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Guangzhou, China
3Faculty of Science, Chiba University, Chiba, Japan

The problem of constructing control charts for fuzzy data has been considered in lit-
erature. The proposed transformation approaches and direct fuzzy approaches have
their advantages and disadvantages. The representative values charts based on trans-
formation methods are often recommended in practical application. For representing
a fuzzy set by a crisp value, the weight of importance of the members assigned with
some membership levels in a fuzzy set should be considered, and the possibility the-
ory can be employed to deal with such problem. In this article, we propose to employ
the weighted possibilistic mean (WPM), weighted interval valued possibilistic mean
(WIVPM) of fuzzy number as a sort of representative values for the fuzzy attribute data,
and establish new fuzzy control charts with WPM and WIVPM. The performance of the
charts is compared to the existing fuzzy charts with a fuzzy c-chart example via newly
defined average number of inspection for variation of control state.

Keywords Control chart; Fuzzy number; Weighted possibilistic mean; Weighted pos-
sibilistic variance.

Mathematics Subject Classification 62A86; 62C86; 68K86.

1. Introduction

Statistical process control (SPC) is a methodology for monitoring processes to identify spe-
cial causes of variation and to signal the need for corrective action. SPC is widely employed
throughout industry, and is a proven technique for improving quality and productivity.

The most common SPC technique is the statistical control chart. Control charts have
found widespread application in engineering and services for monitoring process stability
and capability. Typically, a control chart consists of a center line(CL) and two control lines,
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Construction of Fuzzy Control Charts 3187

referred to as the upper control limit (UCL) and the lower control limit (LCL), respectively.
The center line represents an estimate of the process level, while the two control limits
denote the boundaries of normal variability, and are specified such that the majority of the
observations lie within their bounded range when the process is under control. Samples
drawn from the process are plotted as points on the control chart. The control charts
are constructed concurrently with the statistical hypotheses testing process. Essentially,
the control chart tests the hypotheses that the process in the state of statistical control.
Accordingly, a plotted data point falling within the control limits confirm the hypotheses
of statistical control, while a point falling outside of the control limits indicates a rejection
of this hypotheses.

It was well known that control charts are based on data representing one or sev-
eral quality-related characteristics of the product or service. If these characteristics are
measurable on real-valued number or vector, then variable control charts are used. If the
quality-related characteristics cannot be easily represented in numerical form, then attribute
control charts such as p-chart, c-chart are useful (Gülbay and Kahraman, 2006; Wang and
Raz, 1990). However, the key process characteristic sometimes may be much more com-
plicated in SPC such as the area of economic quality control, acceptance samplings for
attributes, where due to the complication of continuous process quality, sample data based
on the observations and measurements are characterized in impreciseness (Hryniewicz,
2008; Viertl, 2008). For instance, the color-intensity quality of produced pictures or screens
and the reading-precise quality shown on analog measurement equipments, apparently
inheres with imprecise character, whose samples data are collected by taking certain im-
precise information into consideration, known as interval valued or vague data. Also, the
vague data may come from the judgment with humans’partial knowledge or subjectivity on
categories or attributes of the inspected item, such a judgment may result in some verbal,
form which cannot be denoted by a numerical scale appropriately (Gülbay and Kahraman,
2007; Kanagawa and Ohta, 1993; Wang and Raz, 1990). Therefore, based on the imprecise
sample data to monitor the process, the traditional control charts have to be expanded so as
to possibly carry out process monitoring in this fuzzy environment. Possibly, the extended
attribute control chart such as χ2-control chart for multi-distinct categories, the control
charts with grouped data methods may be suitable for this purpose, if the vague data could
be expressed approximately in distinct categorical form and the distributions of the under-
lying process variables are known (Woodall et al., 1997). However, the uncertainty of the
vague data is essentially non-statistical in nature so that the conditions mentioned above
are hardly satisfied.

The fuzzy set theory and possibility theory provide useful tools for dealing with fuzzy
data (Zadeh, 1978). For monitoring process quality with fuzzy sample data, few researchers
have proposed the construction of fuzzy control charts based on fuzzy set theory and control
chart methods (Cheng, 2005; Faraz, 2010; Gülbay and Kahraman, 2007; Kanagawa and
Ohta, 1993, Wang and Raz, 1990, etc.) An illustration of a general fuzzy control chart is
shown in Fig. 1.

The concepts and methods of fuzzy control charts are well documented in the available
literature. Basically, the control rule of fuzzy control charts can be sorted into probability
rule and possibility rule. Hryniewicz (2008) gives a short overview on basic problems of
statistical quality control in fuzzy environment, in which he pointed out that using the
ordinary charts to transformed fuzzy data is an easy way for construction of fuzzy control
charts. Raz and Wang (1990) and Wang and Raz (1990) pointed out that linguistic data can
provide more information than the binary classification used in control charts by attributes,
and they proposed some fuzzy control charts for linguistic data. Their proposed methods
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Figure 1. Fuzzy control chart.

was to convert the fuzzy sets associated with linguistic values into scalars referred to
as representative values and plot them on an ordinary control chart. Like the measures
of central tendency used in descriptive statistics, the proposed calculation formulas for
transforming the linguistic data into its corresponding representative values as follows:
fuzzy mode

fmode = {x|A(x) = 1},
fuzzy midrange

fmr (α) = (inf Aα + sup Aα)/2,

fuzzy median fmed satisfies ∫ fmed

−∞
A(x)dx =

∫ ∞

fmed

A(x)dx,

fuzzy average

favg =
∫ ∞

−∞
xA(x)dx/

∫ ∞

−∞
A(x)dx,

where A(x) is the membership function of a normal, convex and compact fuzzy set A on
real line R (refer to Definition 2.1) and Aα (0 ≤ α ≤ 1) the α-cut of A (Wang and Raz,
1990).

