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Abstract

In a continuous-time fuzzy stochastic system, a stopping model with fuzzy stop-
ping times is presented. The optimal fuzzy stopping times are given under an
assumption of regularity for stopping rules. Also, the optimal fuzzy reward is char-
acterized as a unique solution of an optimality equation under a differentiability
condition. An example in the Markov models is discussed.
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1. Introduction

Stopping problems for a sequence of ‘real-valued’ random variables were studied by many

authors, and their applications are well known in various fields, management science,

finance, engineering etc.(Presman and Sonin [6], Shiryayev [9]). This paper discusses

‘optimal fuzzy stopping in a continuous-time fuzzy stochastic system’ defined by fuzzy

random variables.

The fuzzy random variable, which is a ‘fuzzy-number-valued’ extension of real random

variables, was first studied by Puri and Ralescu [7] and has been discussed by many au-

thors. By introducing fuzziness to stochastic processes in optimization/decision-making,

we consider an optimal stopping model with uncertainty of both randomness and fuzzi-

ness, which is a reasonable and natural extension of the original stochastic processes.

In stochastic systems, the randomness is a notion of uncertainty which implies whether

something occurs or not with some probability, and, in this paper, the fuzziness means

an uncertainty like ambiguity where we can not identify exact values because of a lack of

knowledge in systems. We, here, deal with them as different kinds of uncertainty.

Fuzzy stopping times are introduced by Kurano et al. [5] in discrete-time dynamic

fuzzy systems([4]). [5] has investigated discrete-time One-Step Look Ahead Property of

the fuzzy stopping times since the dynamic fuzzy systems are non-stochastic Markov fuzzy

systems. This paper extends the definition of fuzzy stopping times to continuous-time and

stochastic environments and we discuss them in general framework of continuous-time

fuzzy stochastic systems. Recently, in fuzzy stochastic systems defined by sequences of
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fuzzy random variables, Yoshida et al. [13] has studied discrete-time stopping problems in

comparison between ‘fuzzy stopping times’ and non-fuzzy stopping times and has shown

that the fuzzy stopping model is more favorite than the non-fuzzy one. This paper also

extends the definition of fuzzy stopping times in the discrete-time models([13]) to the

continuous-time case, and presents a fuzzy stopping model in a continuous-time ‘fuzzy

stochastic systems’ which is constructed from fuzzy random variables. In Section 2, the

notations and definitions of fuzzy random variables are given and a continuous-time fuzzy

stochastic system is formulated. Next, in Section 3, fuzzy stopping times are introduced

for continuous-time fuzzy stochastic systems, and a stopping model by fuzzy stopping

times is presented. In Section 4, in the associated stopping model for fuzzy stochastic

systems, an optimal fuzzy stopping time is constructed under a regularity assumption

regarding stopping rules. In Section 5, it is shown that the optimal fuzzy reward is a

unique solution of an optimality equation under a differentiability condition. Finally, in

the last section, an example where an owner of an asset finds an optimal timing to sell

his own asset, is given to illustrate our idea in the Markov models.

2. Fuzzy stochastic systems

First, we introduce some notations of fuzzy numbers and fuzzy random variables. Let

(Ω,M, P ) be a probability space, where M is a σ-field and P is a non-atomic probability

measure. Let R be the set of all real numbers. A ‘fuzzy number’ is denoted by its

membership function ã : R �→ [0, 1] which is normal, upper-semicontinuous, fuzzy convex

and has a compact support. Refer to Zadeh [14] for the theory of fuzzy sets. R denotes

the set of all fuzzy numbers. The α-cut of a fuzzy number ã(∈ R) is given by

ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0},
where cl denotes the closure of an interval. In this paper, we write the closed intervals by

ãα := [ã−
α , ã+

α ] for α ∈ [0, 1].

We use a metric δ∞ on R defined by

δ∞(ã, b̃) := sup
α∈[0,1]

δ(ãα, b̃α) for ã, b̃ ∈ R, (2.1)

where δ is the Hausdorff metric on R. A fuzzy-number-valued map X̃ : Ω �→ R is called

a ‘fuzzy random variable’ if

{(ω, x) ∈ Ω × R | X̃(ω)(x) ≥ α} ∈ M× B for all α ∈ [0, 1], (2.2)

where B is the Borel σ-field of R. We can find some equivalent conditions in general cases

([7]), however this paper adopts a simple characterization in the following lemma.

Lemma 2.1 (Wang and Zhang [11, Theorems 2.1 and 2.2]). For a map X̃ : Ω �→ R, the

following (i) and (ii) are equivalent:
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(i) X̃ is a fuzzy random variable.

