272
x! x1x2+xlx3 xlx2 xlxzx3
pl.1l is Pl.1l has pl.3 is unanimity
a dictator veto an (p,r)=(3,3)
power outsider ‘
1 1 1
0.5 ((5-172 1
0.5 - - (5-1)72 0.5
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3. ASYMPTOTIC RESULTS FOR THE BEST CHOICE PROBLEM

3.1. STATEMENT OF THE PROBLEM

An optimal stopping problem is related to a Markov decision process
with two actions: stop and continue. The equation for v(i), the expected

reward under an optimal policy when starting from state i, is given by
(1.1) v(i) = maxr(i), -e(i) + J; p(1,9)v(){, i e{,2,..}

where r(i) is an immediate reward, c(i) is a paying cos¥ and p(i,j) is

a transition probability on the state space, {1,2,...}. The best choice
problem, variously called the secretary problem, Googol, Dowry problem in
Chow et al.(1964), in Gilbert and Mosteller(1966) and else, is an optimal
stopping problem based on relative ranks for objects arriving in a random
fashion; the objective is to find the stopping rule that maximizes the
probability of attaining the best object of the sequence.

To consider the problem as a Markov decision process, suppose that
the model is in state i iff the ith object to be examined is better than
all its predecessors(the relatively best object) and the two actions are
to accept this object, or reject it and wait for the successors. The
immediate reward r(i) is a probability that the object accepted in state
i is the absolutely best one. And the transition probability p(i,j) is
a conditional probability that the next relatively best object to appear
will be the jth object in the sequence, given that the ith object in the
sequencé was relatively best.

The Markov chain formulation is considered, for example, by Dynkin

and Yushevich(1969) and so its details are omitted. The practical situa-

tion for the well-known problem of one choice among n objects then becomes:

The state space is a set of integers {1,2,..,n}, the reward r(i) = i/n and
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the transition probability p(i,j) = i/((j-1)j) for 1£i< j<n, p(i,j) = 0,
otherwise. Hence (1.1) implies

(1.2)  v(i) = max{i/n, Y7 v(3)/(G-1)D], i=1,2,..00-1, v(n) = 1.

By solving this equation, one obtains the optimal value, i.e., the maximal
probability of attaining the best object, and the optimal strategy, i.e.,
how to accept or reject an object.

Although the solution can be obtained easily in this case, let us
consider the following alternative method. We investigate the conditional
optimal value when the decision-maker rejects all objects until and including
the ith relatively best, instead of the optimal value. Denote by w(i;n) the
second term on the right hénd side of (1.2). Since this term corresponds to
the rejection and v(i) is the optimal value, w(i;n) will be the conditional

optimal value. That is, let w(i;n) = w(i) = iz v(j)/((j-1)3), i=1,2,..,

n
J=i+1
n-1 and w(n) = 0. Then clearly w(i)-w(i+l) = (v(i+1)-w(i+1))/ (i+l1l) and so
(1.3) w(i) - w(i+1) = ((i+1)/n - w(i+1))¥/(i+1), i=1,2,..,n-1

where a’ = max(a,0).

Following Mucci(1973) and Lorenzen(1981), we consider a scaling limit of
(1.3), f(x)= %&ﬂnw(i;n) as 1 and n tend to infinity subject to i/n=x. This
leads to the differential equation:

(1.4) df(x)/dx = —x_l(x—f(x))+, O0<x< 1
with boundary condition f(1)=0. Immediately we obtain f(x) = -xlog(x) on
e—l_g_ x<1 , f(x) = el on o< xge—l . From this solution, we can

determine the optimal value and the stopping island named after Pressman

and Sonin(1972). A relatively best object is accepted iff the time of

occurrence of this objects belong to the stopping set. If KkK,k+l,...,m
belong to this set, then the interval [k,m']is a stopping island. The

optimal value equals v* = lim v(1;n) = lim max{l/n, w(l;n)} = £(0+) = e_1
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and the stopping island is the interval [&*, 1] where x* = inf'fx; X g.f(x)g
= e L