Kanagawa et al. (1993) proposed a more general way for construction of a fuzzy
control chart where the representative values—barycenter—are defined based on Zadeh’s
probability measure of fuzzy events as

Rep(A) =
∫ ∞

−∞
xA(x)p(x)dx/

∫ ∞

−∞
A(x)p(x)dx

for fuzzy number A, where p(x) is the probability density of the ground variable. This
method may be used not only for monitoring the fuzzy process mean, but also for monitoring
the process variability. The main difficulty of this approach is that the unknown distribution
p(x) cannot be determined easily. Based on the concept of fuzzy random variables (Puri
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Construction of Fuzzy Control Charts 3189

and Ralescu, 1986, Gil et al., 2006). Wang (2006) propose to view a fuzzy quality data
as the triangular fuzzy number-valued random variable (i.e., a fuzzy random variable),
whose central variable that represents the randomness of the data is normally distributed,
and the degree of fuzziness of the fuzzy numbers represents the fuzziness of the data. A
novel representative values called fuzzy random sum is defined as the sum of the fuzzy
mode and a measure of fuzziness mentioned above, and a cumulative sum (CUSUM) chart
is established with this fuzzy random sum. This method does not depend on the values of
α-level, however, it only suits triangular fuzzy numbers, and also the formula for computing
the degree of fuzziness of the data is not unique, thus, different decisions will be made
when we use different formula. It should be pointed out that there is no theoretical basis
supporting any representative values specifically. The selection among them should be
mainly based on the ease of computation or the user’s preference.

Taleb (2009) suggests to assign a representative value to a given fuzzy sample with
one of the four methods proposed by Wang and Raz (1990) when doing applications of
multivariate attribute control chart in decorated porcelain production. Senturk and Erginel

(2009) use the α-level fuzzy midrange transformation technique to construct the fuzzy X̃−R̃

and X̃ − S̃ control charts, which rely heavily on the properties of the normal distribution.
Gülbay and Kahraman (2005, 2006, 2007) have not only explained why we require fuzzy
control charts, but also discussed the charts relying on the normal distribution with respect
to the fuzzy mode, fuzzy midrange and fuzzy median on α level carefully, the inspection
becomes tighter as the α-level is set higher. Also without any defuzzification they propose a
direct fuzzy approach (DFA) for constructing fuzzy control charts, in which, by comparing
the percentage area that the sample remains inside the fuzzy control limits, a decision on
whether the process is in control is made in preference of the operators. This direct fuzzy
charting is a completely novel reasonable method in the area of SPC. However, it somewhat
is complicated for practical application due to the computations of the sample’s area which
depends on the shape of the sample and the selected α-level. Faraz and Shapiro (2010)
propose another DFA based on theory of fuzzy random variables, in which under the given
significant level, the fuzzy in-control region (FIR) is first determined, and then a proper
fuzzy inclusion operator to determine the degree that fuzzy sample group are excluded
from the FIR is selected . This work has a significant worth for constructing control charts
in fuzzy environments. Cheng (2005) propose a construction of fuzzy control charts for
a process with fuzzy outcomes derived from the subjective quality ratings provided by a
group of experts. The process capability analyses is an important aspect in SPC. Kaya
and Kahraman (2010a, b, c) consider the fuzzy process capability analysis approach and

some fuzzy X̃ − R̃, X̃ − S̃ charts are proposed based on extension principle (Zadeh,
1978), here the basic quality characteristics should follow the normal distribution. Fuzzy
sets approaches are also applied in crisp control charts technique. Alaeddini et al. (2009)
propose a hybrid fuzzy-statistical clustering approach to estimate the change time in fixed
and variable sampling control charts. Fazel and Alaeddini (2010) also consider a general
fuzzy-statistical clustering approach for estimating the time of change in variable sampling
control charts. Demirli and Vijayakumar (2010) consider a fuzzy logic based assignable
cause diagnosis using control chart patterns. Fazel et al. (2008) propose a hybrid fuzzy
adaptive sampling run rules for Shewhart control charts.

From a viewpoint of weighting function of real valued data, the representative values
methods proposed in literature such as fuzzy mode, fuzzy midrange, fuzzy median, fuzzy
average, barycenter, and fuzzy random sum can be characterized as follows. Some of them
emphasize only a certain α-cut of the fuzzy data, such as fuzzy mode and fuzzy midrange
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3190 Wang et al.

method. Some focus on the partial levels that equal to or higher than α, such as fuzzy
median method. And some view all of the levels as the same, such as fuzzy average,
barycenter and fuzzy random sum methods, etc. As pointed out in Gülbay and Kahraman
(2006), the assumptions in Raz and Wang (1990) and Wang and Raz (1990) are not very
realistic, and such kinds of defuzzified values of sample statistics may result in losing some
important information. It probably due to that the whole information contained in different
α-cuts of fuzzy data are not fully and accurately captured. Different levels of α-cuts, in fact,
probably represent the different sense of information implied in the fuzzy data. According
to our common experience on understanding information represented by fuzzy set in daily
productions processes and service processes, most of the situation may be that the higher
the level of α-cut of the fuzzy set, the more valuable information it contains, and therefore,
the more attention we must pay to.

Though the conversion of fuzzy sets into crisp values may results in loss of information
of the fuzzy data in some sense (Gülbay and Kahraman, 2006, 2007), the representative
values methods are still common in practical applications (Taleb, 2009). It is important to
propose some more accurate and more powerful representative values for the considered
fuzzy or imprecise information in SPC.

Recently, possibility theory has received much attention in the area of uncertainty
modeling. Carlsson and Fullér (2001) proposed the possibilistic mean and possibilistic
variance for fuzzy numbers, these concepts behave properly in measuring central tendency
of fuzzy numbers based on a ranking of fuzzy numbers by the desire to give less im-
portance to the lower levels of fuzzy numbers. Fullér and Majlender (2003) introduced
the weighted possibilistic mean (WPM) and weighted possibilistic variance (WPV) for
fuzzy numbers, which are the possibilistic mean and variance with weighting functions that
give corresponding importance to different α-levels of fuzzy numbers. Saeidifar and Pasha
(2009) further investigate the properties of the WPM and WPV in the metric space of fuzzy
numbers, and some higher order possibilistic moments of fuzzy numbers are proposed.
An important conclusion is obtained in their work, that is, for a given fuzzy number, the
weighted possibilistic interval valued mean is the nearest weighted interval to the fuzzy
number and the WPM is the nearest weighted point approximation to the fuzzy number.
Thavaneswarana et al. (2009) present a further research on the properties of WPM and
WPV, and apply it to the fuzzy coefficients of GARCH model of time series , which makes
the model much more improved and softened. However, there is no literature concerning
construction of control charts by using weighted possibilistic moments of fuzzy or impre-
cise data. In view of representative values of fuzzy numbers, the WPM and WPV have the
advantages of more flexible and comprehensive over previously proposed representative
values of fuzzy data. Specifically, it has the feature that the higher the levels of α-cuts
of a fuzzy number, the larger the weight be assigned to. Therefore, it may emphasize the
information contained in fuzzy data more accurately if we properly choose the weighting
function. Inspired by the advantages of WPM and WPV of fuzzy number, in this article, we
propose a novel approache. to construct a control chart for the fuzzy count of nonconformity
under probabilistic rule.