(ii) The maps ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are measurable for all α ∈ [0, 1], where

X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] := {x ∈ R | X̃(ω)(x) ≥ α}.
Now we introduce expectations of fuzzy random variables to describe stopping models

in fuzzy stochastic systems. A fuzzy random variable X̃ is called integrably bounded if

ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are integrable for all α ∈ [0, 1]. For an integrably bounded

fuzzy random variables X̃ , we put closed intervals

E(X̃)α :=

[∫
Ω

X̃−
α (ω) dP (ω),

∫
Ω

X̃+
α (ω) dP (ω)

]
, α ∈ [0, 1]. (2.3)

Then, the expectation E(X̃) of the fuzzy random variable X̃ is defined by a fuzzy number

([4, Lemma 3],[13]):

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)} for x ∈ R, (2.4)

where 1D is the indicator function of a set D.

Next, we formulate fuzzy stochastic systems. Let [0,∞) be the time space, and let

{X̃t}t≥0 be a process of integrably bounded fuzzy random variables such that E(supt≥0 X̃+
t,0)

< ∞, where X̃+
t,0(ω) is the right-end of the 0-cut of the fuzzy number X̃t(ω) for t ≥ 0.

We assume that the map t �→ X̃t(ω)(∈ R) is continuous on [0,∞) for almost all ω ∈ Ω.

{Mt}t≥0 is a family of nondecreasing sub-σ-fields of M which is right continuous, i.e.

Mt =
⋂

r:r>t Mr for all t ≥ 0, and fuzzy random variables X̃t are Mt-adapted, i.e. ran-

dom variables X̃−
r,α and X̃+

r,α (0 ≤ r ≤ t; α ∈ [0, 1]) are Mt-measurable. And M∞ denotes

the smallest σ-field containing
⋃

t≥0 Mt. Then (X̃t,Mt)t≥0 is called a continuous-time

‘fuzzy stochastic system’. A map τ : Ω �→ [0,∞] is said to be a ‘stopping time’ if

{ω ∈ Ω | τ (ω) ≤ t} ∈ Mt for all t ≥ 0. (2.5)

Then we have the following lemma.

Lemma 2.2. Let τ be a finite stopping time. Define

X̃τ (ω) := X̃τ (ω)(ω) for ω ∈ Ω. (2.6)

Then, X̃τ is a fuzzy random variable.

Proof. Let α ∈ [0, 1]. The maps ω �→ X̃±
t,α(ω) are measurable for t ≥ 0, and the

maps t �→ X̃±
t,α(·) are right continuous and have left-hand limits almost surely. Since

τ is a stopping time, the maps ω �→ X̃±
τ (ω),α(ω) are measurable. Therefore the proof is

completed from Lemma 2.1. �

Here, X̃τ (ω), ω ∈ Ω, means a ‘fuzzy reward’ at a stopping time τ , and the fuzziness

indicates ill-conditions where we have a lack of knowledge about them(Kurano et al. [5]).

3



The optimal stopping problems for fuzzy rewards in a discrete-time case have been dis-

cussed by Yoshida et al. [13]. This paper discusses an optimal stopping problem regarding

fuzzy rewards, using fuzzy stopping times, in the next section.

3. A fuzzy stopping model

In this section, first we consider an evaluation of the fuzzy stochastic system (X̃t,Mt)t≥0

which is defined in Section 2. at a classical finite stopping time τ defined by (2.5). Next we

introduce a ‘fuzzy stopping time’ in accordance with the continuous-time fuzzy stochastic

system, and we discuss a stopping problem by using fuzzy stopping times. Let I be the

set of all bounded closed sub-intervals of R and let g : I �→ R be a continuous σ-additively

homogeneous map, that is, g satisfies the following (3.1) and (3.2):

g

( ∞∑
n=0

cn

)
=

∞∑
n=0

g(cn) (3.1)

for bounded closed intervals {cn}∞n=0 ⊂ I such that
∑∞

n=0 cn ∈ I and

g(µc) = µg(c) (3.2)

for bounded closed intervals c ∈ I and real numbers µ ≥ 0, where the operation on closed

intervals is defined ordinary as
∑∞

n=0 cn := cl{∑∞
n=0 xn | xn ∈ cn, n = 0, 1, 2, · · ·} and

µc := {µx | x ∈ c}. We call this scalarization satisfying (3.1) and (3.2) a ‘linear ranking

function’, and it is used for the evaluation of fuzzy numbers (Fortemps and Roubens [8]).

For example, g([a, b]) = λa + (1 − λ)b for [a, b] ∈ I, where λ ∈ [0, 1], is a linear ranking

function, and then λ is called a ‘pessimistic-optimistic index’([10]). We introduce an

evaluation of the fuzzy random variable X̃τ provided that τ is a finite stopping time as

follows: Let ω ∈ Ω. From (2.6), the α-cut of the fuzzy number X̃τ (ω) is a closed interval

X̃τ (ω),α(ω), and the expectation is given by the closed interval E(X̃τ,α) from the definition

(2.3). Using the linear ranking function g, we estimate it by g(E(X̃τ,α)). Therefore, the

evaluation of the fuzzy random variable X̃τ is given by the integral

Gτ (ω) :=

∫ 1

0

g(E(X̃τ,α)) dα. (3.3)

This means an ’evaluation of the fuzzy reward at a stopping time τ ’. Then we have the

following lemma regarding (3.3).