The aim of this chapter is to apply this method to the best choice
problem With a random number of objects, and obtain some explicit solutions
in the asymptotic form. Instead of the differential equation, an integral
equation is considered so as to treat the case with a general distribution
of the number of objects. But here we assume that the total number of
objects is a bounded random variable with known distribution. Presman and
Sonin(1972) considered this problem by an approximation method of the
parameter associated with its distribution, rather than by using the scal-
ing limit. For another problem of minimizing the expected rank of the ‘
individual selected, Gianini(1979) has used a differential equation method.

In section 3.2 an integral equation with a general distribution of the
number of objects is derived by adapting the above method. However, if‘the
distribution is absolutely continuous, it reduces to a differential equation,
the simplest one being (1.4). Té find an optimal strategy, we determine the
stopping island. A certain condition implies that the stopping set is a
single island of which the lower bound can be found, and of which the upper
bound is 1. This condition is fundamental to our discussion and contributes
to obtaining a solution of the integral equation exactly. As an extension
of the uniformly distributed case, we obtain an intermediate result between
the non-random case and the Rasmussen and Robbins(1975) problem. Another
intermediate case of a distribution, which is not absolutely continuous, is
also considered. The next three sections are devoted to discussing three
different variants of the best choice problem.

In section 3.3 the result of Smith(1979) involving a refusal probability

is extended to that of a uniformly distributed number of objects with non-
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non—- constant refusal. For the variation of the multiple choice permitting r
offeré, Gilbert and Mosteller(1966) had formulated and Tamaki(1979a) had
obtained the result for r=2 in the uniform case. In section 3.4, we give a
further result of the optimal value of r in an iterative form for the same
situation. For the multiple choice problem, the aim is to select the best
and the second best objects, a problem solved by Nikolaev(1977) and Sakaguchi
(1979). We consider this problem with a random number of objects and
calculate results for the uniformly distributed case in section 3.5.

In the rest of this section we set out notations and preliminaries. For
integration with respect to the probability measure d$ on the unit interval
[0,1]: V(A) = SAv(x)dé(x) for all intervals A in [0,1], we shall use the
abbreviation:

(1.5) av(x) = v(x)ad(x).
For any bounded function u(x) the relation (1.5) obviously implies u(x)dvV(x) =
u(x)v(x)ad(x) (p.137, Feller(1966)). Using this short hand notation, an
integral equation of the form:

£(y) - £00 = (Yart,£06))a8(6) + (Yo(t,r(1))at
for all 0 < x< y < 1 is equivalent to

(1.6) af(x)

a(x,f(x))dd(x) + b(x,f(x))dx, 0 ¢ x< 1.

Let f(x) and g(x) be two functions of bounded variation over [0,1], right

continuous and with left-hand limits, then, by Fubini's Theorem,

(1.7) d(fg)(x) = f(x)dg(x) + g(x)df(x) - {f(x)-f(x-)}dg(x)

holds(p.336, Brémaud(1981)). If f(x) is continuos in O < x <1, then
d(fg)(x) = f(x)dg(x) + g(x)df(x)

follows immediately.
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3.2. | A SCALING LIMIT OF THE OPTIMALITY EQUATION

The probability model for the best choice problem with a random number
of objects has been considered by Presman and Sonin(1972). We therefore
omit defails of its construction here. To take a scaling limit, we restrict
ourselves to the case where the number of objects is bounded.