This article is organized as follows, in Sec. 2, we focus on the new representative
value—the WPM, the weighted interval valued possibilistic mean (WIVPM) and their rele-
vant notions as well as some related important theorems. In Sec. 3, the representative values
fuzzy c-charts are established, and a numerical example is given. In Sec. 4, comparisons
with the existing fuzzy control charts are given by case performance simulation and general
sensitivity analysis based on actual data set and average number of inspection for variation
of control state (ANIVCS). In Sec. 5, a conclusion remark for our proposal is presented.
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Construction of Fuzzy Control Charts 3191

2. The WPM and WPV

In this section, we will consider some novel transformation methods that convert the
considered fuzzy number into its WPM and WIVPM or WPV. By R we denote the set
of all real numbers associated with the usual distance between real numbers, R is a usual
metric space and has the usual topology consists of all open intervals under this distance.
The concept of fuzzy numbers will be introduced by considering this topological structure
of R.

Definition 2.1. A mapping A : R → [0, 1] is said to be a fuzzy number on R if

(1) {x|A(x) = 1} �= ∅;
(2) A(x) is upper semicontinuous ;
(3) Each α-cut Aα = {x|A(x) ≥ α} is a compact bounded interval for all α ∈ (0, 1];
(4) A0 := cl{x|A(x) > 0}, the support of A, is compact and bounded, where cl denotes the

closure of a set. Fuzzy number sometimes is also called normal convex compact fuzzy
set on R, and A(·) is said to be the membership function of fuzzy number A. By F(R)
we denote the set of all fuzzy numbers.

A fuzzy number A is called an LR-fuzzy number, if its membership function can be
written as the following form:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L

(
m − x

l

)
m − l ≤ x ≤ m,

1 m ≤ x ≤ n,

R

(
x − n

r

)
n ≤ x ≤ n + r,

0 else.

(2.1)

Here the closed interval [m, n] is the peak of fuzzy number A, i.e., the fuzzy mode
fmode of A, m, n is the lower, upper modal values, respectively; L,R : [0, 1] → [0, 1]
are non-increasing and left-continuous functions satisfying that L(0) = R(0) = 1 and
L(1) = R(1) = 0, and called left, right shape function, respectively. Such an LR-fuzzy
number can be abbreviated by A = (m, n, l, r)LR . The LR-fuzzy numbers presented in this
article are assumed to be strictly decreasing so that its α-cuts can be simply computed by

Aα = [m − lL−1(α), n + rR−1(α)], ∀α ∈ [0, 1], (2.2)

where L−1(α) := sup{x|L(x) � α},R−1(α) := sup{x|R(x) � α}. LR-fuzzy number,
where L(x) = R(x) = max{0, 1 − x}, is often used to characterize the fuzzy quality data
(Wang, 2006).

Definition 2.2. (Viertl, 2008) An imprecise number B is a fuzzy set of R whose membership
function B(·) satisfying that for any α ∈ (0, 1] the α-cut Bα is non-empty and a finite union
of compact intervals [B−

α,j , B
+
α,j ],

Bα =
kj⋃

j=1

[B−
α,j , B

+
α,j ].

Here fuzzy subset B of R may not be convex, so that the α-cut of which may not be an
interval, whereas a union of a number of mutually separated closed intervals [B−

α,j , B
+
α,j ] ,
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3192 Wang et al.

j = 1, . . . , kj , where B−
α,j , B

+
α,j are the left, right end points of the jth closed interval, kj

is a natural number representing the number of intervals included in the α-cut Bα . A fuzzy
number is a special imprecise number.

Definition 2.3. A function f : [0, 1] → R is said to be a weighting function, if f is non-
negative and monotonically increasing and fulfill

∫ 1
0 f (x)dx = 1.

Especially, let us introduce a family of weighting function 1 : [0, 1] → R which is
defined as

1(α) =
{

1/(1 − α0) if α ∈ (α0, 1],

0 if α ∈ [0, α0],
(2.3)

where α0 ∈ [0, 1] is an arbitrary real number. It can easily be proved that 1 is a weighting
function. Obviously, f (α) = 2α, 3α2 (α ∈ [0, 1]) are also weighting functions.

The concepts of WPM and WPV (Fullér and Majlender, 2003) are from the concepts
of possibilistic mean and variance proposed by Carlsson and Fullér (2001).

Definition 2.4. (Fullér and Majlender, 2003, Thavaneswarana et al., 2009) Let A be a fuzzy
number and let f be a weighting function. The f -WPM of A is defined as

Mf (A) =
∫ 1

0
f (α)

A−
α + A+

α

2
dα,

where A−
α = inf{x|A(x) � α}, A+

α = sup{x|A(x) � α}, A−
α � A+

α . According to the defi-
nition of fuzzy midrange, the WPM of fuzzy number A can be written by

∫ 1
0 f (α)fmr (α)dα,

which indicates that the WPM is a general weighted midrange. The WPM of fuzzy number
is also more accurate and flexible in representing the fuzzy numbers than fuzzy average,
fuzzy median, barycenter and fuzzy random sum, because there are no weighting functions
measuring the importance of α levels in the latter, i.e., they view all of the α-levels as the
same one.

Definition 2.5. Let A be a fuzzy number and let f be a weighting function. The f -WPV of
A’s defined as

Varf (A) = 1

2

∫ 1

0
f (α)

[
(A−

α − Mf (A))2 + (A+
α − Mf (A))2

]
dα.

Following definitions of WPM and WPV of fuzzy number A, we can propose the
definitions of WPM and WPV for the imprecise number B as follows:

Mf (B) =
∫ 1

0

1

kj

f (α)

( kj∑
j=1

B−
α,j + B+

α,j

2

)
dα,

Varf (B) =
∫ 1

0

(
1

kj

f (α)

( kj∑
j=1

[(B−
α,j − Mf (B))2 + (B+

α,j − Mf (B))2]

))
dα.

where kj is a positive integer.

