
Fuzzy Sets and Systems 139 (2003) 349–362
www.elsevier.com/locate/fss

Fuzzy stopping problems in continuous-time fuzzy
stochastic systems�

Y. Yoshidaa ;∗, M. Yasudab, J. Nakagamib, M. Kuranoc

aFaculty of Economics and Business Administration, University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami,
Kitakyushu 802-8577, Japan

bFaculty of Science, Chiba University, Japan
cFaculty of Education, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 12 December 2001; received in revised form 23 July 2002; accepted 9 October 2002

Abstract

In a continuous-time fuzzy stochastic system, a stopping model with fuzzy stopping times is presented.
The optimal fuzzy stopping times are given under an assumption of regularity for stopping rules. Also, the
optimal fuzzy reward is characterized as a unique solution of an optimality equation under a di5erentiability
condition. An example in the Markov models is discussed.
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1. Introduction

Stopping problems for a sequence of ‘real-valued’ random variables were studied by many authors,
and their applications are well known in various =elds, management science, =nance, engineering,
etc. [7,9]. This paper discusses ‘optimal fuzzy stopping in a continuous-time fuzzy stochastic system’
de=ned by fuzzy random variables.

The fuzzy random variable, which is a ‘fuzzy-number-valued’ extension of real random variables,
was =rst studied by Puri and Ralescu [8] and has been discussed by many authors. By introduc-
ing fuzziness to stochastic processes in optimization=decision-making, we consider an optimal stop-
ping model with uncertainty of both randomness and fuzziness, which is a reasonable and natural
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extension of the original stochastic processes. In stochastic systems, the randomness is a notion of
uncertainty which implies whether something occurs or not with some probability, and, in this paper,
the fuzziness means an uncertainty like ambiguity where we cannot identify exact values because of
a lack of knowledge in systems. We, here, deal with them as di5erent kinds of uncertainty.

Fuzzy stopping times are introduced by Kurano et al. [6] in discrete-time dynamic fuzzy systems
[5]. Kurano et al. [6] have investigated discrete-time one-step look ahead property of the fuzzy stop-
ping times since the dynamic fuzzy systems are non-stochastic Markov fuzzy systems. This paper
extends the de=nition of fuzzy stopping times to continuous-time and stochastic environments and
we discuss them in the general framework of continuous-time fuzzy stochastic systems. Recently, in
fuzzy stochastic systems de=ned by sequences of fuzzy random variables, Yoshida et al. [13] has
studied discrete-time stopping problems in comparison between ‘fuzzy stopping times’ and non-fuzzy
stopping times. The fuzzy stopping model is more favorite than the non-fuzzy one. This paper also
extends the de=nition of fuzzy stopping times in the discrete-time models [13] to the continuous-time
case, and presents a fuzzy stopping model in continuous-time ‘fuzzy stochastic systems’ which is con-
structed from fuzzy random variables. In Section 2, the de=nition of fuzzy random variables is given
and a continuous-time fuzzy stochastic system is formulated. Next, in Section 3, fuzzy stopping times
are introduced for continuous-time fuzzy stochastic systems, and a stopping model by fuzzy stopping
times is presented. In Section 4, in the associated stopping model for fuzzy stochastic systems, an
optimal fuzzy stopping time is constructed under a regularity assumption regarding stopping rules. In
Section 5, it is shown that the optimal fuzzy reward is a unique solution of an optimality equation
under a di5erentiability condition. Finally, in the last section, an example where an owner of an asset
=nds an optimal timing to sell his own asset, is given to illustrate our idea in the Markov models.

2. Fuzzy stochastic systems

First, we introduce some notations of fuzzy numbers and fuzzy random variables. Let (�;M; P)
be a probability space, where M is a �-=eld and P is a non-atomic probability measure. Let R be
the set of all real numbers. A ‘fuzzy number’ is denoted by its membership function ã :R �→ [0; 1]
which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer to Zadeh
[14] for the theory of fuzzy sets. R denotes the set of all fuzzy numbers. The �-cut of a fuzzy
number ã(∈ R) is given by

ã� := {x ∈ R | ã(x) ¿ �} (� ∈ (0; 1]) and ã0 := cl{x ∈ R | ã(x) ¿ 0};
where cl denotes the closure of an interval. In this paper, we write the closed intervals by

ã� := [ã−� ; ã
+
� ] for � ∈ [0; 1]:

We use a metric �∞ on R de=ned by

�∞(ã; b̃) := sup
�∈[0;1]

�(ã�; b̃�) for ã; b̃ ∈ R; (2.1)

where � is the Hausdor5 metric on R. A fuzzy-number-valued map X̃ :� �→R is called a ‘fuzzy
random variable’ if

{(!; x) ∈ � × R | X̃ (!)(x) ¿ �} ∈ M×B for all � ∈ [0; 1]; (2.2)
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where B is the Borel �-=eld of R. We can =nd some equivalent conditions in general cases [8];
however, this paper adopts a simple characterization in the following lemma.