Lemma 3.1. For a finite stopping time τ , it holds that∫ 1

0

g(E(X̃τ,α))dα =

∫ 1

0

E(g(X̃τ,α))dα = E

(∫ 1

0

g(X̃τ,α(·)) dα

)
= E(Gτ ). (3.4)
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Proof. The properties (3.1) and (3.2) of g imply g(E(X̃τ,α)) = E(g(X̃τ,α)). Therefore,

by Fubini’s theorem, we obtain (3.4). �

Next we introduce fuzzy stopping times, which is a fuzzification of classical stopping

times (2.5) and is also a continuous-time extension of fuzzy stopping times in [13].

Definition 3.1. A map τ̃ : [0,∞) × Ω �→ [0, 1] is called a fuzzy stopping time if it

satisfies the following (i) – (iii):

(i) For each t ≥ 0, the map ω �→ τ̃ (t, ω) is Mt-measurable.

(ii) For almost all ω ∈ Ω, the map t �→ τ̃ (t, ω) is non-increasing and right continuous

and has left-hand limits on [0,∞).

(iii) For almost all ω ∈ Ω, there exists t0 ≥ 0 such that τ̃ (t, ω) = 0 for all t ≥ t0.

Definition 3.1 is the similar idea to fuzzy stopping times given in dynamic fuzzy systems

by Kurano et al. [5]. Regarding the membership grade of fuzzy stopping times, τ̃ (t, ω) = 0

means ‘to stop at time t’ and τ̃ (t, ω) = 1 means ‘to continue at time t’ respectively. We

have the following lemma regarding the properties of fuzzy stopping times.

Lemma 3.2.

(i) Let τ̃ be a fuzzy stopping time. Define a map τ̃α : Ω �→ [0,∞) by

τ̃α(ω) := inf{t ≥ 0 | τ̃(t, ω) < α}, ω ∈ Ω for α ∈ (0, 1], (3.5)

where the infimum of the empty set is understood to be +∞. Then, we have:

(a) {ω | τ̃α(ω) ≤ t} ∈ Mt for t ≥ 0;

(b) τ̃α(ω) ≤ τ̃α′(ω) for almost all ω ∈ Ω if α ≥ α′;

(c) limα′↑α τ̃α′(ω) = τ̃α(ω) for almost all ω ∈ Ω if α > 0;

(d) τ̃0(ω) := limα↓0 τ̃α(ω) < ∞ for almost all ω ∈ Ω.

(ii) Let {τ̃α}α∈[0,1] be maps τ̃α : Ω �→ [0,∞) satisfying the above (a) (b) and (d). Define

a map τ̃ : [0,∞) ×Ω �→ [0, 1] by

τ̃ (t, ω) := sup
α∈[0,1]

min{α, 1{τ̃α>t}(ω)} for t ≥ 0 and ω ∈ Ω. (3.6)

Then τ̃ is a fuzzy stopping time.

Proof. For (i), (a),(b) and (d) are trivial from Definition 3.1. From (b), we have

lim
α′↑α

τ̃α′(ω) = inf
α′:α′<α

inf{t ≥ 0 | τ̃ (t, ω) < α′} = inf{t ≥ 0 | τ̃ (t, ω) < α} = τ̃α(ω),
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which implies (c). For (ii), it is sufficient to check Definition 3.1(ii) about (3.6) since (3.6)

trivially satisfies the other conditions of Definition 3.1. The map t �→ τ̃ (t, ω) is clearly

non-increasing. Further we have

lim
t′↓t

τ̃ (t′, ω) = lim
t′↓t

sup
α∈[0,1]

min{α, 1{τ̃α>t′}(ω)}

= sup
t′:t′>t

sup
α∈[0,1]

min{α, 1{τ̃α>t′}(ω)}

= sup
α∈[0,1]

sup
t′:t′>t

min{α, 1{τ̃α>t′}(ω)}

= sup
α∈[0,1]

min{α, 1{τ̃α>t}(ω)}

= τ̃ (t, ω).

Therefore the map t �→ τ̃ (t, ω) is right continuous and has left-hand limits from the

monotonicity. These complete the proof of this lemma. �

Now we consider the estimation of the fuzzy stochastic system stopped at a ‘fuzzy

stopping time τ̃ ’. Since it is difficult to define the fuzzy random variable stopped at

fuzzy stopping times τ̃ in the way of (2.6), we establish it by α-cut technique of fuzzy

random variables and fuzzy stopping times. A fuzzy stopping time τ̃ is called finite if

τ̃0(ω) := limα↓0 τ̃α(ω) < ∞ for almost all ω ∈ Ω. Let τ̃ be a finite fuzzy stopping time.