ASSUMPTION(I). A random number of objects N is bounded with a probability

one, that is, there is a positive integer n such that
(2.1) n = inf{kz1 ; P(N>k) = O}

The state space is a set of integers {1,2,..,n}. State i in the model
means that the ith object appearing is the relatively best one (better that
all its predecessors). The meanings of the transition probability and reward
are similar to those for the deterministic case introduced in the previous

section, with some learning procedures included. Let us denote P, =

n
k=i k"

1<1i, jgn) is defined by

P(N = i) and ﬁi=;z The transition probability matrix P = (p(i,j);

p(iaj) = 115./(j(j—l)7c.), 1 s_i<js_n)
(2.2) ) !
: . n . .
= < = .
p(i,n) Zk=i+11pk/(k7ci), 1< i<n and p(n,n) 1
The expected reward r(i) is
. . n .
(2.3) r(i) = r(isn) =J ip /(km),
and the cost is c(i)=0 for each i. From the general equation(1l.1), the
optimal value v(i) = v(i;n) satisfies an optimality equation:
(2.4)  v(i) = max{r(i), Pv(i)}, i=1,2,..,n-1, v(n) =1

where P, r are defined as in (2.2), (2.3) respectively.

ASSUMPTION(II). There is a probability measure d& <M)[O,l] such

that for any sequence s(k;n), k=1,2,..,n with lim s(k;n) = s(x) for k/n = x
. n X _ (y _
(2.5) . fl].l: Zk=j+ls(k,n)pk = st(t)d§(t) _S(x’y]s(t)di(t)

where i/n = x, j/n =y for x, y € [0, 1]. Further we assume that d§
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satisfies the conditions
. -1(1 -1
(2.51) (1-3(x)) " dd(y) > 1 as x = 1,
(2.5ii) x Siy—ld§(y) —> 0 as x — O.
Hereafter Assumptions (I) and (II) will always hold. But, in section 3.5,
(2.5i) and (2.5ii) are slightly strengthened to discuss multiple choice

problems.

Let us define

n.
j=k+l

w(k;n) = w(k) = Pv(k) =Z k?%v(j)/(j(j—l)ﬂk). k=1,..,n-1,

(2.6)

w(n;n) = w(n) 0.

As in the previous section, this corresponds to the conditional optimal

value when the decision-maker rejects all objects until and including the

.th : : .

i relatively best. Since

w(k) = {v(k+1)/(k+1) + w(k+1)k/(k+1)}ﬂk+1/nk

holds, (2.4) implies that

(2.7) wik+1) = w(k) = w(k+1) T2 lp = (k+1) Lfr(kel)-wikse D)} R /7 .
k "k K&+1 k

PROPOSITION 2.1. A scaling limit of the sequence, f(x) = lim w(k;n)
k.m0

for k/n=x exists. Using the abbreviation (1.6), f(x) satisfies the

equation

df (x) = £0x)(1-3(x)) " aB(x) - x H(R(x)-£(x))*ax, 0< x < 1,
2.8)

f(1) = 0,

where R(x) = x(1—§(x))—1 Siy-ld@y), 0 <x <1, is well defined by (2.5i)

and (2.5ii).
Proof. The standard Picard iteration method implies the existence of the

equation and the scaling limit. As k and n tend to infinity, provided k/n

1 -1
=x, we see that ‘mk P, —> (1-%(x)) “dd(x), r(k+l) —> R(x), Ik+1/mk —» 1 and
(k+1)~1=n(k+1)—1(1/n) - x Yax. Thus (2.8) is immediately obtained by

taking the sum of (2.7).
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THEOREM 2.2. The optimal value v* of the problem in the asymptotic form

is given by v* = f(0+).
Proof. Since w(l;n) 2 O, v* = lim v(1;n) = lim max(r(1;n), w(l;n)) =
_— m-» R n-3p0
lim w(1l;n) = £(0+).
N5 m
1 -1

Now let h(x) = Sxy d$(y) and

(2.9)  Hex) = n0x) - [lyThay = (1+108(x)nx) + (Llog(y)an(y)

for 0 £x< 1.

CONDITION($). H(x) = H(x;$) changes its sign once from - to + as x

varies from O to 1.

Define
o =( inf {x; H(x) 2 0}
(z.10)
1 if empty.