Lemma 2.1 (Wang and Zhang [11, Theorems 2.1 and 2.2]). For a map X̃ :� �→R, the following
(i) and (ii) are equivalent:

(i) X̃ is a fuzzy random variable.
(ii) The maps ! �→ X̃−

� (!) and ! �→ X̃+
� (!) are measurable for all �∈[0; 1], where X̃�(!) =

[X̃−
� (!); X̃+

� (!)] := {x∈R | X̃ (!)(x)¿�}.

Now we introduce expectations of fuzzy random variables to describe stopping models in fuzzy
stochastic systems. A fuzzy random variable X̃ is called integrably bounded if ! �→ X̃−

� (!) and
! �→ X̃+

� (!) are integrable for all �∈[0; 1]. For an integrably bounded fuzzy random variable X̃ , we
put closed intervals

E(X̃ )� :=
[ ∫

�
X̃

−
� (!) dP(!);

∫
�
X̃

+
� (!) dP(!)

]
; � ∈ [0; 1]: (2.3)

Then, the expectation E(X̃ ) of the fuzzy random variable X̃ is de=ned by a fuzzy number [5, Lemma
3; 13]:

E(X̃ )(x) := sup
�∈[0;1]

min{�; 1E(X̃ )�(x)} for x ∈ R; (2.4)

where 1D is the indicator function of a set D.
Next, we formulate fuzzy stochastic systems. Let [0;∞) be the time space, and let {X̃t}t¿0

be a process of integrably bounded fuzzy random variables such that E(supt¿0 X̃+
t;0)¡∞, where

X̃+
t;0(!) is the right-end of the 0-cut of the fuzzy number X̃t(!) for t¿0. We assume that the

map t �→ X̃t(!)(∈ R) is continuous on [0;∞) for almost all !∈�. {Mt}t¿0 is a family of non-
decreasing sub-�-=elds of M which is right continuous, i.e. Mt =

⋂
r:r¿t Mr for all t¿0, and fuzzy

random variables X̃t are Mt-adapted, i.e. random variables X̃−
r; � and X̃+

r; � (06r6t; �∈[0; 1]) are Mt-
measurable. Also M∞ denotes the smallest �-=eld containing

⋃
t¿0 Mt . Then (X̃t ;Mt)t¿0 is called

a continuous-time ‘fuzzy stochastic system’. A map � :� �→ [0;∞] is said to be a ‘stopping time’ if

{! ∈ � | �(!)6t} ∈ Mt for all t¿0: (2.5)

Then we have the following lemma.

Lemma 2.2. Let � be a 8nite stopping time. De8ne

X̃ �(!) := X̃ �(!)(!) for ! ∈ �: (2.6)

Then, X̃� is a fuzzy random variable.

Proof. Let �∈[0; 1]. The maps ! �→ X̃±
t; �(!) are measurable for t¿0, and the maps t �→ X̃±

t; �(·) are
right continuous and have left-hand limits almost surely. Since � is a stopping time, the maps
! �→ X̃±

�(!); �(!) are measurable. Therefore the proof is completed from Lemma 2.1.
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Here, X̃�(!), !∈�, means a ‘fuzzy reward’ at a stopping time �, and the fuzziness indicates
ill conditions where we have a lack of knowledge about them [6]. The optimal stopping problems
for fuzzy rewards in a discrete-time case have been discussed by Yoshida et al. [13]. This paper
discusses an optimal stopping problem regarding fuzzy rewards, using fuzzy stopping times, in the
next section.

3. A fuzzy stopping model

In this section, =rst we consider an evaluation of the fuzzy stochastic system (X̃t ;Mt)t¿0 which
is de=ned in Section 2 at a classical =nite stopping time � de=ned by (2.5). Next we introduce
a ‘fuzzy stopping time’ in accordance with the continuous-time fuzzy stochastic system, and we
discuss a stopping problem by using fuzzy stopping times. Let I be the set of all bounded closed
sub-intervals of R and let g :I �→R be a continuous �-additively homogeneous map, that is, g
satis=es the following (3.1) and (3.2):

g

( ∞∑
n=0

cn

)
=

∞∑
n=0

g(cn) (3.1)

for bounded closed intervals {cn}∞n=0 ⊂I such that
∑∞

n=0 cn∈I and

g(�c) = �g(c) (3.2)

for bounded closed intervals c∈I and real numbers �¿0, where the operation on closed intervals is
de=ned ordinary as