Then, from Lemma 3.2(i.a), τ̃α is a ‘classical bounded stopping time’ given by (3.5). Let

ω ∈ Ω. X̃τ̃α,α(ω) := X̃τ̃α(ω),α(ω) corresponds to the α-cut of the fuzzy stochastic system

{X̃t}t≥0 stopped at fuzzy stopping time τ̃ . Therefore, by the evaluation method in (3.3),

we define a random variable

Gτ̃ (ω) :=

∫ 1

0

g(X̃τ̃α,α(ω)) dα, ω ∈ Ω. (3.7)

The expectation E(Gτ̃ ) is the evaluation of the fuzzy random variable X̃τ̃ , and it means

an ’evaluation of the fuzzy reward at a fuzzy stopping time τ̃ ’. We note that if τ̃ is

corresponding to a non-fuzzy (classical) stopping time τ , that is,

τ̃ (t, ω) =

{
1 if t < τ (ω)
0 if t ≥ τ (ω),

it holds that E(Gτ̃ ) = E(Gτ ). In this paper, we discuss the following problem.

Problem 1. Find a fuzzy stopping time τ̃ ∗ such that E(Gτ̃∗) ≥ E(Gτ̃ ) for all fuzzy

stopping times τ̃ .

In Problem 1, τ̃ ∗ is called an ‘optimal fuzzy stopping time’. Now, by Lemma 3.1, we

have

E(Gτ̃ ) := E

(∫ 1

0

g(X̃τ̃α,α(·)) dα

)
=

∫ 1

0

E(g(X̃τ̃α ,α)) dα (3.8)
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for fuzzy stopping times τ̃ . In order to analyze Problem 1, we need to discuss the following

subproblem induced from (3.8).

Problem 2. Let α ∈ [0, 1]. Find a stopping time τ ∗ such that E(g(X̃τ∗,α)) ≥ E(g(X̃τ,α))

for all stopping times τ .

In Problem 2, τ ∗ is called an ‘α-optimal stopping time’.

4. An optimal fuzzy stopping time

This section is devoted to a method to construct an optimal fuzzy stopping time. In order

to characterize α-optimal stopping times, we let

Uα
t := ess sup

τ : stopping times, τ≥t
E(g(X̃τ,α)|Mt) for t ≥ 0, (4.1)

where ‘ess sup’ means the essential supremum([9]). Then Uα
t are right continuous with

respect to t ≥ 0 since X̃t,α and Mt are right continuous with respect to t ≥ 0 and g is

continuous. We define a stopping time σ∗
α : Ω �→ [0,∞) by

σ∗
α(ω) := inf{t ≥ 0 | Uα

t (ω) = g(X̃t,α(ω))} (4.2)

for ω ∈ Ω and α ∈ [0, 1], where the infimum of the empty set is understood to be

+∞. The stopping time (4.2) is a general form of the first hitting time of the optimal

stopping region(See Example 6.1). Then, Problem 2 is one of classical stopping problems

in continuous-time stochastic processes and we can find the proof of the next Theorem

4.1 in [2] and [9, Theorem 3 in Sect.3.3.3], but we omit the proof because it is long.

Theorem 4.1. Let α ∈ [0, 1]. If σ∗
α is finite almost surely, then σ∗

α is α-optimal and

E(Uα
0 ) = E(g(X̃σ∗

α ,α)).

In order to construct an optimal fuzzy stopping time from the α-optimal stopping

times {σ∗
α}α∈[0,1], we need the following regularity condition.

Assumption A (Regularity). The map α �→ σ∗
α(ω) is non-increasing for almost all

ω ∈ Ω.

It depends on the form of the linear ranking function g in actual cases whether As-

sumption A is satisfied or violated (See Section 6). Under Assumption A, we can define

a map σ̃∗ : [0,∞) × Ω �→ [0, 1] by

σ̃∗(t, ω) := sup
α∈[0,1]

min{α, 1{σ∗
α>t}(ω)} for t ≥ 0 and ω ∈ Ω. (4.3)

Let ω ∈ Ω. For a fuzzy stopping time σ̃∗(t, ω), we denote its α-cut in the form (3.5) by

σ̃∗
α(ω). Then we note that σ̃∗

α(ω) and σ∗
α(ω) are equal except at most countable many

α ∈ (0, 1].
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Theorem 4.2 (Optimal fuzzy stopping time). Suppose Assumption A holds. If P (σ̃∗
0 <

∞) = 1, then σ̃∗ is an optimal fuzzy stopping time for Problem 1. Further it holds that

σ̃∗
α(ω) = min{t ≥ 0 | σ̃∗(t, ω) < α}, ω ∈ Ω for α ∈ (0, 1]. (4.4)

