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Abstract

In this paper, by using a fuzzy relation, we define a dynamic fuzzy
system with a bounded convex fuzzy reward on the positive orthant R}
of an n-dimensional Euclidean space. As a measure of the system’s perfor-
mance we introduce the time average fuzzy reward, which is characterized
by the limiting fuzzy state under the contractive properties of the fuzzy
relation. In one-dimensional case, the average fuzzy reward is expressed
explicitly by the functional equations concerning the extreme points of its
a-cuts. Also, a numerical example is given to illustrate the theoretical
results.

Keywords: dynamic fuzzy system, time average fuzzy reward, contractive
properties, fuzzy relational equation.

1. Introduction and notations

In the previous papers, Kurano etc. [4], [11], [13], [14], we have defined a
dynamic fuzzy system using a fuzzy relation and proved a limit theorem for
transition of fuzzy states under the contractive properties of the fuzzy relation.
Here, the dynamic fuzzy system will be extended to the one with a bounded



fuzzy reward on the positive orthant R/} of an n-dimensional Euclidean space
and the time average fuzzy reward is introduced as a measure of the system’s
performance and characterized by the limiting fuzzy state or by various fuzzy
relational equations. For sequential decision analyses in a fuzzy environment,
refer to Bellman and Zadeh[1], Esogbue and Bellman[2], Kurano etc.[5].

Let X and Y be convex subsets of some Banach space. We denote by C(X)
the collection of all compact convex subsets of X and p be the Hausdorff metric
on C(X). Throughout this paper we denote a fuzzy set on X by its membership
function § : X — [0, 1] and its a-cut by §,. For the details, refer to Zadeh[15],
Novak[9] and the previous our papers.

A fuzzy set § on X is called convex if

Az 4+ (1=XNy) > 38(x) As(y) forany z,y € X and X € [0, 1],

where a A b = min{a, b} for real numbers a and b. Also, a fuzzy relation p
defined on X x Y is called convex if

pAzy + (1= XNzz, Ayr + (1 = Nya) > p(x1, 1) A p(22, y2)

for any z1,29 € X, y1,y2 € Y, and A € [0, 1].

Let F(X) be the set of all convex fuzzy sets § on X, which are upper semi-
continuous and have a compact support. Clearly § € F(X) implies §, € C(X)
for all a € [0,1]. The addition and the multiplicative operation of fuzzy sets are
defined as follows (see Madan etc.[7]) : For any 5,4 € F(R}) and A € Ry :=
0, 0),

(5+79)(z) := sup {3(y) NU(2)} zeR] (1.1)
y,zER_T;_:y-}-z:z
and
(A8)(z) :=§(z/N) if A>0, zeRY, (1.2)
and (A8)(z) := Ijoy(x) if A = 0 ,where I4(-) is the indicator function of a subset
Aof RY.

It is easily seen that, for a € [0, 1],
(54 7)o = Fa+9a and (A8)a = Ada,

where A+ B:={z+y|z € A,ye B} and A := {Az | z € A} for any subsets
A, B of R%.

Lemma 1.1.(Chen-wei Xu [3])
(i) For any 5,9 € F(RY}) and X € [0, 00),
s+veF(RY) and Ioe F(RY).
(i1) Let p be any lower semi-continuous convex fuzzy relation on X xY. Then

sup §(z) Ap(e,-) € F(Y) for all § € F(X).
zeX



Here, we give the notion of convergence for a sequence of fuzzy sets, which
is used in Section 2.

Definition 1.1 (Kurano etc.[4], Nanda[8]). Let {#:}:2, be a sequence fuzzy
sets in F(X). Then we write 9y — 0 € F(X) as t — oo if

lim su Vt oy Vo) = 0, 1.3
tﬁwae[ol?l]p( t,a Ua) (1.3)

where ¥; , and ¥, are a-cuts of ¥; and v respectively.
Note that for a sequence of sets {A:}52, C C(X) and A € C(X),
Jim A=
means that limy_eo Az = lim, , A = A, where

lim A; == {z € X | lim d(z, 4;) = 0},

t—00 t— 00

lim A, := {z € X | lim d(z, A;) = 0},

t— 00 t—o00
d(z,D) := mingepd(z,2') D € C(X) and d is a metric on X. Tt is known
(Kuratowski[6]) that lim;_ e p(Ar, A) = 0 iff limiseo Ar = A, so that @ con-
verges to ¥ as t — oo in the sense of (1.3) means that lim ¥ o, = ¥, uniformly
for a € [0, 1].