∑∞
n=0 cn := cl{∑∞

n=0 xn | xn∈cn; n= 0; 1; 2; : : :} and �c := {�x | x∈c}. We call this
scalarization satisfying (3.1) and (3.2) a ‘linear ranking function’, and it is used for the evaluation
of fuzzy numbers [3]. For example, g([a; b]) = �a + (1 − �)b for [a; b]∈I, where �∈[0; 1], is
a linear ranking function, and then � is called a ‘pessimistic–optimistic index’ [10]. We introduce
an evaluation of the fuzzy random variable X̃� provided that � is a =nite stopping time as follows:
Let !∈�. From (2.6), the �-cut of the fuzzy number X̃�(!) is a closed interval X̃�(!); �(!), and the
expectation is given by the closed interval E(X̃�; �) from de=nition (2.3). Using the linear ranking
function g, we estimate it by g(E(X̃�; �)). Therefore, the evaluation of the fuzzy random variable X̃�

is given by the integral

G�(!) :=
∫ 1

0
g(E(X̃ �;�)) d�: (3.3)

This means an ‘evaluation of the fuzzy reward at a stopping time �’. Then we have the following
lemma regarding (3.3).

Lemma 3.1. For a 8nite stopping time �, it holds that∫ 1

0
g(E(X̃ �;�)) d� =

∫ 1

0
E(g(X̃ �;�)) d� = E

(∫ 1

0
g(X̃ �;�(·)) d�

)
= E(G�): (3.4)

Proof. The properties (3.1) and (3.2) of g imply g(E(X̃�; �)) =E(g(X̃�; �)): Therefore, by Fubini’s
theorem, we obtain (3.4).
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Next we introduce fuzzy stopping times, which is a fuzzi=cation of classical stopping times (2.5)
and is also a continuous-time extension of fuzzy stopping times in [13].

De�nition 3.1. A map �̃ : [0;∞)×� �→ [0; 1] is called a fuzzy stopping time if it satis=es the following
(i)–(iii):

(i) For each t¿0, the map ! �→ �̃(t; !) is Mt-measurable.
(ii) For almost all !∈�, the map t �→ �̃(t; !) is non-increasing and right continuous and has left-

hand limits on [0;∞).
(iii) For almost all !∈�, there exists t0¿0 such that �̃(t; !) = 0 for all t¿t0.

De=nition 3.1 is the similar idea to fuzzy stopping times given in dynamic fuzzy systems by
Kurano et al. [6]. Regarding the membership grade of fuzzy stopping times, �̃(t; !) = 0 means ‘to
stop at time t’ and �̃(t; !) = 1 means ‘to continue at time t’, respectively. We have the following
lemma regarding the properties of fuzzy stopping times.

Lemma 3.2. (i) Let �̃ be a fuzzy stopping time. De8ne a map �̃� :� �→ [0;∞) by

�̃�(!) := inf{t¿0 | �̃(t; !) ¡ �}; ! ∈ � for � ∈ (0; 1]; (3.5)

where the in8mum of the empty set is understood to be +∞. Then, we have:

(a) {! | �̃�(!)6t}∈Mt for t¿0;
(b) �̃�(!)6�̃�′(!) for almost all !∈� if �¿�′;
(c) lim�′↑� �̃�′(!) = �̃�(!) for almost all !∈� if �¿0;
(d) �̃0(!) := lim�↓0 �̃�(!)¡∞ for almost all !∈�.

(ii) Let {�̃�}�∈[0;1] be maps �̃� :� �→ [0;∞) satisfying the above (a), (b) and (d). De8ne a map
�̃ : [0;∞) × � �→ [0; 1] by

�̃(t; !) := sup
�∈[0;1]

min{�; 1{�̃�¿t}(!)} for t¿0 and ! ∈ �: (3.6)

Then �̃ is a fuzzy stopping time.

Proof. For (i), (a), (b) and (d) are trivial from De=nition 3.1. From (b), we have

lim
�′↑�

�̃�′(!) = inf
�′:�′¡�

inf{t ¿ 0 | �̃(t; !) ¡ �′} = inf{t ¿ 0 | �̃(t; !) ¡ �} = �̃�(!);

which implies (c). For (ii), it is suPcient to check De=nition 3.1(ii) about (3.6) since (3.6) trivially
satis=es the other conditions of De=nition 3.1. The map t �→ �̃(t; !) is clearly non-increasing. Further
we have

lim
t′↓t

�̃(t′; !) = lim
t′↓t

sup
�∈[0;1]

min{�; 1{�̃�¿t′}(!)}

= sup
t′:t′¿t

sup
�∈[0;1]

min{�; 1{�̃�¿t′}(!)}
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= sup
�∈[0;1]

sup
t′:t′¿t

min{�; 1{�̃�¿t′}(!)}

= sup
�∈[0;1]

min{�; 1{�̃�¿t}(!)}

= �̃(t; !):

Therefore the map t �→ �̃(t; !) is right continuous and has left-hand limits from the monotonicity.
These complete the proof of this lemma.

