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Abstract—We consider utility-constrained Markov decision processes. The expected utility of the
total discounted reward is maximized subject to multiple expected utility constraints. By introducing
a corresponding Lagrange function, a saddle-point theorem of the utility constrained optimization
is derived. The existence of a constrained optimal policy is characterized by optimal action sets
specified with a parametric utility. c© 2006 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION AND PROBLEM FORMULATION

Utility-constrained Markov decision processes (MDPs) arise in the case where the decision maker
wants to maximize the total reward under more than one utility function. The typical case is,
for example, that in the group decision problem with different utility functions each player wants
to maximize the reward under his own specified utility function. In such a case, we want to
maximize the one type of expected utility of the reward while keeping other types of expected
utilities higher than some given bounds.

In this paper, we consider general utility-constrained MDPs in which the expected utility of
the total discounted rewards is maximized subject to multiple expected utility constraints and
the objective is to show that the Lagrange approach to general utility-constrained MDPs is
successfully done. In fact, by introducing a corresponding Lagrange function, a saddle-point
theorem is given, by which the existence of a constrained optimal policy is proved. And a
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constrained optimal policy is characterized by optimal action sets specified with a parametric
utility.

However, we do not specify the kind of utility function; it is expected to enlarge the practical
application of MDPs. As far as we are aware, it appears that little work has been done on
the Lagrange method to general utility-constrained MDPs. The method of analysis for general
utility functions is closely related to [1,2], in which discounted MDPs have been studied with
general utility function and whose results are applied to characterize a constrained optimal policy.
Recently, Kurano et al. [3] derived a saddle-point theorem for constrained MDPs with average
reward criteria. For the utility treatment for MDPs and constrained MDPs, refer to [1,2,4–7] and
their references.

In the remainder of this section, we define the utility-constrained problem to be examined and
a constrained optimal policy. First we consider standard Markov decision processes (MDPs),
specified by

(S, {A(i)}i∈S , q, r) ,

where S = {1, 2, . . . } denotes the set of the states of the processes, A(i) is the set of actions
available at each state i ∈ S, taken to be a Borel subset of some Polish space A. The matrix
q = (qij(a)) is a transition probability satisfying that

∑
j∈S qij(a) = 1 for all i ∈ S and a ∈ A(i),

and r(i, a, j) is an immediate reward function defined on {(i, a, j) | i ∈ S, a ∈ A(i), j ∈ S}.
Throughout this paper, the following assumption will remain operative.

Assumption 1.

(i) For each i ∈ S, A(i) is a closed set of a compact metric space A.

(ii) For each i, j ∈ S, both qij(·) and r(i, ·, j) are continuous on A(i).
(iii) The function r is uniformly bounded, i.e., |r(i, a, j)| ≤ M for all i, j ∈ S, a ∈ A(i), and

some M > 0.

The sample space is the product space Ω = (S × A)∞ such that the projection Xt, ∆t on
the tth factors S, A describe the state and the action of t-time of the process (t ≥ 0). A policy
π = (π0, π1, . . . ) is a sequence of conditional probabilities πt such that πt(A(it) | i0, a0, . . . , it) = 1
for all histories (i0, a0, . . . , it) ∈ (S × A)t × S. The set of policies is denoted by Π. Let Ht =
(X0,∆0, . . . ,∆t−1, Xt) for t ≥ 0.

Assumption 2. We assume that

(i) Prob(Xt+1 = j | Ht−1,∆t−1, Xt = i, ∆t = a) = qij(a),
(ii) Prob(∆t+1 ∈ D | Ht) = πt(D | Ht)

for all t ≥ 0, i, j ∈ S, a ∈ A(i), any Borel subset D ∈ A, and for any given π = (π0, π1, . . . ) ∈ Π.