Now, extending a discrete dynamic fuzzy system in Kurano etc. [4], [11],
[13], [14], we consider the one with a fuzzy reward, which is characterized with
the elements (.5, §, 7, §) as follows :

(i) The state space S is a convex compact subset of some Banach space. In
general, the system is fuzzy, so that the state of the system is called a
fuzzy state denoted as an element of F(S).

(i1) The law of the motion and the fuzzy reward for the system are denoted by
the time invariant fuzzy relations §: S x S+ [0,1] and 7 : S x [0, M]"* —
[0, 1] respectively, where M is a fixed positive number and n is a positive
integer. We assume that §:S xS+ [0,1] and #: .S x [0, M]” — [0, 1] are
convex and continuous.

If the system is in a fuzzy state § € F(S), a fuzzy reward R($) is incurred
and we move to a new fuzzy state Q(5), where @ : F(S) — F(S) and R :
F(S) — F([0, M]") are defined by

R(8)(z) := 216115) S(x) AP(z,2) z€[0,M]" (1.4)



and

Q)W) = sup3(x) Adx,y) veES (1.5)

Note that by Lemma 1.1(ii) the maps R and @ are well-defined.
(iii) The initial fuzzy state § € F(S) is arbitrary.

For the dynamic fuzzy system (S, q, 7, 5), we can define a sequence of fuzzy
rewards on [0, M]", {R(8:)}$2,, where

S0:=5§ and &1 :=Q(5) (t>0). (1.6)

In Section 2, we define the time average fuzzy reward, which is characterized
by the limiting fuzzy state under the contractive properties of the fuzzy relation

q.

In Section 3, the one-dimensional case is treated and by introducing relative
value functions the average fuzzy reward is expressed by the functional equations
concerning the extreme points of its a-cuts.

Also, a numerical example is given to illustrate the theoretical results in this

paper.

2. The average fuzzy reward

In this paper we specify the time average reward as a measure of the system’s
performance and discuss its characterization under the contractive assumption
given in Kurano etc.[4].

We define the total T-time fuzzy reward RT(g) by

Rr(3):=>_ R() T>1, (2.1)

where {§;:}£2, is given in (1.6).

Associated with the fuzzy relation ¢ and fuzzy reward 7, are the correspond-
ing maps Q4 : C(S) — C(S) (a €[0,1]) and Ry : C(S) — C([0, M]™) (a € [0,1])
defined as follows : For D € C(S),

_J {veS|i(z,y) > aforsomez € D} a>0 .
Qu(D) = { c{y € S| q(z,y) >0 for some z € D} a =0, (2:2)
and
[ {z€[0,M]" |F(x,2z) > aforsome z € D} a >0
Ra(D) := { c{z € [0, M]|" | #(x,z) > 0 for some z € D} a=0. (2:3)

The iterates @, (¢ > 0) are defined by setting QY := I (identity) and iteratively,

Qi =Q.Q,  t20.



We have the following lemma, which is easily verified by the ideas in the proof
of Kurano etc.[4, Lemma 1].

Lemma 2.1.
(i) Rr(3) € F([0,TM]") for T > 1.
(i) 8t0 = Q% (54) fort >0, where §; 0 = (5¢)a-
(iil) (R7(3)a = Yico Ra(31a) for T> 1.
From Lemma 2.1(ii),(iii), the a-cut of rewards, RT(§), can be calculated only
through s,. So we denote it as
Rt o(30) = (R7(8))a for T >0and a € [0,1].

From this a-cut set of RTVOC(EQ) we try to estimate the increasing amount of
fuzzy reward per unit time.

For K > 0 and «a € [0, 1], we define

Gr,a = {r eER]

there exists {z7}3_; such that
2T € RTVQ(.%) and ||zr —rT|| < K forall T > 1 }

(2.4)
The properties of Gg o are formulated in the following lemma. The proof is
omitted.

Lemma 2.2. Let K > 0. Then :
(i) {Grala €0, 1]} CC(RY) .
(i) Gr,o CGro for 0 <o’ <a <1

(111) hma’Ta GKVQI = GK,oz for a c (0, 1], i.e., hma’Ta (5(GK7(1/, GK,oz) =0.

From Kurano etc.[4, Lemma 3], we can define a fuzzy number

3(8)(r) := 21[10p1]{a ANgg  (r)} rel[0,M]* for s e F(S). (2.5)

Then, §(5) € F([0, M]") and (§(5))a = Gk, for all a € [0, 1].