Now we consider the estimation of the fuzzy stochastic system stopped at a ‘fuzzy stopping time
�̃’. Since it is diPcult to de=ne the fuzzy random variable stopped at fuzzy stopping times �̃ in the
way of (2.6), we establish it by �-cut technique of fuzzy random variables and fuzzy stopping times.
A fuzzy stopping time �̃ is called =nite if �̃0(!) := lim�↓0 �̃�(!)¡∞ for almost all !∈�. Let �̃ be
a =nite fuzzy stopping time. Then, from Lemma 3.2(i.a), �̃� is a ‘classical bounded stopping time’
given by (3.5). Let !∈�. X̃�̃�; �(!) := X̃�̃�(!); �(!) corresponds to the �-cut of the fuzzy stochastic
system {X̃t}t¿0 stopped at fuzzy stopping time �̃. Therefore, by the evaluation method in (3.3), we
de=ne a random variable

G�̃(!) :=
∫ 1

0
g(X̃ �̃�;�(!)) d�; ! ∈ �: (3.7)

The expectation E(G�̃) is the evaluation of the fuzzy random variable X̃�̃, and it means an ‘evaluation
of the fuzzy reward at a fuzzy stopping time �̃’. We note that if �̃ is corresponding to a non-fuzzy
(classical) stopping time �, that is,

�̃(t; !) =

{
1 if t ¡ �(!)

0 if t¿�(!);

it holds that E(G�̃) =E(G�). In this paper, we discuss the following problem.

Problem 1. Find a fuzzy stopping time �̃∗ such that E(G�̃∗)¿E(G�̃) for all fuzzy stopping times �̃.

In Problem 1, �̃∗ is called an ‘optimal fuzzy stopping time’. Now, by Lemma 3.1, we have

E(G�̃) := E
(∫ 1

0
g(X̃ �̃�;�(·)) d�

)
=
∫ 1

0
E(g(X̃ �̃�;�)) d� (3.8)

for fuzzy stopping times �̃. In order to analyze Problem 1, we need to discuss the following sub-
problem induced from (3.8).

Problem 2. Let �∈[0; 1]. Find a stopping time �∗ such that E(g(X̃�∗ ; �))¿E(g(X̃�; �)) for all stopping
times �.

In Problem 2, �∗ is called an ‘�-optimal stopping time’.
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4. An optimal fuzzy stopping time

This section is devoted to a method to construct an optimal fuzzy stopping time. In order to
characterize �-optimal stopping times, we let

U�
t := ess sup

�: stopping times; �¿t
E(g(X̃ �;�)|Mt) for t¿0; (4.1)

where ‘ess sup’ means the essential supremum [9]. Then U�
t are right continuous with respect to

t¿0 since X̃t; � and Mt are right continuous with respect to t¿0 and g is continuous. We de=ne
a stopping time �∗� :� �→ [0;∞) by

�∗� (!) := inf{t ¿ 0 |U�
t (!) = g(X̃ t;�(!))} (4.2)

for !∈� and �∈[0; 1], where the in=mum of the empty set is understood to be +∞. The stopping
time (4.2) is a general form of the =rst hitting time of the optimal stopping region (see Example 6.1).
Then, Problem 2 is one of the classical stopping problems in continuous-time stochastic processes
and we can =nd the proof of the next Theorem 4.1 in [2] and [9, Theorem 3 in Section 3.3.3], but
we omit the proof because it is long.

Theorem 4.1. Let �∈[0; 1]. If �∗� is 8nite almost surely, then �∗� is �-optimal and E(U�
0 ) =

E(g(X̃�∗
� ; �)).

In order to construct an optimal fuzzy stopping time from the �-optimal stopping times {�∗� }�∈[0;1],
we need the following regularity condition.

Assumption A (Regularity): The map � �→ �∗� (!) is non-increasing for almost all !∈�.

It depends on the form of the linear ranking function g in actual cases whether Assumption A is sat-
is=ed or violated (see Section 6). Under Assumption A, we can de=ne a map �̃∗ : [0;∞)×� �→ [0; 1]
by

�̃∗(t; !) := sup
�∈[0;1]

min{�; 1{�∗
� ¿t}(!)} for t¿0 and ! ∈ �: (4.3)

Let ! ∈ �. For a fuzzy stopping time �̃∗(t; !), we denote its �-cut in the form (3.5) by �̃∗�(!).
Then we note that �̃∗� (!) and �∗� (!) are equal except at most countable many �∈(0; 1].