Let P(X) be denoted by the set of all probability measures on any Borel measurable set X.
Then, any initial probability measure ν ∈ P(S) and policy π ∈ Π determine the probability
measure P ν

π ∈ P(Ω) in a usual way.
For the state-action process {Xt, ∆t; t = 0, 1, 2, . . . }, its discounted present value is defined by

B :=
∞∑

t=0

βtr(Xt,∆t, Xt+1), (1.1)

where β (0 < β < 1) is a discount factor. Then, for each ν ∈ P (S) and π ∈ Π, B is a random
variable from the probability space (Ω, P ν

π ) into the interval [−M/(1− β), M/(1− β)].

Assumption 3. Let g, hi (1 ≤ i ≤ k) be any real-valued functions on the set of real numbers R
satisfying that

(i) g is upper semicontinuous;

(ii) each hi (1 ≤ i ≤ k) is lower semicontinuous.
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For any given threshold vector α = (α1, α2, . . . , αk) ∈ Rk and any initial probability measure
ν ∈ P(S), let

V(ν, α) := {π ∈ Π | Eν
π(hi(B)) ≤ αi, for all i(1 ≤ i ≤ k)} ,

where Eν
π is the expectation with respect to P ν

π . Interpreting g, hi (1 ≤ i ≤ k) as given utility
functions, we will consider the following utility-constrained optimization problem:

Problem A: maximize Eν
π(g(B)) subject to π ∈ V(ν, α).

The optimal solution π∗ ∈ V(ν, α) of Problem A, if it exists, is called a ν-constrained optimal
policy, or simply a constrained optimal policy.

Note that Problem A includes, for example, the constrained moment problem (cf. [8]): for
the ith moment of B with a sign (−1)i,

• maximize Eν
π(B) subject to (−1)iEν

π(Bi) ≤ αi (2 ≤ i ≤ k + 1),

and the constrained threshold probability problem (cf. [9,10]):

• maximize P ν
π (B ≥ a) subject to P ν

π (B ≤ b) ≤ α for some b < a.

We shall use the following result in the sequel.

Lemma 1.1. (See [11].) For any ν ∈ P(S), ϕ̄(ν) := {P ν
π ∈ P(Ω) | π ∈ Π} is convex and compact

in the weak topology.

In Section 2, the saddle-point statement for Problem A is given, whose results are applied
to obtain the existence of a constrained optimal policy. The characterization of a constrained
optimal policy is given and the exponential case is discussed in Section 3.

2. SADDLE-POINT THEOREM FOR
UTILITY-CONSTRAINED MDPS

In this section, we prove the saddle-point theorem for the Lagrangian associated with Prob-
lem A. For any initial probability measure ν ∈ P(S), we define the Lagrangian, Lν , that corre-
sponds to Problem A as follows:

Lν(π, λ) := Eν
π(g(B)) +

k∑
i=1

λi (αi − Eν
π(hi(B))) (2.1)

for any π ∈ Π and λ = (λ1, λ2, . . . , λk) ∈ Rk
+ := Rk ∩ {λi ≥ 0 (1 ≤ i ≤ k)}. Without any

confusion, λ ∈ Rk
+ will be written simply by λ ≥ 0.

The following statement on saddle-points can be proved similarly to that of Luenberger [12,
p. 221, Theorem 2] and so omitted.

Theorem 2.1. (Cf. [12].) Suppose that there exists π∗ ∈ Π and λ∗ ≥ 0 such that Lν(·, ·) with

ν ∈ P(S) possesses a saddle-point at π∗, λ∗, i.e.,

Lν (π, λ∗) ≤ Lν (π∗, λ∗) ≤ Lν (π∗, λ) (2.2)

for all π ∈ Π and λ ≥ 0. Then, π∗ solves Problem A and is a ν-constrained optimal policy.

The above theorem motivates us to obtain sufficient conditions for the existence of a saddle-
point of the Lagrangian Lν . To this purpose, it is convenient to rewrite the expected utility using
the distribution function of the present value.