D
ow

nl
oa

de
d 

by
 [

G
ua

ng
zh

ou
 U

ni
ve

rs
ity

],
 [

Pr
of

es
so

r 
D

ab
ux

ila
tu

 W
an

g]
 a

t 2
3:

18
 0

3 
Ju

ly
 2

01
4 



Construction of Fuzzy Control Charts 3193

Example 1. Let B be an imprecise number defined as

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 1

(x − 1)2, 1 � x � 2

1.5 − 0.25x, 2 � x � 3

0.25x, 3 � x � 4

−2x + 9, 4 � x � 4.5
0, x � 4.5.

Then, M3x2 (B) = ∫ 0.75
0 1.5α2(2.75 + 0.5

√
α − 0.25α)dα + ∫ 1

0.75 1.5α2(5.75 + 0.5
√

α −
0.25α)dα = 2.3626. V ar3x2 (B) =∫ 0.75

0 1.5α2[(
√

α − 1.3626)2 + (2.1374 − 0.5α)2]dα +∫ 1
0.75[(

√
α − 4α + 4.6374)2 + (2.1374 + 3.5α)2]dα = 10.4701.

Definition 2.6. (Fullér and Majlender, 2003) The f -WIVPM of the fuzzy number A can be
defined as

Mf (A) = [M−
f (A),M+

f (A)], (2.4)

and f -WPM can be written as

Mf (A) = 1

2
[M−

f (A) + M+
f (A)], (2.5)

where M−
f (A) = ∫ 1

0 f (α)A−
α dα and M+

f (A) = ∫ 1
0 f (α)A+

α dα are defined to be the lower
and upper f -WPM of A, respectively. And for an LR-fuzzy number A = (m, n, l, r)LR we
have

M−
f (A) = m − l

∫ 1

0
L−1(α)f (α)dα, (2.6)

M+
f (A) = n + r

∫ 1

0
R−1(α)f (α)dα. (2.7)

Let

φf : =
∫ 1

0
L−1(α)f (α)dα, (2.8)

ψf : =
∫ 1

0
R−1(α)f (α)dα, (2.9)

then the WIVPM and the WPM of A, respectively, can be calculated as

Mf (A) = [m − lφf , n + rψf ], (2.10)

Mf (A) = 1

2
(m + n − lφf + rψf ). (2.11)

Let A = (m, n, l, r)LR be a LR-fuzzy number of trapezoidal form in Carlesson and
Fullér (2001), Fullér and Majlender (2003), where L(x) = R(x) = max{0, 1 − x}.

Aα = [m − l(1 − α), n + r(1 − α)], α ∈ [0, 1]. (2.12)
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3194 Wang et al.

Then

Mf (A) =
[
m − l

∫ 1

0
(1 − α)f (α)dα, n + r

∫ 1

0
(1 − α)f (α)dα

]
, (2.13)

Mf (A) = 1

2
(m + n − (l − r)

∫ 1

0
(1 − α)f (α)dα). (2.14)

The WIVPM and the WPM of A are also considered to be weighted expected values (Fullér
and Majlender, 2003). From which we can infer a familiar fact that points with small
membership degrees are considered to be less important. Saeidifar and Pasha (2009) have
pointed out that if we select the metric on F(R) as

Df (A1, A2) = 1

2

∫ 1

0
f (α)[(A−

1α − A−
2α)2 + (A+

1α − A+
2α)2]dα,

where f is the weighting function, A1, A2 ∈ F(R), then the following theorems hold:

Theorem 2.1. (Saeidifar and Pasha, 2009). Let A be a fuzzy number, let f be a weighting
function. Then, the interval Mf (A) = [M−

f (A),M+
f (A)] is the nearest f-weighted possi-

bilistic interval to fuzzy number A with respect to the f-weighted possibilistic distance
Df .

Theorem 2.2. (Saeidifar and Pasha, 2009). Let A be a fuzzy number, let f be a weighting
function. Then, Mf (A), the WPM of A is the nearest f-weighted possibilistic point to fuzzy
number A which is unique with respect to the f-weighted possibilistic distance Df .

Theorem 2.3. Let B be an imprecise number, let f be a weighting function. Then, Mf (B),
the WPM of B is the nearest f-weighted possibilistic point to imprecise number B which is
unique with respect to the f-weighted possibilistic distance Df .

Proof. By the definition of the imprecise number we have Bα = ⋃kj

j=1[B−
α,j , B

+
α,j ], and

the distance function

D(b) = Df (B, b) = 1

2

∫ 1

0
f (α)

[
(B−

α − b)2 + (B+
α − b)2

]
dα

:= 1

2

∫ 1

0

( kj∑
j=1

f (α)
[
(B−

α,j − b)2 + (B+
α,j − b)2

])
dα.

We minimize the function D(b) with respect to b, so to solve ∂D(b)
∂b

= 0, i.e,

∂D(b)

∂b
=

∫ 1

0

( kj∑
j=1

f (α)
[
(b − B−

α,j ) + (b − B+
α,j )

])
dα

=
∫ 1

0

( kj∑
j=1

f (α)
[
2b − (B−

α,j + B+
α,j )

])
dα = 0,
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Construction of Fuzzy Control Charts 3195

the solution is

b = Mf (B) =
∫ 1

0

1

kj

f (α)

(
kj∑

j=1

B−
α,j + B+

α,j

2

)
dα.

since ∂2D(b)
∂b2 = 2kj > 0, the solution Mf (B) indeed minimizes D(b). Now we prove the

uniqueness of the Mf (B). For any real number c ( �= Mf (B)),

D(c) = Df (B, c) := 1

2

∫ 1

0

( kj∑
j=1

f (α)
[
(B−

α,j − c)2 + (B+
α,j − c)2])dα

= 1

2

∫ 1

0

(
kj∑

j=1

f (α)[((B−
α,j − Mf (B)) + (Mf (B) − c))2

+ ((B+
α,j − Mf (B)) + (Mf (B) − c))2]

)
dα

= D(Mf (B)) + 2kj (Mf (B) − c)2 + 2(Mf (B) − c)

×
kj∑

j=1

∫ 1

0
f (α)(B−

α,j + B+
α,j − 2Mf (B))dα

= D(Mf (B)) + 2kj (Mf (B) − c)2,

thus, D(c) − D(Mf (B)) = 2kj (Mf (B) − c)2 > 0., i.e., D(c) > D(Mf (B)). �
The above three theorems indicate that the WPM, WIVPM of fuzzy number A is the

nearest point (number), nearest interval to A under the topological structure induced by the
distance Df , respectively, and so is the WPM of imprecise number B. From a view of quality
engineering, using real number data or interval data is more convenient than using fuzzy
data, and here the WPM and WIVPM just provide an appropriate way of transforming fuzzy
data into real data or intervals. Therefore, the WIVPM may be a reasonable and accurate
representative interval and the WPM a crisp representative value of A if we correctly choose
the weighting function. In this article, we consider them as representative intervals and crisp
representative values of A, respectively.