Theorem 4.2 (Optimal fuzzy stopping time). Suppose Assumption A holds. If P(�̃∗0¡∞) = 1, then
�̃∗ is an optimal fuzzy stopping time for Problem 1. Further it holds that

�̃∗�(!) = min{t ¿ 0 | �̃∗(t; !) ¡ �}; ! ∈ � for � ∈ (0; 1]: (4.4)

Proof. From Assumption A and Lemma 3.2, �̃∗ is a fuzzy stopping time. By (3.8), (4.1) and
Theorem 4.1, we have

E(G�̃) 6
∫ 1

0
sup

�: stopping times
E(g(X̃ �;�)) d� =

∫ 1

0
E(U�

0 ) d� =
∫ 1

0
E(g(X̃ �∗

� ;�)) d� (4.5)
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for all fuzzy stopping times �̃. Since �̃∗� (!) = �∗� (!) holds only at most countable �∈(0; 1],∫ 1

0
g(X̃ �∗

� ;�(!)) d� =
∫ 1

0
g(X̃ �̃∗

� ;�(!)) d�

holds for almost all !∈�. By Fubini’s theorem, we get∫ 1

0
E(g(X̃ �∗

� ;�)) d� =
∫ 1

0
E(g(X̃ �̃∗

� ;�)) d�: (4.6)

By (4.5) and (4.6), we obtain

E(G�̃) 6
∫ 1

0
E(g(X̃ �∗

� ;�)) d� =
∫ 1

0
E(g(X̃ �̃∗

� ;�)) d� = E(G�̃∗): (4.7)

Therefore �̃∗ is optimal for Problem 1. Finally, (4.4) holds trivially from Lemma 3.2.

The following result implies a comparison between the optimal values of the ‘classical’ stopping
model and the ‘fuzzy’ stopping model (Problem 1). Then we =nd that the fuzzy stopping model is
more better than the classical one. This fact has been explicitly shown in the discrete-time model
by [13].

Corollary 4.1. It holds that, under the same assumptions as Theorem 4.2,

E(G�∗) 6 E(G�̃∗); (4.8)

where �̃∗ is the optimal fuzzy stopping time and �∗ is an optimal stopping time in the class of
classical stopping times.

Proof. For all stopping times �, from (4.5) and (4.7) we have

E(G�) = E
(∫ 1

0
g(X̃ �;�) d�

)
6
∫ 1

0
sup
�

E(g(X̃ �;�)) d� = E(G�̃∗):

Therefore this corollary holds.

5. Optimality equations

In this section, we consider the optimality conditions for the optimal rewards {U�
t }t¿0. The opti-

mality characterization of optimal rewards has been studied by Shiryayev [9] in stochastic processes,
and it has also been discussed by Yoshida [12] in fuzzy deterministic systems. Now, in fuzzy stochas-
tic systems, we derive optimality conditions and optimality equations with a di5erential operator by
a similar idea on the basis of dynamic programming approach.

Theorem 5.1 (Optimality characterization). For �∈[0; 1] and t¿0, the following (i)–(iii) hold:
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(i) For almost all !∈�, it holds that

U�
t (!) ¿ g(X̃ t;�(!)):

(ii) For almost all !∈�, holds that

U�
t (!) ¿ E(U�

r |Mt)(!); r ∈ [t;∞):

(iii) For almost all !∈� satisfying U�
t (!)¿g(X̃t; �(!)), there exists �¿0 such that

U�
t (!) = E(U�

r |Mt)(!); r ∈ [t; t + �):

Proof. (i) We have U�
t = ess sup�:�¿t E(g(X̃�; �)|Mt) from de=nition (4.1). Then particularly by con-

sidering the case of �= t, it holds that U�
t ¿E(g(X̃t; �)|Mt) = g(X̃t; �) almost surely since g(X̃t; �) is

Mt-measurable. (ii) Let t; r∈[0;∞) satisfy t6r. From the de=nition of fuzzy conditional expectation
and the monotone convergence theorem, we have

E(U�
r |Mt) = E

(
ess sup
�:�¿r

E(g(X̃ �;�)|Mr)|Mt

)

= ess sup
�:�¿r

E(E(g(X̃ �;�)|Mr)|Mt)

= ess sup
�:�¿r

E(g(X̃ �;�)|Mt)

6 ess sup
�:�¿t

E(g(X̃ �;�)|Mt)

= U�
t almost surely: (5.1)

(iii) If U�
t (!)¿g(X̃t; �(!)) for some !, then there exists a real number �¿0 and a real random

variable �(!)¿0 such that U�
r′ (!)¿g(X̃r′ ; �(!)) + �(!) for all r′∈[t; t + �) since the processes are

right continuous. So, by (i) and (ii) we obtain

U�
t (!) ¿ E(U�

r′ |Mt)(!) ¿ E(g(X̃ r′ ;�)|Mt)(!) + �′(!) for all r′ ∈ [t; t + �);

where �′(!) :=E(� · 1� |Mt)(!)¿0 and � := {!′ |U�
r′ (!