Then Condition(®) implies that H(x) Z 0 on [ o*, 1]. This is important
for our argument to obtain the solution exactly, and is closely related
to the condition for an OLA policy in Markov decision processes. In the
discrete parametér problem, a similar condition was imposed in Presman

and Sonin(1972), Derman et al.(Unpublished) and Rasmussen and Robbins(1975).

'PROPOSITION 2.3. If ®(x) satisfies Condition(d), and if (x) is

continuous for O £ x < 1, then the optimal value is given by
(2.11)  v* = (1-8(ax*))f(ot*) = ok*h(ck*).
The stopping island [o*, 1] is determined by the unique solution of the
equation:
(2.12) H(x) = O, 0<x< 1.
Proof. By (1.6), (2.8) is equivalent to
(1-8(x))af(x) = £(x)dB(x) - x 1(1-B(x)) (R(x)-f(x)) dx, 0 < x < 1.
Since $(x)-@(x-) = O for every O < x < 1, (1.7) implies that (1-%(x))f(x)

is differentiable in 0 < x < 1 and g(x) = x_1(1—§1x))f(x) satisfies the
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equation
-1
dg(x) = -x “max {h(x), g(x)} dx, 0 < x £ 1,
g(1) = 0.
Conditioﬁ(i) implies that (2.12) has a unique solution and this differen-
tial equation is explicitly solved as

[, 11,

S%F%ﬂyMy on { H(x) 2 0}
() = X
(const)/x on {H(x) < 03

(0, o).
Therefore, using Theorem 2.2, (2.11) is obtained immediately.

This proposition provides a solution of the problem with the random
structure under Condition(®). From equation(2.12), the lower bound of thé
stopping island, or the threshold of the acceptance region for the rela-
tively best object is determined; the optimal value is also calculated from
this threshold in (2.11).

COROLLARY 2.4. If the measure d$(x) is absolutely continuous with

respect to Lebesgue measure dx and ¢(x) is its density function,
(2.13) df(x) = @(x)dx,
then (2.8) is reduced to a differential equation:

df(x)/dx = #(x)(1- B8(x))Te(x) - x T(R(x)-£(x))¥, 0 < x < 1,
(2.14)

f(1) = 0.
Hence p* is a solution of the equation:
(2.15)  H(x) = {1y (1-10g(y)+10g(x))Bly)dy = o.

It is noted that x £ R(x) £ 1 for 0<x<1l. The case R(x) = x for
0<x<1l, gives a model for the non random number of objects, that is, pk
= 1 for k=n, P, = O otherwise. Since $(x) = 0, 0<x<1, (2.14) becomes
the differential equation (1.4), which is known to be the simplest case.

The other equality, R(x) = 1 for O < x < 1 and R(0) = 0, implies f(x) = O

because no stopping occures. Generally, if Rl(x) g.Rz(x), 0< x<1 then the
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corresponding optimal value is v{,g VE' Hence for the non-random case,
R(x) = x, this gives the maximum value for the number of objects, when this
has a distribution. The next two examples are intended to illustrate an
intermediate result between the non-random and the uniformly distributed

cases.

EXAMPLE 2.1. Let the number of objects be uniformly distributed on a

partial interval {n-m,n-m+1,..,n }of {1,..,n} for some m(Og<mgn). That is,
pi = 1/(m+1) for i=n—m,.;,n, and p;, = 0, otherwise. Let i, m, n - with
@ = m/n fixed. Taking the scaling limit (2.5) of Assumption(II), we have
#(x) = 1/p for 1-6<x<1, and #x) = O, otherwise, and it is seen that
(2.5i) and (2.5ii) are satisfied. Instead of solving the differential
equation (2.14), we obtain v* and * directly from (2.11) and (2.15),
because each distribution B(x) = (x;8); 0<Ph<1 satisfies Condition(®).