3. Control Charts for Fuzzy Attribute Data Based on WPM and WIVPM

It is well known that the classical count of nonconformity control chart (c-chart) is based on
crisp attribute data (Barrie and Brown, 1991), and whose control limits can be determined
by the 3σ rule, i.e.,

CLc = c̄, (3.15)

LCLc = c̄ − 3
√

c̄, (3.16)

UCLc = c̄ + 3
√

c̄, (3.17)

where c̄ is the mean of the count of nonconformity and the count of nonconformity is
usually modeled by Possion distribution.
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3196 Wang et al.

Now we consider the fuzzy case, for which we introduce a sort of fuzzy random vari-
ables and imprecise random variables. Let (�,A, P ) be a complete probability space, and
let F (R) be the set of all imprecise numbers on R. Note that here F(R) ⊂ F (R). A mapping
X : � → F(R), which is measurable with respect to the measurable structure induced by
the distance Df , is said to be a fuzzy random variable. A mapping X : � → F (R), which is
measurable with respect to the measurable structure induced by the distance Df , is said to be
an imprecise random variable. By I[a,b](R) we denote the set of all closed intervals on R, and
the mappings ξWIVPM : F(R) → I[a,b](R), A �→ [M−

f (A),M+
f (A)], and ξWPM : F (R) → R,

B �→ Mf (B). Then, the composed mapping ξWIV PM ◦ X : � → I[a,b](R) is a random
interval, and ξWPM ◦ X : � → R is a random variable.

Based on the concept of fuzzy quality (Wang, 2006), the conformity and nonconformity
are actually fuzzy notions. Here we assume the count of nonconformity to be a fuzzy
attribute data and expressed by LR-fuzzy number (for the detail and examples the readers
are referred to Gülbay and Kahraman (2007), which can be viewed as a realization of
the fuzzy random variable XLR valued in FLR(R) , the set of all LR-fuzzy numbers
(Wang, 2006). In this case, for the fuzzy samples of size e, which is represented by
LR-fuzzy numbers Aj = (mj, nj , lj , rj )LR, j = 1, 2, . . . , e, the f -weighted possibilistic
representative values of Aj can be calculated by

Mf (Aj ) = 1

2
(mj + nj − ljφf + rjψf ), j = 1, 2, · · · , e. (3.18)

Which are the realizations of the random variable ξWPM ◦ XLR : � → R having Possion
distribution approximately. Similar to the calculations of identities (2.15) − −(2.17), the
control limits (CL CLf , LCL LCLf and UCL UCLf ) of the control chart based on WPM
of fuzzy attribute data can be calculated under the 3σ rule by

CLf = 1

e

e∑
j=1

Mf (Aj ) = 1

2
(m + n − lφf + rψf ), (3.19)

LCLf = CLf − 3
√

CLf , (3.20)

UCLf = CLf + 3
√

CLf . (3.21)

After plotting representative value Mf (A) of the sample A on the control chart, we can
make a decision on the process.

Alternatively, we can also use representative intervals WIVPM of the samples to con-
struct some control chart. With identity (2.10), we can calculate the f -weighted possibilistic
representative intervals of samples Aj , j = 1, 2, . . . , e, by

Mf (Aj ) = [mj − ljφf , nj + rjψf ] := [aj , bj ], aj < bj , (3.22)

and we can obtain the intervals of the control limits by

CLf =
[

1

e

e∑
j=1

M−
f (Aj ),

1

e

e∑
j=1

M+
f (Aj )

]
:= [CL−

f , CL+
f ],

LCLf =
[
CL−

f − 3
√

CL−
f , CL+

f − 3
√

CL+
f

]
:= [LCL−

f , LCL+
f ],
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Construction of Fuzzy Control Charts 3197

UCLf = [CL−
f + 3

√
CL−

f , CL+
f + 3

√
CL+

f ] := [UCL−
f , UCL+

f ].

Then, the percentage (βj ) that the representative interval of each sample falls inside the
control limits can be calculated. The sample j is considered to be strictly in control when the
interval of the sample is completely inside the control limits (βj = 1), and out of control
when it is completely outside the control limits (βj = 0). Furthermore, for a sample whose
representative interval partially fall inside the control limits, we may give some intermediate
decisions as “rather in control” if βj ≥ β or “rather out of control” if βj < β, where β is
predefined and

βj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 aj � UCL+
f ,

UCL+
f − aj

bj − aj
(LCL−

f � aj � UCL+
f ) ∧ (bj > UCL+

f ),

1 (aj � LCL−
f ) ∧ (bj � UCL+

f ),

bj − LCL−
f

bj − aj
(LCL−

f � bj � UCL+
f ) ∧ (aj < LCL−

f ),

0 bj ≤ LCL−
f .

(3.23)

3.1. A Numerical Example

We employ the data of the example given in Gülbay and Kahraman (2007). The samples
from a toy company producing a large-sized toys are taken every 4 h to control number
of nonconformities. Because of the large dimensions of the toys, the number of noncon-
formities may also be large. Thirty subgroups for number of nonconformities are collected
as linguistic data which here expressed by trapezoidal LR-fuzzy numbers shown in Table
1, also their corresponding WPM and WIVPM under weighting function f (x) = 3x2, and
the control limits are shown in Table 1.