′)¿g(X̃ r′ ; �(!′)) + �(!′)}. It follows

U�
t (!) ¿ ess sup

�:t6�¡t+�
E(g(X̃ �;�|Mt)(!) + �′(!) ¿ ess sup

�:t6�¡t+�
E(g(X̃ �;�|Mt)(!):

Thus by de=nition (4.1) and the relation t6r¡t + � we get

U�
t (!) = ess sup

�:�¿t
E(g(X̃ �;�|Mt)(!)

= max
{

ess sup
�:�¿r

E(g(X̃ �;�|Mt)(!); ess sup
�:t6�¡t+�

E(g(X̃ �;�|Mt)(!)
}

= ess sup
�:�¿r

E(g(X̃ �;�|Mt)(!):
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Therefore we can replace the inequality in (5.1) with the quality: Namely for all r∈[t; t+�), it holds
that

U�
t (!) = E(U�

r |Mt)(!):

Therefore the proof of this theorem is completed.

In Theorem 5.1, (i) means g(X̃t; �) is the lower bound of the optimal rewards U�
t . Properties

(ii) and (iii) are called ‘supermartingale’ and ‘martingale’, respectively, in theory of stochastic
processes (see [9]), and (ii) means the optimal rewards {U�

t }t¿0 have the supermartingale property
over all the time space [0;∞). Moreover, (iii) means the optimal rewards preserve the martingale
property until the optimal stopping time �∗� de=ned by (4.2). In the rest of this section, we discuss
the optimality equations for the optimal reward process {U�

t }t¿0. Let L2([0;∞)) be the space of
continuous functions u· : [0;∞) �→R satisfying

∫∞
0 (ur)2 dr¡∞ and limt→∞ ut = 0. Let L be the

space of functions by

L := {u· ∈ L2([0;∞)) | u· is di5erentiable on [0;∞) and dut=dt ∈ L2([0;∞))}:
Then we write Aut :=−dut=dt. For t¿0, we put a bilinear form on L×L by

〈u·; v·〉t =
∫ ∞

t
urvr dr for u·; v· ∈ L:

Then the following Lemma 5.1 is trivial and we can easily check Lemma 5.2 using the integration
by parts.

Lemma 5.1. For u·; v·; w·∈L, �∈R and t¿0, the following (i)–(iii) hold.

(i) 〈u·; v·〉t = 〈v·; u·〉t ,
(ii) 〈u·; v· + w·〉t = 〈u·; v·〉t + 〈u·; w·〉t ,
(iii) 〈u·; �v·〉t = �〈u·; v·〉t .

Lemma 5.2. For w·∈L and t¿0, it holds that 〈Aw·; w·〉t = 1
2(wt)2¿0.

For a stochastic process {Yt}t¿0, we de=ne the di5erential AYt by a stochastic process:

AYt(!) := lim
s↓0

Yt(!) − Yt+s(!)
s

(5.2)

if the limit exists. The following theorem gives an optimality equation of the optimal fuzzy reward
process {U�

t }t¿0 by Dirichlet form [1].

Assumption B. It holds that U�· (!)∈L and g(X̃ ·; �(!))∈L for almost all !∈� and all �∈(0; 1].

Theorem 5.2 (Optimality equation). Suppose Assumption B holds. Let �∈(0; 1]. The optimal re-
ward process {U�

t }t¿0 is a unique solution satisfying the following three inequalities (5.3)–(5.5):
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For almost all !∈� and all t¿0,

U�
t (!) ¿ g(X̃ t;�(!)); (5.3)

AU�
t (!) ¿ 0; (5.4)

〈AU�
· (!); U �

· (!) − g(X̃ ·;�(!))〉t = 0: (5.5)

Proof. (5.3) is trivial from Theorem 5.1(i). Let �∈(0; 1]. For almost all !∈�, from Theorem 5.1(ii)
and the bounded convergence theorem we have

E(AU�
t |Mt)(!) =E

(
lim
s↓0

U�
t (!) − U�

t+s

s

∣∣∣∣Mt

)
(!)