Let, for each ν ∈ P(S) and π ∈ Π,

F ν
π (x) := P ν

π (B ≤ x), (2.3)

Φ(ν) := {F ν
π (·) | π ∈ Π} . (2.4)
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Now, with some abuse of notation, we define

Lν(F, λ) :=
∫

gλ(x) dF (x) (2.5)

for any F ∈ Φ(ν) and λ ≥ 0, where

gλ(x) := g(x) +
k∑

i=1

λi(αi − hi(x)). (2.6)

Then, the Lagrangian Lν defined in (2.1) is obviously rewritten by Lν(π, λ) = Lν(F, λ) with
F = F ν

π . Thus, we have the following corollary.

Corollary 2.1. Let π∗ ∈ Π and λ∗ ≥ 0. Then, Lν(·, ·) with ν ∈ P(S) possesses a saddle-point

at π∗, λ∗ if and only if the following relation holds with F ∗ = F ν
π∗

Lν(F, λ∗) ≤ Lν(F ∗, λ∗) ≤ Lν(F ∗, λ), (2.7)

for all F ∈ Φ(ν) and λ ≥ 0. Then, π∗ solves Problem A and is a ν-constrained optimal policy.

Lemma 2.1. For any ν ∈ P(S), it holds that

(i) Φ(ν) is convex and compact in the week topology;

(ii) Lν(·, λ) is concave and upper semicontinuous for each λ ≥ 0;

(iii) Lν(F, ·) is convex and continuous for each F ∈ Φ(ν).

Proof. Noting that the present value B is a continuous map from Ω to [−M/(1−β), M/(1−β)],

(i) follows from Lemma 1.1. Since gλ(·) is upper semicontinuous,
(ii) follows from (2.5), also,
(iii) clearly holds.

From Lemma 2.1, we observe that Fan’s minimax theorem (cf. [13]) is applicable to obtain the
following.

Lemma 2.2. It holds that, for any ν ∈ P(S),

inf
λ≥0

max
F∈Φ(ν)

Lν(F, λ) = max
F∈Φ(ν)

inf
λ≥0

Lν(F, λ). (2.8)

Henceforth, the common value of (2.8) will be denoted by L∗. In order to prove the existence of

a saddle-point with (2.7), we need the following condition.

Slater Condition. There exists a π̄ ∈ Π such that

Eν
π̄(hi(B)) < αi, for all i, 1 ≤ i ≤ k. (2.9)

Since Lν(F̄ , λ) −→ ∞ as ‖λ‖ −→ ∞ with F̄ = F ν
π̄ under condition (2.9), the convex function

maxF∈Φ(ν) Lν(F, λ) is bounded from below, so that there exists λ∗ ≥ 0 such that

Lν(F, λ∗) ≤ L∗, for all F ∈ Φ(ν) (2.10)

by (2.8). On the other hand, by Lemma 2.2, there exists F ∗ ∈ Φ(ν) with

Lν(F ∗, λ) ≥ L∗, for all λ ≥ 0. (2.11)

Thus, applying Corollary 2.1, (2.10) and (2.11) lead the following main theorem.

Theorem 2.2. Under condition (2.9), the Lagrangian Lν(·, ·) with the initial probability measure

ν ∈ P(S) has a saddle-point, i.e., there exists π∗ ∈ Π and λ∗ ≥ 0 satisfying (2.2).

Also, from Theorem 2.1 and 2.2, the following corollary holds.

Corollary 2.2. Under condition (2.9), there exists a constrained optimal policy.
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3. CHARACTERIZATION OF THE
CONSTRAINED OPTIMAL POLICY

In this section, by applying the results in [1], a constrained optimal policy is characterized by
optimal action sets.

Let ν ∈ P(S). Then, for each λ ≥ 0, π∗ ∈ Π is called gλ-optimal if

Eν
π∗(gλ(B)) ≥ Eν

π(gλ(B)), for all π ∈ Π,

where gλ is given in (2.6).
The following lemma can be easily proved (cf. [14]).

Lemma 3.1. Let π̄ ∈ Π and λ̄ = (λ̄1, λ̄2, . . . , λ̄k) ∈ Rk
+. Then, for any ν ∈ P(S), the Lagrangian

Lν(·, ·) given in (2.1) has a saddle-point at π̄, λ̄ iff the following holds:

(i) π̄ is gλ̄-optimal;

(ii) π̄ ∈ V(ν, α);
(iii)

∑k
i=1 λ̄i(αi − Eν

π̄(hi(B))) = 0.