Three kinds of different weighting functions f (x) = { 2.5, α ∈ (0.6, 1]
0, α ∈ [0, 0.6]

, f (x) = 3x2,

f (x) = 5x4 are taken to make decisions based on WPM and WIVPM, the decision results
are summarized in Table 2. As it is clearly shown in this table, the decisions made by the
two-control state WPM fuzzy chart approach heavily depend on the weighting functions.
For example, we have made different decisions by choosing different weighting functions
on sample 8, 16, 27 based on WPM.

As an alternative method, we calculated the percentage (βj , j = 1, 2, . . . , k) that the
interval of each WIVPM remains inside the control limits with identity (2.26) and the
decisions results are shown in Table 2. After setting a minimum acceptable percentage as
β = 0.7 by the quality control expert, some intermediate decisions like “rather in control”
or “rather out of control” can be made. There also exists some small differences on decision-
making when choosing different weighting functions, for example, the samples no. 27 and
no. 30, but comparatively speaking, the differences are not so sharp as the WPM method.
The decisions made by the four-control state WIVPM fuzzy chart approach are subjected
to the choice of both percentage β and the weighting functions, thus WIVPM chart is more
flexible than WPM chart.
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3198 Wang et al.

Table 1
Fuzzy number (m, n, l, n)LR representation of 30 subgroups

(L(x) = R(x) = max{0, 1 − x}, f (α) = 3α2)

No. (m, n, l, r)LR Mf (= WPM) Mf (= WIVPM)

1 (30, 30, 5, 5)LR 30 [28.75, 31.25]
2 (20, 30, 5, 5)LR 25 [18.75, 31.25]
3 (5, 12, 1, 3)LR 8.75 [4.75, 12.25]
4 (6, 6, 3, 2)LR 5.875 [5.25, 6.5]
5 (38, 38, 6, 7)LR 38.13 [36.5, 39.75]
6 (20, 24, 4, 4)LR 22 [19, 25]
7 (4, 8, 1, 4)LR 6.38 [3.75, 9]
8 (36, 44, 9, 6)LR 39.63 [33.75, 45.5]
9 (11, 15, 2, 5)LR 13.38 [10.5, 16.25]

10 (10, 13, 3, 2)LR 11.38 [9.25, 13.5]
11 (6, 6, 3, 4)LR 6.13 [5.25, 7]
12 (32, 32, 5, 5)LR 32 [30.75, 33.25]
13 (13, 13, 2, 2)LR 13 [12.25, 13.75]
14 (50, 52, 11, 3)LR 50 [47.25, 52.75]
15 (38, 41, 10, 4)LR 38.75 [35.5, 42]
16 (40, 40, 7, 4)LR 39.63 [38.25, 41]
17 (32, 50, 4, 10)LR 41.75 [31, 52.5]
18 (39, 39, 6, 4)LR 38.75 [37.5, 40]
19 (15, 21, 3, 17)LR 19.75 [14.25, 25.25]
20 (28, 28, 5, 8)LR 28.38 [26.75, 30]
21 (32, 35, 4, 7)LR 33.88 [31, 36.75]
22 (18, 28, 4, 5)LR 23.13 [17, 29.25]
23 (30, 30, 6, 4)LR 29.75 [28.5, 29]
24 (25, 25, 5, 6)LR 25.13 [23.75, 26.5]
25 (31, 41, 6, 5)LR 35.88 [29.5, 42.25]
26 (10, 25, 3, 3)LR 17.5 [9.25, 25.75]
27 (5, 14, 2, 6)LR 10 [4.5, 15.5]
28 (28, 35, 5, 3)LR 31.25 [26.75, 35.75]
29 (20, 25, 3, 4)LR 22.63 [19.25, 26]
30 (8, 8, 3, 7)LR 8.5 [7.25, 9.75]
CL CLf = 24.877 CLf = [21.56, 28.14]
LCL LCLf = 9.913 LCLf = [7.63, 12.23]
UCL UCLf = 39.841 UCLf = [35.49, 44.05]

4. A Comparison with Other Results

4.1. A Comparison using an Actual Data Set

For the convenience of comparison, we use the data set given in the numerical example
in Sec. 3. Control limits and representative values based on fuzzy transformation methods
like WPM, WIVPM, fuzzy mode, fuzzy midrange and fuzzy median are shown in Table 3,
where the concerned weighting function is taken as f (x) = 3x2 and some data are taken
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Table 4
Comparison of alternative approaches: WPM, WIVPM, fuzzy mode, fuzzy midrange,

fuzzy median and DFA (L(x) = R(x) = max{0, 1 − x})
j M

[1]
f D. M3α2 D. M5α4 D. M

[2]
f D. M3α2 D. M5α4 D. fmod,j D. f α=0.6

mr,j D. f α=0.6
med,j D. DFA

β=0.7
α=0.6 D.

1 IC IC IC IC IC IC IC IC IC IC
2 IC IC IC IC IC IC IC IC IC IC
3 OC OC OC ROC ROC ROC RIC OC OC RIC
4 OC OC OC OC OC OC OC OC OC ROC
5 IC IC IC IC IC IC IC IC IC IC
6 IC IC IC IC IC IC IC IC IC IC
7 OC OC OC ROC ROC ROC ROC OC OC ROC
8 OC IC IC RIC RIC RIC RIC IC IC RIC
9 IC IC IC IC IC IC IC IC IC IC

10 IC IC IC IC IC IC IC IC IC IC
11 OC OC OC OC OC OC OC OC OC RIC
12 IC IC IC IC IC IC IC IC IC IC
13 IC IC IC IC IC IC IC IC IC IC
14 OC OC OC OC OC OC OC OC OC OC
15 IC IC IC IC IC IC IC IC IC IC
16 OC IC IC IC IC IC IC IC IC IC
17 OC OC OC ROC ROC ROC ROC OC OC ROC
18 IC IC IC IC IC IC IC IC IC IC
19 IC IC IC IC IC IC IC IC IC IC
20 IC IC IC IC IC IC IC IC IC IC
21 IC IC IC IC IC IC IC IC IC IC
22 IC IC IC IC IC IC IC IC IC IC
23 IC IC IC IC IC IC IC IC IC IC
24 IC IC IC IC IC IC IC IC IC IC
25 IC IC IC IC IC IC IC IC IC IC
26 IC IC IC IC IC IC IC IC IC IC
27 OC IC OC RIC RIC ROC RIC IC OC RIC
28 IC IC IC IC IC IC IC IC IC IC
29 IC IC IC IC IC IC IC IC IC IC
30 OC OC OC RIC RIC ROC IC OC OC IC
OC 10 7 8 3 3 3 3 7 8 1
ROC 0 0 0 3 3 5 2 0 0 3
IC 20 23 22 21 21 21 22 23 22 22
RIC 0 0 0 3 3 1 3 0 0 4