= lim
s↓0

U�
t − E(U�

t+s|Mt)(!)
s

¿ 0:

Thus, since AU�
t (·) is

⋂
r:r¿t Mr-measurable and Mt =

⋂
r:r¿t Mr by the right-continuity of {Mt}t¿0,

we obtain AU�
t (!)¿0 for all � ∈ (0; 1]. Therefore (5.4) holds. Further, if U�

t (!)¿g(X̃t; �(!))
for some t, then from Theorem 5.1(iii) we have AU�

t (!) = 0 in a similar proof to (5.4). This
implies (5.5) together with (5.3) and (5.4). Therefore U�

t (!) satis=es (5.3)–(5.5). Finally we prove
uniqueness of the solutions of (5.3)–(5.5). Let u∗· and v∗· be solutions of (5.3)–(5.5). Then, since
v∗·¿g(X̃ ·; �(!)) and Au∗·¿0, we have

〈Au∗· ; v∗· − g(X̃ ·;�(!))〉t ¿ 0 for all t ¿ 0:

Therefore, since 〈Au∗· ; u∗· − g(X̃ ·; �(!))〉t = 0 by Lemma 5.1, we get

〈Au∗· ; u∗· − v∗· 〉t = 〈Au∗· ; u∗· 〉t − 〈Au∗· ; v∗· 〉t 6 〈Au∗· ; g(X̃ ·;�(!))〉t − 〈Au∗· ; g(X̃ ·;�(!))〉t = 0:

In the same way, we also obtain

〈Av∗· ; v∗· − u∗· 〉t 6 0:

By Lemma 5.1, these two inequalities imply

〈A(u∗· − v∗· ); u
∗
· − v∗· 〉t = 〈Au∗· − Av∗· ; u

∗
· − v∗· 〉t = 〈Au∗· ; u∗· − v∗· 〉t + 〈Av∗· ; v∗· − u∗· 〉t 6 0

for all t¿0. Together with Lemma 5.2, we get 1
2 (u

∗
t − v∗t )2 =0 for all t¿0. Thus u∗· = v∗· . Therefore,

(5.3)–(5.5) has a unique solution U�· (!).

6. An example in Markov case

In order to illustrate the results of the optimal stopping models in previous sections, we consider
an example where an owner =nds an optimal timing to sell his own asset. Let {Bt}t¿0 be a one-
dimensional standard Brownian motion on (�;F; P), and put a stochastic process {Wt}t¿0 as follows:
W0 is a positive constant and

Wt := W0 + Bt; t ¿ 0: (6.1)
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Let a stochastic process {at}t¿0 by at := (Wt for t¿0, where ( is a constant satisfying 0¡(¡1.
Hence we give a fuzzy stochastic system by the following fuzzy random variables {W̃t}t¿0:

W̃ t(!)(x) := L((x −Wt(!))=at(!)) (6.2)

for t¿0, !∈� and x∈R, where the shape function is triangular type L(x) := max{1−|x|; 0} for
x∈R. Then their �-cuts are

W̃ t;�(!) = [W̃
−
t;�(!); W̃

+
t;�(!)] = [Wt(!) − (1 − �)at(!); Wt(!) + (1 − �)at(!)]: (6.3)

The random variable {Wt}t¿0 means ‘the price process of his asset’ in a market and the fuzzy random
variable {W̃t}t¿0 means ‘fuzzy values of the prices’ when he sells it through some communication
tools like Internet. Let a ‘discount factor’ r (r¿0) and let a ‘maintenance cost’ c (c¿0). We
consider a fuzzy stopping problem in a fuzzy stochastic system {X̃t}t¿0 de=ned by

X̃ t(!) := e−rtW̃ t(!) − ct for t¿0; ! ∈ �; (6.4)

The �-cuts of (6.4) are X̃t; �(!) = [e−rtW̃−
t; �(!) − ct; e−rtW̃+

t; �(!) − ct]. Let a linear ranking function
g([a; b]) := (2a+ b)=3 for a; b∈R satisfying a6b, where the owner’s pessimistic-optimistic index is
taken as �= 2=3 [10]. g satis=es properties (3.1) and (3.2), and we can easily check

g(X̃ t;�(!)) = e−rt(Wt(!) − (1 − �)at(!)=3) − ct; ! ∈ � (6.5)

for �∈[0; 1]. Then e−rt means a ‘discount rate’ in the market. Let a stopping time )�(!) := inf{t¿0 |
g(X̃t; �(!))60} for !∈�, which means ‘the time of bankruptcy regarding the asset’. Taking into
account the bankruptcy in this example, we put (4.1) as

U�
t = ess sup

�: stopping times; �¿t
E(g(X̃min{�;)�};�) |Mt) for t¿0; � ∈ [0; 1]: (6.6)

Hence a stopping time � means ‘a time to sell the asset’, and he wants to =nd the optimal timing
to sell his asset before bankruptcy. From (6.6), the �-optimal stopping time (4.2) with bankruptcy
becomes