Proof. From Assumption A and Lemma 3.2, σ̃∗ is a fuzzy stopping time. By (3.8), (4.1)

and Theorem 4.1, we have

E(Gτ̃ ) ≤
∫ 1

0

sup
τ : stopping times

E(g(X̃τ,α))dα =

∫ 1

0

E(Uα
0 ) dα =

∫ 1

0

E(g(X̃σ∗
α ,α)) dα (4.5)

for all fuzzy stopping times τ̃ . Since σ̃∗
α(ω) �= σ∗

α(ω) holds only at most countable α ∈
(0, 1], ∫ 1

0

g(X̃σ∗
α ,α(ω)) dα =

∫ 1

0

g(X̃σ̃∗
α,α(ω)) dα

holds for almost all ω ∈ Ω. By Fubini’s theorem, we get∫ 1

0

E(g(X̃σ∗
α ,α)) dα =

∫ 1

0

E(g(X̃σ̃∗
α ,α)) dα. (4.6)

By (4.5) and (4.6), we obtain

E(Gτ̃ ) ≤
∫ 1

0

E(g(X̃σ∗
α ,α)) dα =

∫ 1

0

E(g(X̃σ̃∗
α ,α)) dα = E(Gσ̃∗). (4.7)

Therefore σ̃∗ is optimal for Problem 1. Finally, (4.4) holds trivially from Lemma 3.2. �

The following result implies a comparison between the optimal values of the ‘classical’

stopping model and the ‘fuzzy’ stopping model (Problem 1). Then we find that the fuzzy

stopping model is more better than the classical one. This fact has been explicitly shown

in the discrete-time model by [13].

Corollary 4.1. It holds that, under the same assumptions as Theorem 4.2,

E(Gτ∗) ≤ E(Gσ̃∗), (4.8)

where σ̃∗ is the optimal fuzzy stopping time and τ ∗ is an optimal stopping time in the

class of classical stopping times.

Proof. For all stopping times τ , from (4.5) and (4.7) we have

E(Gτ ) = E

(∫ 1

0

g(X̃τ,α) dα

)
≤
∫ 1

0

sup
τ

E
(
g(X̃τ,α)

)
dα = E(Gσ̃∗).

Therefore this corollary holds. �
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5. Optimality equations

In this section, we consider the optimality conditions for the optimal rewards {Uα
t }t≥0.

The optimality characterization of optimal rewards has been studied by Shiryayev [9] in

stochastic processes, and it has also been discussed by Yoshida [12] in fuzzy deterministic

systems. Now, in fuzzy stochastic systems, we derive optimality conditions and opti-

mality equations with a differential operator by a similar idea on the basis of dynamic

programming approach.

Theorem 5.1 (Optimality characterization). For α ∈ [0, 1] and t ≥ 0, the following (i)

– (iii) hold:

(i) For almost all ω ∈ Ω, it holds that

Uα
t (ω) ≥ g(X̃t,α(ω)).

(ii) For almost all ω ∈ Ω, it holds that

Uα
t (ω) ≥ E(Uα

r |Mt)(ω), r ∈ [t,∞).

(iii) For almost all ω ∈ Ω satisfying Uα
t (ω) > g(X̃t,α(ω)), there exists ε > 0 such that

Uα
t (ω) = E(Uα

r |Mt)(ω), r ∈ [t, t + ε).

Proof. (i) We have Uα
t = ess supτ : τ≥t E(g(X̃τ,α)|Mt) from the definition (4.1). Then

particularly by considering the case of τ = t, it holds that Uα
t ≥ E(g(X̃t,α)|Mt) = g(X̃t,α)

almost surely since g(X̃t,α) is Mt-measurable. (ii) Let t, r ∈ [0,∞) satisfy t ≤ r. From

the definition of fuzzy conditional expectation and the monotone convergence theorem,

we have

E(Uα
r |Mt) = E

(
ess sup

τ : τ≥r
E(g(X̃τ,α)|Mr)|Mt

)
= ess sup

τ : τ≥r
E
(
E(g(X̃τ,α)|Mr)|Mt

)
= ess sup

τ : τ≥r
E(g(X̃τ,α)|Mt)

≤ ess sup
τ : τ≥t

E(g(X̃τ,α)|Mt)

= Uα
t almost surely.

(5.1)

(iii) If Uα
t (ω) > g(X̃t,α(ω)) for some ω, then there exists a real number ε > 0 and a real

random variable η(ω) > 0 such that Uα
r′(ω) > g(X̃r′,α(ω))+ η(ω) for all r′ ∈ [t, t + ε) since

the processes are right continuous. So, by (i) and (ii) we obtain

Uα
t (ω) ≥ E(Uα

r′ |Mt)(ω) > E(g(X̃r′,α)|Mt)(ω) + η′(ω) for all r′ ∈ [t, t + ε),
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where η′(ω) := E (η · 1Γ|Mt) (ω) > 0 and Γ := {ω′ | Uα
r′(ω

′) > g(X̃r′,α(ω′)) + η(ω′)}. It

follows

Uα
t (ω) ≥ ess sup

τ : t≤τ<t+ε
E(g(X̃τ,α|Mt)(ω) + η′(ω) > ess sup

τ : t≤τ<t+ε
E(g(X̃τ,α|Mt)(ω).