We call §(3) an average fuzzy reward for the dynamic fuzzy systems, which
depends on the initial fuzzy state § € F(S) with suppression of K. In the
remainder of this section, we will investigate the average fuzzy reward from
the limiting behavior of the fuzzy states. The following lemma is useful in the
sequel.



Lemma 2.3. Let {D;}2, C C(S) and D € C(S) such that limy_ Dy = D.
Let a € (0,1]. For any € (o > € > 0), there exists T > 1 such that

Ro—e(D) D Ro(Dy) forallt >T.

Proof. Suppose that for some ¢ (o > € > 0), there exist sequences {¢x}32,
and {zg }32; such that

tp > 00 (k— o0), and zx € Ro(Di,) \ Ra—e(D) (k=1,2,--1).
Then we have
Fz,zr) <a—e¢ forallze Dk=1,2,---, (2.10)
and there exists a sequence {j}52; such that
zy € Dy, and F(ag,zp) > a fork=1,2,---. (2.11)

From the compactness, we may assume that the sequences {2 }72 | and {2z},
are convergent. We put the limits z* = limg_, o 2 and 2* = limg_, o 2x. Then
we have z* € D since limy0o Dy = D. From (2.10) and (2.11), we obtain

Fz*,z") > a and F(z,z")<a—c forallze D.
It is a contradiction. Thus we get this lemma. O

In order to characterizing the average fuzzy reward §(5), we need the fol-
lowing two assumptions, the first one is a contractive property concerning the
fuzzy relation ¢ which guarantee the existence of the limiting fuzzy state and
the second is a Lipschitz condition related with the fuzzy reward 7.

Assumption A. (Contraction and ergodic property)
There exists tg > 1 and B (0 < 8 < 1) satisfying that

p(Q% (D1), Q2 (D2)) < Bp(Dr, Ds)  for all Dy, Da € C(S), a € [0, 1].
Assumption B. (Lipschitz conditions)
There exists a constant C' > 0 such that
(S(Ra(Dl), RQ(DQ)) < Cp(Dl, DQ) for all Dy, D5 € C(S), a € [0, 1], (212)
where § is the Hausdorff metric on C([0, M]").

Lemma 2.4. (Kurano etc.[4, Theorem 1]) Suppose that Assumption A holds.



(i) There exists a unique fuzzy state p € F(S), which is independently of the
initial fuzzy state s, satisfying

p(y) = max{p(z) Ad(x,y)} forally €S (2.13)

(i1) For a € [0, 1], the a-cut p, is a unique set of C(S) such that
Qa(Po) = Pa-
(ii1) Let a € [0,1]. It holds that
p(Q%(D), Pa) < AY*IK (D, o) for all D €C(S), t > 1,

o

where Ko(D,po) 1= 2;001 p(@',(D), pa) and, for a real number ¢, [c] is
the largest integer equal to or less than c.

Recently, Yoshida[12] has given the notion of a-recurrent set for the fuzzy
relation and shown that the a-cut of the limiting fuzzy set p in Lemma 2.4 is
characterized as the maximum a-recurrent set.

Now, we can state one of main results, which shows that §(§) is represented
using the limiting fuzzy state p.

Theorem 2.1. Suppose that Assumptions A and B hold. For sufficient large
all K, it holds that

9(3) = R(p), (2.14)
where p is the limiting fuzzy state given in Lemma 2.3. Further this is indepen-
dent of the initial fuzzy state s.

Proof. A rough sketch of the proof is as follows and the details are omitted.
First we show that

(3(8))a = Gk .o C Ra(Pa) = (R(P))a- (2.15)

Suppose that there exists 7 € Gx o\ Ra(Po). Then r € Ragte(pa) for some € > 0.

Since Ra+c(Po) is closed and convex, there exists a uniune 20 € Rate (Py) such

that ’
O0<y:=|lzo—r||<||]z=7| for alleRaT%(ﬁa). (2.17)

By Lemma 2.3, there exists T* > 0 such that
Rese (o) O Ra(3e) forallt>T*. (2.18)
From r € Gk o, there exists {rr}3_, such that

rp € Ry o(3s) and |jrp — #T|| < K for all T > 1. (2.19)



On the other hand, from Lemma 2.1(ii1), there exists a sequence {rr.} such
that

T-1
rrt € Ra(Sa) (1=0,1,2,- T—1andrp = > rre (T>1).  (2:20)

t=0

Noting the supporting hyperplane of Ra+. (Po) at zg, we have
2
(zo—rrre—1) > ||zo —r||P =4 forallt, T (T >t>T%)

and
T-1
<zo -7, Z (rps — r)> > (T =T foral T>T*
t=T*

By Cauchy-Schwartz inequality,

T-1

Z (rre—r1)

t=T*

>(T—=T%)y foral T>T". (2.21)

After some calculations we see that

T-1

Z(rm -r)

t=0

[|rr — rT|| = =00 (T — o0).