We conclude that

Table 1
case stopping island optimal value
1-9 2 e 2 [ST:?;e—l, 1] —(IT:§79)1og(1—e)e‘1
1-6 < e~ [ e‘2', 1] 2e"2/e

If 6 — 0, the optimal value tends to e_l (non-random case). If 6 — 1, it
tends to 2e_2 as discussed in Presman and Sonin(1972), and Rasmussen and
Robbins(1975). Stewart(1981) treated the same distribution but his model
was adapted in a Bayesian sense.

EXAMPLE 2.2. Now consider the limit distribution,

$(f1}) =1 -p and d® (x) = fdx for O<x<1l with some 0g6g1.

There is a point mass of probability at the point 1. This is another inter-
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mediate example between the non-random case and the uniformly distributed
case, which is not absolutely continuous. Since it satisfies Condition(§)
and is continuous in O¢ x <1, we can apply Proposition 2.3. We see that

o* o exp<(1_29_|<1_ze+292>)/e>

by solving equation (2.12). Hence the optimal value is

vr = (6+](1-26+262) )exp((1-26- | (1-26+262))/p)

by (2.11). We observe that the optimal value is monotone decreasing as B

increases.
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3.3. THE PROBLEM WITH A REFUSAL PROBABILITY

| One of the variations in the best choice problem is a model which
induces a refusal probability into the decision "acceptance'. Smith
(1975) calls the secretary problem with this change "uncertain employ-
ment'. Sakaguchi(1979) generalized this model to the multiple choice
problem, on which a random structure will also be imposed in section 3.5.
The optimality equation for a finite(deterministic) number of objects n
with a refusal probability p is
(3:1) V(1) = maxfpi/n + =p)Y} v/, 1T v0)/(3(10)]
where p is a constant such that O<pgl. Following the same procedure
with the scaling limit, this leads to the differential equation:
(3.2) df(x)/dx = - px_l(x—f(x))+ , O<x<1l, f(1) = 0.
Solving it, we obtaiﬁ the optimal value v; = f(0+) = pl/(l-p) and the
stopping island [pl/(l_p), 1], namely Smith(1975)'s result.

Now we consider a model with a random number of objects and inducing

the non constant refusal probability p(i) = p(i;n). We can describe the
model by the optimality equation using the same notation as in section 3.2:

v(i) max {p(i)r(i) + (1-p(i))Pv(i), Pv(i)} , i=1,..,n-1,

(3.3)

v(n) p(n).
As in the previous section, we have the following theorem under the same
assumptions.
1 -1

Let h(x) = Y d¥(y) and
(3.4)  H (x) = h(x) - a(x) {{rp()/(valy))ay
where q(x) = exp(lgiy_l(l—p(y))dy) and p(x) is a scaling limit of p(i)=
p(i;n) with i/n=x. From a realistic point view, the refusal probability

should not depend on the order in which the objects are examined. In

this case, (3.4) becomes as Hp(x) = h(x) - pxp_lgiy_ph(y)dy where, as
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in example 3.1, the refusal probability is assumed to be constant.
CONDITION(§p). Hp(x) changes its sign once from - to + as x increases.
Define, similarly,

x* = inf{x; H(x)2 0 3
(3.5) P P

1 if empty.

THEOREM 3.1. The integral equation of the problem is

af(x) = £(x)(1-§(x) " ad(x) - x 'p(x) (R(x)-£(x))*ax, 0 < x < 1,
(3.6 .

f£(1)=0.
If ®(x) is continuous for O<x<1 with Condition(§p), then the optimal
value v; with a refusal probability p(x), O<x<1 is given by

(3.7) V; = £(0+) = (1—§Kd;))f(d;) ==dEQ(d;{glh(y)p(Y)/(YQ(y))GY-
d*
P

The stopping island [d;, 1] is determined by the solutioncx; of Hp(x) = 0.