Thus by the definition (4.1) and the relation t ≤ r < t + ε we get

Uα
t (ω) = ess sup

τ : τ≥t
E(g(X̃τ,α|Mt)(ω)

= max

{
ess sup

τ : τ≥r
E(g(X̃τ,α|Mt)(ω), ess sup

τ : t≤τ<t+ε
E(g(X̃τ,α|Mt)(ω)

}
= ess sup

τ : τ≥r
E(g(X̃τ,α|Mt)(ω).

Therefore we can replace the inequality in (5.1) with the quality: Namely for all r ∈
[t, t + ε), it holds that

Uα
t (ω) = E(Uα

r |Mt)(ω).

Therefore the proof of this theorem is completed. �

In Theorem 5.1, (i) means g(X̃t,α) is the lower bound of the optimal rewards Uα
t .

The properties (ii) and (iii) are called ‘supermartingale’ and ‘martingale’ respectively in

theory of stochastic processes(see [9]), and (ii) means the optimal rewards {Uα
t }t≥0 has

the supermartingale property over all the time space [0,∞). Moreover, (iii) means the

optimal rewards preserve the martingale property until the optimal stopping time σ∗
α

defined by (4.2). In the rest of this section we discuss the optimality equations for the

optimal reward process {Uα
t }t≥0. Let L2([0,∞)) be the space of continuous functions

u· : [0,∞) �→ R satisfying
∫∞

0
(ur)

2 dr < ∞ and limt→∞ ut = 0. Let L be the space of

functions by

L := {u· ∈ L2([0,∞)) | u· is differentiable on [0,∞) and dut/dt ∈ L2([0,∞))}.

Then we write Aut := −dut/dt. For t ≥ 0, we put a bilinear form on L × L by

〈u·, v·〉t =

∫ ∞

t

urvr dr for u·, v· ∈ L.

Then the following Lemma 5.1 is trivial and we can easily check Lemma 5.2 using the

integration by parts.

Lemma 5.1. For u·, v·, w· ∈ L, µ ∈ R and t ≥ 0, the following (i) – (iii) hold.

(i) 〈u·, v·〉t = 〈v·, u·〉t.
(ii) 〈u·, v· + w·〉t = 〈u·, v·〉t + 〈u·, w·〉t.
(iii) 〈u·, µv·〉t = µ 〈u·, v·〉t.
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Lemma 5.2. For w· ∈ L and t ≥ 0, it holds that 〈Aw·, w·〉t = 1
2
(wt)

2 ≥ 0.

For a stochastic process {Yt}t≥0, we define the differential AYt by a stochastic process:

AYt(ω) := lim
s↓0

Yt(ω) − Yt+s(ω)

s
(5.2)

if the limit exists. The following theorem gives an optimality equation of the optimal

fuzzy reward process {Uα
t }t≥0 by Dirichlet form ([1]).

Assumption B. It holds that Uα
· (ω) ∈ L and g(X̃·,α(ω)) ∈ L for almost all ω ∈ Ω and

all α ∈ (0, 1].

Theorem 5.2 (Optimality equation). Suppose Assumption B hold. Let α ∈ (0, 1].

The optimal reward process {Uα
t }t≥0 is a unique solution satisfying the following three

inequalities (5.3) – (5.5): For almost all ω ∈ Ω and all t ≥ 0,

Uα
t (ω) ≥ g(X̃t,α(ω)); (5.3)

AUα
t (ω) ≥ 0 : (5.4)〈

AUα
· (ω), Uα

· (ω) − g(X̃·,α(ω))
〉

t
= 0. (5.5)

Proof. (5.3) is trivial from Theorem 5.1(i). Let α ∈ (0, 1]. For almost all ω ∈ Ω, from

Theorem 5.1(ii) and the bounded convergence theorem we have

E (AUα
t |Mt) (ω) = E

(
lim
s↓0

Uα
t (ω) − Uα

t+s

s

∣∣∣∣Mt

)
(ω)

= lim
s↓0

Uα
t − E(Uα

t+s|Mt)(ω)

s
≥ 0.