DFA is short for direct fuzzy approach. D. is short for decisions. IC, OC, RIC, ROC is short for in
control, out of control, rather in control, rather out of control, respectively.
Here [1][2] the weighting function.

f (α) =
{

2.5, α ∈ (0.6, 1],
0, α ∈ (0, 0.6]. (4.25)

from table 1, and the data with respect to fuzzy mode, fuzzy midrange and fuzzy median
are taken from table 4 in Gülbay and Kahraman (2007) . Also the charting methods of fuzzy
mode, fuzzy midrange, fuzzy median and DFA are given in Gülbay and Kahraman (2007).

The overall comparison of WPM and WIVPM with fuzzy mode, fuzzy midrange, fuzzy
median and DFA are summarized in Table 4, where some data are taken from Tables 1 and
2, and the data with respect to fuzzy mode, fuzzy midrange and fuzzy median are taken
from Table 5 in Gülbay and Kahraman (2007)(α = 0.6), data with respect to DFA are taken
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3202 Wang et al.

Table 5
ANIVCSs of WPM, f α

mr , f α
med , WIVPM, fmod and DFA approaches

(L(x) = R(x) = max{0, 1 − x})
ANIVCS of ANIVCS of ANIVCS of ANIVCS of ANIVCS of ANIVCS of

k WPM f α=0.6
mr f α=0.6

med WIVPM f α=0.6
mod DFAα=0.6

0.2 344.8 353 344.8 236.06 235.51 155.7
0.4 254 259.6 254 141.79 141.79 93.83
0.6 167 168.1 167 83.09 83.78 43.4
0.8 106.2 106.2 106.2 50.18 48.02 24.78
1 66.6 67.3 66.6 31.34 31.29 15.5
1.2 42.9 43.4 42.9 20.25 20.21 10.09
1.6 18.6 18.8 18.6 9.57 9.52 4.87
2 8.7 8.7 8.7 5.27 5.26 2.95
2.2 6.1 6.2 6.1 4.09 4.09 2.28
2.5 3.8 3.8 3.8 2.99 2.99 1.76
3 2 2 2 1.99 1.99 1.32

from the table 7 in Gülbay and Kahraman (2007) (α = 0.6). The results shown in Table 4
indicate that different decisions can be made by using different fuzzy approaches for the
same samples. For example, samples no. 30, no. 27, no. 17, no. 11, no. 8, no. 7, no. 4 and no.
3 are such cases, in which each sample is made with at least two different kinds of decision
results. The total numbers of OC, ROC, IC and RIC for each fuzzy approaches shown in
Table 4 indicate that our WPM (or WIVPM) approach performs more OC states (or OC,
ROC cases) than that of fuzzy midrange and fuzzy median approaches (or fuzzy mode and

DFA approaches). For instance, the M
[1]
f (WPM) approach performs 10 OC states, but the

fuzzy midrange f α=0.6
mr approach performs only 7 OC states. The M5α4 (WIVPM) approach

performs 3 OC and 5 ROC states, but the DFA
β=0.7
α=0.6 approach performs only 1 OC and 3

ROC states. The M3α2 do the same performance with f α=0.6
mr approach, so are the M5α4 and

the f α=0.6
med approaches. Thus, for the 30 subgroups toys data, WPM and WIVPM performed

more sensitive than fuzzy midrange, fuzzy median and fuzzy mode, DFA, respectively. It is
obvious that all the fuzzy approaches mentioned here are weak in robustness, since they are
more or less affected by subjective parameters such as weighting functions, α-levels and
the acceptable percentage β. Also the DFA, WIVPM and fuzzy mode approaches are more
flexible than WPM, fuzzy midrange and fuzzy median approaches, since every approach in
the former has four control states IC, RIC, ROC and OC as well as two subjective parameters
β and weighting function, whereas every approach in the later has only two control states
IC and OC as well as one subjective parameter the weighting function. Unlike the fuzzy
mode, fuzzy midrange, fuzzy median and DFA approaches being suitable to only convex
fuzzy data, the proposed WPM and WIVPM approaches are suitable for both convex and
non-convex fuzzy data (imprecise data).

4.2. General Comparison Between Fuzzy Control Charts

The sensitivity of a control chart can be illustrated by the average run length (ARL), which
is defined as the average number of inspected samples till the moment of an alarm. However,
in the case of fuzzy approaches the conditions become much complicated, as there are four
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Construction of Fuzzy Control Charts 3203

control states OC, ROC, RIC and IC for WIVPM, fuzzy mode and DFA. We introduce
the ANIVCS to measure the sensitivity of these fuzzy approaches. ANIVCS based on
observation can be calculated by

total number of inspection

number of variation of the control state
.

And in general,

ANIVCS = 1

P (variation of the control state)

=

⎧⎪⎨⎪⎩
1

P (OC)
, for WPM, f α

mr , f α
med,

1

P (OC or ROC or RIC)
, for WIVPM, fmod , DFA.

For calculating ANIVCS we need to calculate the probabilities P (OC or

ROC or RIC) and P (OC) for the concerned approaches. Based on the central limit theo-
rem, X−X√

X
is approximately governed by standard normal distribution if random variable

X is modeled by Possion distribution, where X denotes a large sample mean based on an
observation on X. Since in our concerned issue the count of nonconformity is basically gov-
erned by Possion distribution, we may assume whose fuzzy observation, the fuzzy random
variable XLR = (m, n, l, r)LR, (L(x) = R(x) = max{0, 1 − x}), satisfies that the random
variables m, n and m− lφf , n+rψf can be modeled by Possion distribution approximately.
Suppose that samples Aj = (mj, nj , lj , rj )LR, e = 5000, (L(x) = R(x) = max{0, 1 − x})
are taken from the in control fuzzy attribute process. Then, when the process is in control
under each fuzzy control chart approach, respectively, we have

ANIVCSWPM(0) = 370, ANIVCSf α
mr

(0) ≈ 370, ANIVCSf α
med

(0) ≈ 370, (4.24)

ANIVCSWIVPM(0) ≈ 370.6, ANIVCSfmod
(0) ≈ 370.6, ANIVCSDFA(0) ≈ 437.7.