So this contradicts (2.19) and we obtain (2.15).
Next we prove

Ro(Pa) C Gk,o for sufficient large all K. (2.22)

From Assumption B, we have
5(Ra(5e ), Ra(5n)) < Cplaria) for 12 0. (2.23)

Also, from Lemmas 2.1(ii) and 2.4(iii),

p(3t.0r Pa) < BHYIK (50, Pa) for t > 0. (2.24)
Since S is compact, there exists a constant C* > 0 such that

3(Ra(3t,0), Ra(pa)) < C*B" fort >0

by using (2.23),(2.24). Therefore, for any r € Ry (Pa), there exists {r;};2, such

that
7t € Ro(8t,a) and ||ry — 7| < c*pt (2.25)



for t > 0. Then

T-1 T-1 T-1 T-1
S| = |- < S l—rl < Y ot <ot/ - )
t=0 t=0 t=0 t=0

for all T'> 1. Thus we get 7 € Gk o for all K > C*/(1 — ). Therefore (2.22)
holds for all K > C*/(1 — ). Together with (2.15), we get (2.14) for sufficient
large all K. Tt is trivial that (2.14) is independent of the initial fuzzy state §
from Lemma 2.4(i). O

From now on we take K > C*/(1 — ). The following corollary shows that
J(8) is given as the limit of { R(8:)}$2, by the method of Cesaro averaging. The
proof is omitted.

Corollary 2.1. Under the same condition as Theorem 2.1, it holds that

1
Iim —

Jim. TRT,Q(ga) = (§(8))o for all o € [0, 1]. (2.26)

3. One-Dimensional Case

In this section we consider the case of n = 1, i.e. ¥ & F(S x [0, M]), and
characterize an average fuzzy reward §(5) by the functional equations concerning
with the extremal points of its a-cuts. Throughout this section it is assumed
that Assumptions A and B hold.

Since C([0, M]) is the set of all closed intervals, we can write the map R, :

C(S) — €([0, M]) by the following notation :

Ry (D) := [min Ry (D), max Ry (D)] for all D € C(S5). (3.1)
Let .
Rro(D) =Y Ra(Q\(D)) for DeC(S).

Then, by Lemma 2.1(iii), it holds that

T-1
min Ry o(D) = > min Ra(Q%(D)) (3.2)
t=0
and
T-1
maxRTya(D) = Z max R, (Q% (D)), (3.3)
t=0
where

RT,a(D) = [min RT’Q(D), max RT,a(D)]~



From Lemma 2.4(iii) and Assumption B we observe that R, (Q% (D)) converges
3.2

to Ra(Pa) exponentially first as ¢ — oco. Thus, by (3.2) and (3.2),
ho (D) := lim (min Ry o(D) = T x min Ry (Pa)) (3.4)
—00
and _ ~
ha(D) = Tlim (max Ry (D) — T x max R, (Pa)) (3.5)
00

converge for all D € C(S). The function h, (h, resp.) is called a lower (upper)
relative value function, whose basic ideas are appearing in the theory of Markov
decision processes (c.f. [10]). By Theorem 2.1, we have

§(P)o = [min Ry (Pa), max Ry (Pa)], (3.6)
where the extremal points are characterized in the following theorem.
Theorem 3.1. Let a € [0,1]. Then the following (i) and (ii) hold.

(i) Let h, and h,, be defined by (3.4) and (3.5). Then, the following equations
hold:
ho(D) + min Ra(fa) = min Ra(D) + b (Qu(D)  (37)

and

ha(D) + max Ry (Pa) = max Ry (D) + ho(Qu(D)) (3.8)
for all D € C(S).