EXAMPLE 3.1. We consider the case of §jx)=x, O<x<1l, where the number of

objects is uniformly distributed on Zl,Z,..,n} and p(x) = p for O< x< 1.
Since dd(x) = dx, (3.6) leads to a differential equation:

df(x)/dx = (1-x)—1f(x) - px-l(R(x)—f(x))+, 0< x< 1, f(1) =0
where R(x)= —x(l—x)-llog(x). Since h(x) = -log(x) and q(x) = xp—l, the
equation Hp(x) = O becomes

p(xp_l—l) + (1-p)log(x)= O.

Hence a; is the unique solution of this transcendental equation in O0<x<1.
We see immediately that {x ; Hp(x) 20}= [d;, 1] holds, and hence v; =
—d;log(d;) by (3.7). Some numerical results are given in the Table 2. We
note that p = 1.0 corresponds to the non-refusal case with a uniformly
distributed number of objects discussed in section 3.2 (See Rasmussen and

‘Robbins(1975)).
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Table 2

refusal probability

stopping island

optimal value

p [d;, 1] —aslog(o(;)
.5 [ .os10, 1] .2036
.7 [ 1052, 1] .2369
.9 [.126_0, 1] .2610
.99 [ -1344, 1-] .2698
1.0 [e7®-.1353, 1 ] 2e7%=.2707
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3.4. A MULTIPLE CHOICE PROBLEM (I)

Another variation in the best choice problem is the case where the
decision is allowed to make r-object choices(i.e., r stops) and one wants
to choose the best among these(See Gilbert and Mosteller(1966)). Sakaguchi
(1978) has solved this by using the OLA policy and Tamaki(1979a) has dis-
cussed the case wherg the number of objects is a uniformly distributed
random variable, and has obtained an explicit value in the asymptotic form
for the case of r=2. |

As in the previous sections, we derive an integral equation in the
case of r-object choices with a random number of objects for the opti-
mality equation. Following Presman and Sonin(1972) and Tamaki(1979a),
the optimality equation becomes

v (i)

max {r(i) + Pvr—l(i)’ Pvr(i)}, r=1,2,..,

(4.1)
Vo(i) = 0.

As in (2.4), let wr(k) = Pvr(k) k=1,2,..,n-1 and wr(n)=0 for each r.

This denotes the conditional optimal value, as before. The same Assump-

tions (I) and (II) hold as in section 3.2.

THEOREM 4.1. A scaling limit fr(x) of wr(k;n) provided k/n=x in the

multiple choice problem satisfies the equation

af (x) = (1-F0) 7, (x0)dB(x) - x (RO (x)-£_(x)) ax,
(4.2) f (1) =0, r=1,2,...,

r .

fo(x) =0 for 0 <x <1.

The optimal value v; equals fr(0+).

PROPOSITION 4.2. Let g_(x) = x‘l(l-ggx))fr(x) for r=1,2,.. . If &(x)
is continuous for O < x < 1, then they are differentiable and satisfy

(4.3) dg_(x) = -« ' max{h(x) + g___ (x), g (x)}ax, g (1) =0

r—l(
where h(x) is defined in (2.9).
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Let hr(x) = h(x) + gr_l(x) and
1 -1
(4.4) Hr(X) = hr(x)- Sxy hr(y)dy for r=1,2,..
CONDITION(§r). Hr(x) changes its sign one from - to + as x increases.
Let og; = inf{x; Hr(x) 2 O}.

THEOREM 4.3. The optimal value v; of permitting r-object choices is

(1-§Kd;))fr(d;), and the stopping islands are determined by the sequence
¥ k=1,2,..,r).
(o(h r)
In the rest of this section it is restricted to the uniform distribu-

tion: P = 1/n, k=1,2,..,n. Then (4.2) implies

(a.5) dfr(x)/dx = (1—x)_1fr(x) - x_l(R(x)+fr_1(x)—-fr(x))+, 0<x<K1,
fr(l) =0
where R(x) = —x(l—x)—llog(x). We now use Proposition 4.2. From (4.3),