Thus, since AUα
t (·) is

⋂
r:r>t Mr-measurable and Mt =

⋂
r:r>t Mr by the right-continuity

of {Mt}t≥0, we obtain AUα
t (ω) ≥ 0 for all α ∈ (0, 1]. Therefore (5.4) holds. Further,

if Uα
t (ω) > g(X̃t,α(ω)) for some t, then from Theorem 5.1(iii) we have AUα

t (ω) = 0 in a

similar proof to (5.4). This implies (5.5) together with (5.3) and (5.4). Therefore Uα
t (ω)

satisfies (5.3) – (5.5). Finally we prove uniqueness of the solutions of (5.3) – (5.5). Let u∗
·

and v∗
· be solutions of (5.3) – (5.5). Then, since v∗

· ≥ g(X̃·,α(ω)) and Au∗
· ≥ 0, we have〈

Au∗
· , v

∗
· − g(X̃·,α(ω))

〉
t
≥ 0 for all t ≥ 0.

Therefore, since
〈
Au∗

· , u
∗
· − g(X̃·,α(ω))

〉
t
= 0 by Lemma 5.1, we get

〈Au∗
· , u

∗
· − v∗

· 〉t = 〈Au∗
· , u

∗
· 〉t − 〈Au∗

· , v
∗
· 〉t ≤

〈
Au∗

· , g(X̃·,α(ω))
〉

t
−
〈
Au∗

· , g(X̃·,α(ω))
〉

t
= 0.

In the same way, we also obtain

〈Av∗
· , v

∗
· − u∗

· 〉t ≤ 0.
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By Lemma 5.1, these two inequalities imply

〈A(u∗
· − v∗

· ), u
∗
· − v∗

· 〉t = 〈Au∗
· − Av∗

· , u
∗
· − v∗

· 〉t = 〈Au∗
· , u

∗
· − v∗

· 〉t + 〈Av∗
· , v

∗
· − u∗

· 〉t ≤ 0

for all t ≥ 0. Together with Lemma 5.2, we get 1
2
(u∗

t − v∗
t )

2 = 0 for all t ≥ 0. Thus

u∗
· = v∗

· . Therefore, (5.3) – (5.5) has a unique solution Uα
· (ω). �

6. An example in Markov case

In order to illustrate the results of the optimal stopping models in previous sections,

we consider an example where an owner finds an optimal timing to sell his own asset.

Let {Bt}t≥0 be a one-dimensional standard Brownian motion on (Ω,F , P ), and put a

stochastic process {Wt}t≥0 as follows: W0 is a positive constant and

Wt := W0 + Bt, t ≥ 0. (6.1)

Let a stochastic process {at}t≥0 by at := γWt for t ≥ 0, where γ is a constant satisfying

0 < γ < 1. Hence we give a fuzzy stochastic system by the following fuzzy random

variables {W̃t}t≥0:

W̃t(ω)(x) := L((x − Wt(ω))/at(ω)) (6.2)

for t ≥ 0, ω ∈ Ω and x ∈ R, where the shape function is triangular type L(x) :=

max{1 − |x|, 0} for x ∈ R. Then their α-cuts are

W̃t,α(ω) = [W̃−
t,α(ω), W̃+

t,α(ω)] = [Wt(ω) − (1 − α)at(ω), Wt(ω) + (1 − α)at(ω)]. (6.3)

The random variable {Wt}t≥0 means ‘the price process of his asset’ in a market and the

fuzzy random variable {W̃t}t≥0 means ‘fuzzy values of the prices’ when he sell it through

some communication tools like Internet. Let a ‘discount factor’ r (r > 0) and let a

‘maintenance cost’ c (c > 0). We consider a fuzzy stopping problem in a fuzzy stochastic

system {X̃t}t≥0 defined by

X̃t(ω) := e−rtW̃t(ω) − ct for t ≥ 0, ω ∈ Ω, (6.4)

The α-cuts of (6.4) are X̃t,α(ω) = [e−rtW̃−
t,α(ω)− ct, e−rtW̃+

t,α(ω)− ct]. Let a linear ranking

function g([a, b]) := (2a+b)/3 for a, b ∈ R satisfying a ≤ b, where the owner’s pessimistic-

optimistic index is taken as λ = 2/3([10]). g satisfies the properties (3.1) and (3.2), and

we can easily check

g(X̃t,α(ω)) = e−rt(Wt(ω) − (1 − α)at(ω)/3) − ct, ω ∈ Ω (6.5)

for α ∈ [0, 1]. Then e−rt means a ‘discount rate’ in the market. Let a stopping time

ξα(ω) := inf{t ≥ 0 | g(X̃t,α(ω)) ≤ 0} for ω ∈ Ω, which means ‘the time of bankruptcy

regarding the asset’. Taking into account the bankruptcy in this example, we put (4.1)

as

Uα
t = ess sup

τ : stopping times, τ≥t
E(g(X̃min{τ,ξα},α)|Mt) for t ≥ 0, α ∈ [0, 1]. (6.6)
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Hence a stopping time τ means ‘a time to sell the asset’, and he wants to find the optimal

timing to sell his asset before bankruptcy. From (6.6), the α-optimal stopping time (4.2)

with bankruptcy becomes

σ∗
α(ω) = inf{t ≥ 0 | Uα

min{t,ξα}(ω) = g(X̃min{t,ξα},α(ω))}
= min{inf{t ≥ 0 | Uα

t (ω) = g(X̃t,α(ω))}, ξα(ω)}.