(ii) Conversely, if there exist bounded functions h, and he on C(S) and con-
stants K, and K, satisfying that

ho(D) + K, = min Ro(D) + b, (Qa(D)) (3.9)

and

ho(D) + K o = max Ry (D) + ho(Qu(D)) (3.10)
for all D € C(S), then §(5), = [K,,, K,].
Proof. (i) By the definition of (3.4), it implies
ho(D) = limroe Y2y (min Ra(Q4(D)) — min Ra ()
= min Ry (D) — min Ry (Pa)

+ Z;’il(min Ro(Q4 1 (Qa(D))) — min Ro(pa))
= min Ry (D) — min Ry (o) + b, (Qa(D)),

which leads to (3.7). Also, (3.8) can be shown analogously to (3.7).
(i1) Let A, (D) and K, be asin (3.9). Then, it holds that for each ¢ (¢ > 0),

ho(Q4(D)) + K, = min Ra(Q4, (D)) + b, (Q5H (D)) (3.11)

10



By summing (3.11) for t = 0,1,---, T — 1, we get
ho(D)+T x K, =Y minRa(Q4(D)) + he(QL(D)).

So
= lim —meR (Q',(D)) for D€ C(S).

Tooo T

Thus, from Theorem 2.1 and Corollary 2.1,

K, =minRy(Po).

O

We also obtain K o = max R, (p,) similarly. Therefore we get §(3)o = [K,, Ka]
by (3.6). O

Here we give a numerical example to illustrate the theoretical results in this
section. Let S :=[0,1], M := 1. Take the fuzzy relation and the fuzzy reward
by

Jz,y) =(1=3|ly—=|/2)Vv0, z,ye]0,1], (3.12)
and

Flz,z)=(1—-6lz—z])v0, z,z€]l0,1]. (3.13)

We observe that ¢ and 7 satisfy Assumptions A for ¢, = 1, and B respectively.
Let o € [0, 1]. From (2.2) and (2.3),

Qo({z}) =[(2/2-(1-0a)/3) VO, (z/2+ (1 - a)/3)]

for € [0,1]. So, for 0 <a <b< 1,

aollat) = |J Qal{z}) = [Ti(a), T2 (b)] (3.14)

z€[a,b]

where maps T;;i = 1,2 on [0, 1] are given by Ti(z) := (2/2— (1 —«a)/3) V0
To(z) == 2/2+ (1 — @)/3. Similarly we have

Ra([a,b]) = [(a— (1= a)/6) VO, (b+ (1 — a)/6) A1]. (3.15)

A unique fixed point p, of the map Q. : C([0,1]) — C([0,1]) is given as
Pa = [Minpy, maxp,] = [0,2(1 — a)/3], by solving 77 (minp,) = minp, and
Ta(max fo) = maxp, from (3.14). Therefore, from (3.15) and Theorem 2.1, we
get §(8)o = Ro([minpy, maxps]) = [0,5(1 — a)/6]. By (2.9), the average fuzzy
reward is

i@ ={ 7 DN (3.15)

11



Finally we calculate the lower and the upper relative value functions A, and

he. We put
Qa(la,b]) = [Ti(a), T3(b)] for0<a<b<landt>0,
where maps T};7 = 1,2, (¢t > 0) on [0, 1] are
) =2, TH(2) =TT (@),
Then we can easily check

THz) = (272 —2(1—a)(1 — 27%)/3) VO for z € [0,1].

Similarly

Ti(x) = (27 'z +2(1 —a)(1-27%/3) for z €[0,1].

Let 0 <a<b<1. From (3.2) and (3.3), we get

T-1

min Rz o ([a, 6]) = Y {(T7(a) = (1~ a)/6) v 0}

t=0

and
T-1

max Rra([a, ) = 37 {(TE(0) + (1 - 0)/6) A1}

t=0

(3.19)

(3.20)

(3.21)

From the definition of A, and hgo and (3.17), the lower relative value function is

ho(a) = he([a,b])

:{ 21 =27 )(a4+2(1 —a)/3) = 5t* (1 —a)/6 a<1

2a a=1,

where t* 1s the smallest non-negative integer such that
27" (a4 2(1 —a)/3) = 5(1 —a)/6 < 0.
And the upper relative value function is

ha(b) = ho([a, b))

_{2b—4(1—a)/3 f0<b< (5+a)/6
Tl b+ Ba—-1)/2 if(54+a)/6<b< 1

When a = 1/2, the lower and the upper relative value functions are

x—1/12  if1/12<z<1/2

0 if0<a<1/12
3x/2-1/3 ifl/2<2<1

12



and

o 2e—-2/3 if0<=z<11/12
=001 if1/12<e <1

We also find that, when a =1,

hy(x) = ho(z) =2z for0<z<1.
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