we have that

1
y

on{x; -log(x) + gr_l(x) = gr(x)} and, in the neighborhood of x=0,

(4.6) g (x) = giy-lhr(y)dy = —giy_lgr_l(y)dy +_§)1( y—l(S 2z 1ad(z))dy

(4.7) .gr(x) = (const)/x.
From (4.6) and (4.7), fr(x) is solved. To denote this solution explicitly,

we set inductively

3
= | -
Ki+1 Li/(S.) + (Ci—l ci)exp(Li) + KiLi’
(4.8)

c; = Ci—l + Liexp(—Li), i=1,2,..,r
where Li = 1+J(1—2Ki) and K1=O and co=0. It is seen that, from the conti-

nuity of the solution, that

[ = cr/(l—x), 0« X £ X
= x/(l—x)*ﬁlogz(x)/(Z!) + cr_l/x + KrE’ xr§ x £ X g
(4.9) £_(x) { = x/(1-x)*{-1og>(x)/(31) + logZ(x)/(21)
—Kr_llog(x)+cr_2/x}, xr‘_1 g€ x< xr—2’
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where x. exp(—Li), i=1,2,.. and 0< x < xr_1<..<x1=e—2< 1. The optimal
value v; of r-object choices is v; = fr(0+) =c.. Therefore we can deter-
mine the optimal value for every r by the iteration (4.8). For example,

c, = 22 - .2707 and c, = ¢ + (1+{§Iy3)exp(—(1+j§I/3)) = .4725. The first
two terms are consistent with Presman and Sonin(1972), and Tamaki(1979a)
respectively. Numerical calculation for different values of r gives the

following results:

Table 3

Times of choice r : 1 2 3 4 5 6 7

Optimal value v; o .2707 .4725 .6208 .7149 .7552 .7609 .7610

It seems here as if the optimal value converges, but in the original
model of the situation it must tend to unity as r increases. The cause
of this may be that we have taken the limit n to infinity for a prefixed

number r.
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3.5. A MULTIPLE CHOICE PROBLEM (II)

A multiple choice problem which is to select the best and the second
best objects, permitting a 2-object choice, is considered by Nikolaev(1977)
and Sakaguchi(1979). Sakaguchi treats the uncertain employment problem
i.e. with a refusal probability, in our terminology, which we have discussed
in section 3.3. While this model is not considered here, we shall discuss the
case of a random number of objects, and calculate thé uniformly distributed
special case as previously.

The optimality equation obtained by Sakaguchi(1979) and Tamaki(1979b)

is as follows:

w, (3) = 3(3-1)/(n(n-1)),
. . s 2 .
Uy (3) = maxfu (3), TP 050310/ (elke1) (0=2)) 2w (0], §=2,..,n-1,
ul(n) = u2(n) =1,
v(1) = max {(u (2)+u,(2))/2, Y 1/(k(k-1))*v(K)},
v(i) = max{zﬁziﬂi(i-l)/(k(k—l)(k-z))*X:lus(k), T/ (e xv () §,

i=2,..,n-2, v(n) = 0. .
The solution of v(1) = v(1;n) is the obtimal vélue, that is, the maximum
probability of stopping twice which includes the best and the second best
objects.
Similarly as in the previous sections, we are concerned with the
bounded random number of objects and the same notations are used. Because
two stops are required, it is enough to assume that N Z 3, that is, p, =

1

p2 = 0. Hence ‘n;1=‘n:,2 holds. We then have the following optimality

equation

u (3) = Jp 3(3-1)py /(k(k-1)T) s =2, ..,n-1,

: n ‘(s #72
maxfuy (3, Fu_ 1 5010/ (elien1) (k-2) B )42 u ()3,

uz(j)

(5.1) ul(n)=u2(n)=l,
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v(1l) = max{(ul(2)+u2(2))/2, ZE=27tk/(k(k_1)m1)*"(k)}'
v(i) = max{2£=i+li(i—1)ﬁk/(k(k-1)(k_g)wi)fzz=lus(k),

T iR/ (ke ) (), 12,0 0nm1,
v(n) = 0.