(4.25)

When the process is not in control state under some fuzzy approach, we need to calculate
the probability of type two error for the fuzzy approach and to determine the corresponding
ANIVCS. Here, we assume that the target value CL of WPM approach shifts to CL −
k
√

CL, the target value CLα
mr of f α

mr approach shifts to CLα
mr − k

√
CLα

mr , the target value
CLα

med of f α
med approach shifts to CLα

med − k
√

CLα
med . For WIVPM approach we only

consider the case that bj deviated from the target n + rψf to n + rψf + k
√

n + rψf , for
fmod approach only the case that nj deviated from the target n to n + k

√
n and for DFA

only the case that nj deviated from the target n to n + k
√

n, where k > 0. We assume that
the false alarm rate equals to 0.0027, α = 0.6, φf = ψf = 0.2, m = 36, n = 49, l = 9,
r = 4, and lj = 12, rj = 6. Then we can change k and calculate ANIVCSs of the fuzzy
control charts approaches. The computational procedure of ANIVCSs of which are given
in Appendix A, and the obtained ANIVCSs are shown in Table 5.

From Table 5 it can be clearly seen that ANIVCS of WPM takes the same values as
ANIVCS of f α=0.6

med (column 2, 4) for each value of k, but ANIVCS of WPM decreases
more rapidly than ANIVCS of f α=0.6

mr as the k increases (column 2, 3). This means that
WPM is more sensitive than f α=0.6

mr , and WPM, f α=0.6
med have the same sensitivity. ANIVCS
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3204 Wang et al.

of DFA decreases more rapidly than ANIVCS of WIVPM and fmod (column 7,5 and 6),
ANIVCS of WIVPM decreases a little bit slowly than ANIVCS of fmod (column 5,6) as the
k increases. This means that DFA is more sensitive than both WIVPM and fmod , WIVPM
has almost the same sensitivity with fmod . ANIVCSs of the later three approaches decrease
more rapidly than ANIVCSs of the former three approaches as k increases, since their
number of control states are more than that of the former.

5. Conclusion

In this article, the WPV and WIVPM of a fuzzy number (Carlsson and Fullér, 2001; Fullér
and Majlender, 2003) are introduced to be representative values of a fuzzy attribute data,
and fuzzy c-charts are established with WPV and WIVPM. The performance of the charts
have been compared to existing fuzzy charts with a newly defined ANIVCS. The main
conclusions are:

(1) WPM and WIVPM approaches performed with a relatively good sensitivity as the
previous proposed fuzzy approaches. WPM is more sensitive than fuzzy midrange.
WIVPM has almost same sensitivity with fuzzy mode. It may be better to instead
of fuzzy midrange and fuzzy median with WPM, and instead of fuzzy mode with
WIVPM.

(2) WPM and WIVPM approaches are suitable to both convex and non-convex fuzzy data.
As a representative values of the concerned fuzzy data, they have better representative-
ness than the fuzzy midrange, fuzzy median and fuzzy mode, and their computation is
much easier than DFA.

(3) WPM and WIVPM approaches have a better robustness than that of fuzzy midrange,
fuzzy median and DFA. It can be found from the computational procedure of the items
in Table 5 that the choice of the weighting functions only have a small impact (which
may be allowed to be ignored) on sensitivity of WPM and WIVPM. However, for the
small size fuzzy data sample, the weighting functions will have a moderate impact on
sensitivity (See Table 4). Therefore, determining a correct and reasonable weighting
function is desired.

The construction of fuzzy control charts has faced to challenge in both theory and
applications. The main difficulties come from the lack of appropriate distributional models
for fuzzy data, therefore, the non-parametric statistical methods based on order, distance
and operations for fuzzy data space maybe reasonable for the construction of fuzzy control
charts. In the future research work, we will further consider the construction of control charts
for the general imprecise data (non-convex fuzzy data) by using the WPM and WIVPM
approaches, and a fuzzy control chart based on possibilistic variance. For obtaining a more
powerful evaluation criteria for fuzzy control charts, we may further propose other methods
which could be based on some fuzzy measure (non-additive measure).
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Appendix A

The computational procedure of ANIVCS when the process is in control states:

ANIVCCWPM (0) = 1

1 − P (CLf − 3
√

CLf � Mf � CLf − 3
√

CLf )

≈ 1

2(1 − �(3))
= 370,

ANIVCCf α
mr

(0) = 1

1 − P (CLα
mr − 3

√
CLα

mr � f α
mr � CLα

mr + 3
√

CLα
mr )

≈ 1

2(1 − �(3))
= 370,

ANIVCCf α
med

(0) = 1

1 − P (CLα
med − 3

√
CLα

med � f α
med � CLα

med + 3
√

CLα
med )

≈ 1

2(1 − �(3))
= 370.

and

ANIVCCWIV PM (0)

= 1

1 − P (aj � LCL−
f , bj � UCL+

f )

≈ 1

1 −
[
�(3) − �

(
− √

n + rψf

)][
�
(

n+rψf −(m−lφf )+3
√

n+rψf√
m−lφf

)
− �(−3)

] ,

ANIVCCfmod
(0)

= 1

1 − P (mj � m − 3
√

m, nj � n + 3
√

n)

≈ 1

1 − [�(3) − �(−√
n)]

[
�
(

n−m+3
√

n√
m

)
+ �(−3)

] ,

ANIVCCDFA(0)

= 1

1 − P
(
A

j+
α � ŨCL

+
α , nj � n + 3

√
n,m − 3

√
m � mj, L̃CL

−
α � A

j−
α

) ,
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where

P
(
Aj+

α � ŨCL
+
α , nj � n + 3

√
n,m − 3

√
m � mj, L̃CL

−
α � Aj−

α

)
≈ [�(3) − �(−

√
n)]�

(
3
√

n + 3
2

√
r(1 − α)√

n + r
2 (1 − α)

)

×
[
�

(
n + 3

√
n − lj (1 − α) − (m − l(1 − α))√

m − l(1 − α)

)

−�
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The computational procedure of ANIVCS when the process is already not in control states:
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