To characterize gλ̄-optimality in Lemma 3.1(i), let

Ut{gλ}(s, i, a, j) := max
F∈Φ(j)

∫
gλ

(
s + βtr(i, a, j) + βt+1x

)
F (dx), (3.1)

for t ≥ 0, s ∈ [−M/(1− β), M/(1− β)], and i, j ∈ S, where if ν ∈ P(S) is degenerate at {j}, ν is
simply denoted by j and Φ(ν) by Φ(j). Since gλ(·) is upper semicontinuous and Φ(j) is compact
in the week topology, the maximum in (3.1) is attained. Here, for each λ ≥ 0, we define the
sequence {Aλ

t }∞t=0 by

Aλ
t (s, i) := arg max

a∈A(i)

∑
j∈S

qij(a)Ut{gλ}(s, i, a, j), (3.2)

for s ∈ [−M/(1− β), M/(1− β)] and i ∈ S. Then, we have the following.

Theorem 3.1. For any ν ∈ P(S), a policy π∗ ∈ V(ν, α) is a constrained optimal policy iff there

exists λ∗ ≥ 0 such that

(i) P ν
π∗(∆t ∈ Aλ∗

t (Bt−1, Xt)) = 1 where Bt =
∑t−1

s=0 βsr(Xs,∆s, Xs+1) (t ≥ 1);
(ii)

∑k
i=1 λ∗i (αi − Eν

π∗(hi(B))) = 0.

Proof. Applying the results of Theorem 3.3 in [1], it can be shown that π∗ is gλ∗ -optimal iff
the above (i) holds. So, Theorem 3.1 follows from Lemma 3.1.

Consider the exponential utility case with k = 1, i.e., g(x) = hλ1(x) and h1(x) = hλ2(x)
(λ1, λ2 6= 0), where hδ(·) is a utility function with constant risk sensitivity δ, as follows:

hδ(x) :=
{

sign(δ)eδx, δ 6= 0,

x, δ = 0.

In this case, gλ(x) in (2.6) is given as gλ(x) = g(x) + λ(α− h1(x)) with a Lagrange multiplier λ.
For each λ ≥ 0 and i ∈ S, t ≥ 0, −∞ < x <∞, let

Pλ
t (i, s) = sup

F∈Φ(i)

∫ {
sign(λ1)eλ1s+βtλ1x − λ sign(λ2)eλ2s+βtλ2x

}
dF (x). (3.3)

Then, the following recursive equation holds:

Pλ
t (i, s) = max

a∈A(i)

∑
qij(a)Pλ

t+1

(
j, s + βtr(i, a, j)

)
. (3.4)
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In fact, by using the dynamic programming method,

Pλ
t (i, s) = sup

F∈Φ(i)

∫ {
sign(λ1)eλ1s+βtλ1x − λ sign(λ2)eλ2s+βtλ2x

}
dF (x)

= max
a∈A(i)

∑
j

qij(a) sup
F∈Φ(j)

∫ {
sign(λ1)eλ1(s+βtr(i,a,j))+λ1βt+1x

−λ sign(λ2)eλ2(s+βtr(i,a,j))+λ2βt+1x
}

dF (x)

= max
a∈A(i)

∑
j

qij(a)Pλ
t+1

(
j, s + βtr(i, a, j)

)
.

Obviously,
lim

t→∞
Pλ

t (i, s) = sign(λ1)eλ1s − λ sign(λ2)eλ2s. (3.5)

Also, Ut{gλ} in (3.4) is written as follows:

Ut{gλ}(s, i, a, j) = Pλ
t+1

(
j, s + βtr(i, a, j)

)
+ λα. (3.6)

We note that the efficient algorithm for obtaining a constrained optimal policy by Theorem 3.1
is not so easy. Implementing a numerical work or applying the result in the real world problem
should be our future work.
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