�∗� (!) = inf{t ¿ 0 |U�
min{t;)�}(!) = g(X̃min{t;)�};�(!))}

= min{inf{t ¿ 0 |U�
t (!) = g(X̃ t;�(!))}; )�(!)}:

Next we check Assumption A. Let �; �′∈[0; 1] satisfy �′6� and let !∈�. Suppose g(X̃t; �′(!)) =
U�′
t (!) for some t¡)�(!). Since {e−r min{t; )�}Wmin{t; )�}}t¿0 is a non-negative supermartingale, by

the optional sampling theorem [4] we have

g(X̃ t;�(!)) = e−rt(Wt(!) − (1 − �)at(!)=3) − ct

= e−rt(Wt(!) − (1 − �′)at(!)=3) − ct − e−rt(�′ − �)at(!)=3

= g(X̃ t;�′(!)) − e−rt(�′ − �)at(!)=3

= U�′
t (!) − e−rt(�′ − �)(Wt(!)=3
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¿E(g(X̃min{�;)�};�′) |Mt)(!) − E(e−r min{�;)�}(�′ − �)(Wmin{�;)�}=3 |Mt)(!)

= E(g(X̃min{�;)�};�′) − e−r min{�;)�}(�′ − �)amin{�;)�}=3 |Mt)(!)

= E(g(X̃min{�;)�};�) |Mt)(!); almost all ! ∈ �

for all bounded stopping times � such that �¿t. It follows g(X̃t; �(!)) =U�
t (!). Therefore by

(4.2) we obtain �∗� (!)6�∗�′(!) for almost all !∈�, and Assumption A is ful=lled. We also have
E(sup06t¡∞ X̃+

t;0)6E(sup06t¡∞(2e−rt(W0 +Bt)−ct))¡∞ from [4, Chapter 3]. Setting f�(x) := x−
(1 − �)(x=3 (x¿0)), we obtain the optimal value function

V�(y) = sup
�¿0

E(g(X̃min{�;)�};�) |W0 = y)

= sup
�¿0

E(e−r min{�;)�}f�(Wmin{�;)�}) − cmin{�; )�} |W0 = y)

for an initial price y (y¿0) of the asset. This function satis=es the following optimality equation
(6.7)–(6.9) in Markov case [9]:

V�¿f�; (6.7)

− 1
2

d2

dy2V
� + rV � 6 c; (6.8)

− 1
2

d2

dy2 V
� + rV � = c outside B�; (6.9)

where B� := {y∈(0;∞) |V�(y) =f�(y)}. Then, since the example is a Markov case, the �-optimal
stopping time �∗� (!) is reduced to

�∗�(!) = min{inf{t ¿ 0 |Wt(!) ∈ B�}; )�}; (6.10)

which is the =rst hitting time of the stopping region B� by the stochastic process {Wt}t¿0. Conditions
(6.7)–(6.9) are corresponding to (5.3)–(5.5) in Theorem 5.2. Hence, (6.7) means f� is the lower
bound of the optimal value function V�. Properties (6.8) and (6.9) are called ‘superharmonic’ and
‘harmonic’, respectively, in theory of Markov processes (see [9]). (6.8) means the optimal value
function V� is superharmonic over all the state space (0;∞), and (6.9) means the optimal value
function is harmonic outside the stopping region B�. Clearly we have �∗� ¡∞ since c¿0. Therefore
the optimal fuzzy stopping time in Problem 1 is

�̃∗(t; !) = sup
�∈[0;1]

min{�; 1{�∗
� ¿t}(!)}

= sup{� ∈ [0; 1] |V�(Wt(!)) ¿ f�(Wt(!)) and t ¡ )�(!)}
for t¿0 and !∈�, where f�(x) = x − (1 − �)(x=3 (x¿0) and the supremum of the empty set is
understood to be 0. This is the optimal timing to sell the asset.
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7. Concluding remarks

In this paper, we have considered the stopping problem by means of fuzzy stopping times in
a continuous-time fuzzy stochastic system, and the optimization is discussed through the scalarization
method with linear ranking functions. The optimal fuzzy stopping time is constructed from a family of
non-fuzzy stopping times which are characterized by the optimality equation at each grade �∈[0; 1].

The fuzzy stopping time is one of the natural extensions of the classical stopping ones by fuzzi=-
cation. Since the fuzzy stopping time is a kind of vague decision by linguistically quali=ed statement,
we need to demonstrate the actual algorithm=procedure of stopping rules in real applications. For
further works, it is interesting for us to investigate the above problem in case studies of particu-
lar application models, for example, group decision making, sequential stopping games, the option
models in =nancial engineering and so on.
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