Define the conditional optimal value w(k) = w(k;n), k=1,2,..,n by
2
w(l) =J° u_(2)/2,
n
wik) =J0_ k(k-1)T /(s(s-1) (s-2)m )*)
w(n) = 0.

2
t=1ut(s), k=2,..fn—1,

Then

(5.2) w(k+1l) - w(k) = pkw(k+l)/rck - Kk+1/((k+l)mk)*

. n
S=k+lk(k+1)ps/(s(s-l)Kk+1) - w(k+1)

n +
+ (Zs=k+lk(k+1)ps/(S(s—l)Lk+1) - wk+1))" .
Also define

Wik) =F° kT /(s(s-1)T )*v(s), k=1,..,n-1,

wW(n) 0.

1

Then this satisfies
(5.3)  W(k+l) - W(k) = pW(kel)/m - T g/ (k1) )% (w(ked)-w(k+1)) ™
Hence, if Assumptions (I), (II) of section 3.2, and if
(1—§(x))—1giy—2d§(y) — 1 as x = 1
and
x2 Siy_zdﬁ(y) ~>0as x = 0
hold, we have the next two integral equations by taking the scaling limit.

PROPOSITION 5.1. Let f(x) = lim w(k;n) and %kx) = iim Ww(k;n) provided
.M

R,M
k/n=x. Then these satisfy

df(x) = f(x)(l—éﬁx))—ld§(x) - x—l{RZ(x)—f(x) + (Rz(x)—f(x))+jdx,
(5.4)

f(1) =0

where Rz(x) = x2(1—§(x))_1§iy-2d§(y), 0¢ x¢1, and
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. ~

df(x) = T(x) (1-3(x)) " Tad(x) - x L(£(x)-F(x)) dx,
(5.5)
(1) = o.

THEOREM 5.2. The optimal value T*= lim v(1l;n) in the asymptotic form is

~

given by the solution f(0+) of (5.5).
Proof. From v(1l;n) = max&w(l;n),';(l;n)s, we have v* = max{f(0+), ?Q0+)}.
By (5.4), f(0+) = O implies the result, ¥V* = F(0+).

EXAMPLE 5.1. We calculate the optimal value and the stopping island for

the case of p; = 1/n for i=1,..,n, that is, the uniform distribution d3(x)

= dx. By the same method as in previous sections,

(5.6) f(x) {

where d{ (=.28467) is a unique solution x of 1-x = 2(1+xlog(x)-x) in 0 <

< x<1,

2x/(1-x)*(1+xlog(x)-x), dI

x/(l—x)*{1—10g(x)+x—2d;+log@XI)}, 0 <xg d{

x < 1. Also,

= =2x/(1-x)*((1+x)log(x) - 2x + 2), oq <x<1,

x/(1—x)*{1og2(x)/2 - (log(xI)—2oq+l)log(x) - x

(5.7) F(x) + 10g%(2)/2 - ax¥log(dt) ~ log(a}) + 5at 7 4},
°(§ <£xg o(*l*.

o(E/(l—x)*{l - logloly) + oy - 20 + 1og(o(I)}, 0 < xg o

where ME (=.09610) is a unique solution x of
x - log(x) + log(a;) - ZdI + 1
= logz(x)/2 - (log(d;)—2d;+l)log(x) - X + logz(di)/Z - 4d;log(d{)
- * *
log(dl) + Sql 4.
Hence the optimal value v* = ?}0+) equals
T = A% 41 »* *_D A * = . .
(5.8) F(0+) = o3 {1 Log(ets) +o3 2o(l+1og(o(1)} 15498)
The optimal strategy in the asymptotic form is that
(i) onfoO, o(;], we pass

(ii) on[gz, d{], we make the 1St stop if the relative best object appears
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(iii)_onEXI, 1], we make the 2nd stop if the relative best or an best

object appears.
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