Next we check Assumption A. Let α, α′ ∈ [0, 1] satisfy α′ ≤ α and let ω ∈ Ω. Suppose

g(X̃t,α′(ω)) = Uα′
t (ω) for some t < ξα(ω). Since {e−r min{t,ξα}Wmin{t,ξα}}t≥0 is a nonnegative

supermartingale, by the optional sampling theorem([3]) we have

g(X̃t,α(ω)) = e−rt(Wt(ω) − (1 − α)at(ω)/3) − ct

= e−rt(Wt(ω) − (1 − α′)at(ω)/3) − ct − e−rt(α′ − α)at(ω)/3

= g(X̃t,α′(ω)) − e−rt(α′ − α)at(ω)/3

= Uα′
t (ω) − e−rt(α′ − α)γWt(ω)/3

≥ E(g(X̃min{τ,ξα},α′) | Mt)(ω) − E(e−r min{τ,ξα}(α′ − α)γWmin{τ,ξα}/3 | Mt)(ω)

= E(g(X̃min{τ,ξα},α′) − e−r min{τ,ξα}(α′ − α)amin{τ,ξα}/3 | Mt)(ω)

= E(g(X̃min{τ,ξα},α) | Mt)(ω), almost all ω ∈ Ω

for all bounded stopping times τ such that τ ≥ t. It follows g(X̃t,α(ω)) = Uα
t (ω). Therefore

by (4.2) we obtain σ∗
α(ω) ≤ σ∗

α′(ω) for almost all ω ∈ Ω, and Assumption A is fulfilled. We

also have E(sup0≤t<∞ X̃+
t,0) ≤ E(sup0≤t<∞(2e−rt(W0 + Bt) − ct)) < ∞ from [3, Chap.3].

Setting fα(x) := x − (1 − α)γx/3 (x ≥ 0)), we obtain the optimal value function

V α(y) = sup
τ≥0

E(g(X̃min{τ,ξα},α) | W0 = y)

= sup
τ≥0

E(e−r min{τ,ξα}fα(Wmin{τ,ξα}) − cmin{τ, ξα} | W0 = y)

for an initial price y (y > 0) of the asset. This function satisfies the following optimality

equation (6.7) – (6.9) in Markov case ([9]):

V α ≥ fα; (6.7)

−1

2

d2

dy2
V α + rV α ≤ c; (6.8)

−1

2

d2

dy2
V α + rV α = c outside Bα, (6.9)

where Bα := {y ∈ (0,∞) | V α(y) = fα(y)}. Then, since the example is a Markov case,

the α-optimal stopping time σ∗
α(ω) is reduced to

σ∗
α(ω) = min{inf{t ≥ 0 | Wt(ω) ∈ Bα}, ξα}, (6.10)
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which is the first hitting time of the stopping region Bα by the stochastic process {Wt}t≥0.

The conditions (6.7)–(6.9) are corresponding to (5.3) – (5.5) in Theorem 5.2. Hence, (6.7)

means fα is the lower bound of the optimal value function V α. The properties (6.8)

and (6.9) are called ‘superharmonic’ and ‘harmonic’ respectively in theory of Markov

processes(see [9]). (6.8) means the optimal value function V α is superharmonic over all

the state space (0,∞), and (6.9) means the optimal value function is harmonic outside

the stopping region Bα. Clearly we have σ∗
α < ∞ since c > 0. Therefore the optimal

fuzzy stopping time in Problem 1 is

σ̃∗(t, ω) = sup
α∈[0,1]

min{α, 1{σ∗
α>t}(ω)}

= sup{α ∈ [0, 1] | V α(Wt(ω)) > fα(Wt(ω)) and t < ξα(ω)}
for t ≥ 0 and ω ∈ Ω, where fα(x) = x − (1 − α)γx/3 (x ≥ 0) and and the supremum of

the empty set is understood to be 0. This is the optimal timing to sell the asset.

7. Concluding remarks

In this paper, we have considered the stopping problem by means of fuzzy stopping times

in a continuous-time fuzzy stochastic system, and the optimization is discussed through

the scalarization method with linear ranking functions. The optimal fuzzy stopping time

is constructed from a family of non-fuzzy stopping times which are characterized by the

optimality equation at each grade α ∈ [0, 1].

The fuzzy stopping time is one of natural extensions of the classical stopping ones by

fuzzification. Since the fuzzy stopping time is a kind of vague decision by linguistically

qualified statement, we need to demonstrate the actual algorithm/procedure of stopping

rules in real applications. For the further works, it is interesting for us to investigate

the above problem in case studies of particular application models, for example, group

decision making, sequential stopping games, the option models in financial engineering

and so on.
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