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Abstract
In this paper, some properties of the monotone set-valued func-

tion defined by the set-valued Choquet integral are discussed. It is
shown that several important structural characteristics of the origi-
nal set function, such as null-additivity, strong order continuity, prop-
erty(S) and pseudometric generating property, etc., are preserved by
the new set-valued function. It is also shown that integrable assump-
tion is inevitable for the preservation of strong order continuous and
pseudometric generating property. Several kind of absolute continuity
of set-valued function with respect to set function are also discussed.
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1 Introduction

Given a measurable space (X,A), a nonnegative monotone set function
µ on A with µ(∅) = 0, and a nonnegative measurable function f, then the
set function vf defined by the Chouqet integral

vf (A) = (C)
∫

A
fdµ (∀A ∈ A)
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is also nonnegative and monotone on A with vf (∅) = 0[1]. Wang and Klir
([1]) have discussed that vf (A) preserved some important structure char-
acteristics of the original function µ, such as null-additivit, subadditivity,
autocontinuity, e.t.c. Ouyang and Li ([2]) further discussed that vf pre-
served other important structure characteristics of µ, such as strong order
continuity, order continuity, property(S), pseudometric generating property.

Similarly to the single-valued fuzzy measure, we can define the structural
characteristics for a set-valued fuzzy measure, whether these characteristics
can be preserved by the set-valued set functions defined by set-valued Cho-
quet integral?

In this paper, we give the definition of these characteristics of set-valued
set function, and we prove that a new monotone set-valued function defined
by set-valued Choquet integral also preserved the characteristics of original
set-valued set function. We also discuss several kind of absolute continuity
of set-valued function with respect to set function.

2 Preliminaries

Throughout this paper, we suppose that (X,A) is a measurable space,
f is a nonnegative measurable function on (X,A), and µ is a monotone set
function with µ(∅) = 0. R+ denotes the interval [0,∞], P0(R+)(Pf (R+),
resp.) denotes the class of all nonempty subsets(closed, resp.) of R+.

Definition 2.1 ([3]) The Choquet integral of f on A with respect to µ,
denoted by (C)

∫
A fdµ, is defined as

(C)
∫

A
fdµ =

∫
0

∞
µ(Fα ∩A)dα

where Fα = {f ≥ α} = {x|f(x) ≥ α} for any α ≥ 0 and the right-hand side
is the Lebesgue integral.

Definition 2.2 ([5] ) A set-valued function F : X → P0(R+) is said to be
measurable if its graph is measurable, that is ,

Gr(F ) = {(x, r) ∈ X ×R+ : r ∈ F (x)} ∈ A ⊗Borel(R+)

where Borel(R+) is the Borel field of R+. F is said to be closed-valued if it
values in Pf (R+)
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Definition 2.3 ([4]) A set-valued function F is said to be Choquet integrably
bounded if there is a Choquet integrable function g such that

‖F (x)‖ = sup
r∈F (x)

|r| ≤ g(x)

Definition 2.4 ([5]) Let F be a set-valued function and A ∈ A. The Cho-
quet integral of F on A with respect to µ, denote by (C)

∫
A Fdµ, is defined

as
(C)

∫
A

Fdµ = {(C)
∫

A
fdµ : f ∈ S(F )}

where S(F) is the family of µ-a.e. measurable selection of F.

Instead of (C)
∫
X Fdµ, we will write (C)

∫
Fdµ. Obviously, (C)

∫
Fdµ

may be empty. A set-valued function F is said to be integrable existing if
(C)

∫
Fdµ 6= ∅, and F is said to be integrable if (C)

∫
Fdµ exists and does

not include ∞.

Definition 2.5 ([6]) Let A, B ∈ P0(R+), then A ≤ B means that
(1) For each x0 ∈ A,there exists y0 ∈ B, such that x0 ≤ y0;
(2) For each y0 ∈ A,there exists x0 ∈ B, such that x0 ≤ y0.

Definition 2.6 A set-valued function π : A → P0(R+) is said to be a
monotone set-valued function if it satisfies
(1) π(∅) = 0.
(2) A ⊂ B implies π(A) ≤ π(B)

Definition 2.7 The set-valued function (C)πF is defined as

(C)πF (A) = (C)
∫

A
Fdµ(A ∈ A)

where F is a set-valued function with S(F ) 6= ∅, µ is a monotone set function.

Remark 2.1 By proposition 3.5[5] , we know that (C)πF is a monotone
set-valued function.

Definition 2.8 ([6]) Let {An} ⊂ P0(R+), we write

lim sup
n→∞

An = {x ∈ R+ : x = lim
k→∞

xnk
, xnk

∈ Ank
(k ≥ 1)}

lim inf
n→∞

An = {x ∈ R+ : x = lim
k→∞

xn, xn ∈ An (n ≥ 1)}

If lim
n→∞

supAn = lim
n→∞

inf An = A, then {An} is said to be convergent to A
and it is simply noted with An → A.
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Similarly to the single-valued function, we will defined several important
structural characteristics for a set-valued function.

Definition 2.9 Let π is a set-valued function.
(1) π is called null-additive if for any A, B ∈ A, π(A) = {0} implies

π(A ∪B) = π(B).
(2) π is called weakly null-additive if for any A, B ∈ A,π(A) = π(B) =

{0} implies π(A ∪B) = {0}.
(3)π is said to be strongly order continuous if for any An ∈ A, An ↓ A

and π(A) = {0} implies lim
n→∞

π(An) = {0}
(4) π is said to be order continuous if for any {An} ⊂ A, An ↓ ∅ implies

lim
n→∞

π(An) = {0}
(5) π is said to have the property (S) if for any An ∈ A that satis-

fies lim
n→∞

π(An) = {0} there exists a subsequence {Ank
} ⊂ {An} such that

π( lim
k→∞

supAnk
) = {0}.

(6) π is said to have the pseudometric generating property, abbreviated
as p.g.p. if for any ε > 0, there exists δ > 0 such that π(A ∪ B) ⊂ [0, ε]
whenever A,B ∈ A, π(A) ⊂ [0, δ] and π(B) ⊂ [0, δ].

It is easy to prove that the above definition is the generalization of single-
valued case.

3 Preservation of structural characteristics

In this section, we suppose that F is a measurable closed-valued function.

Theorem 3.1 If µ is null-additive, then so is (C)πF .

Proof. For any A, B∈ A with (C)πF (B) = {0}, i.e. (C)
∫
B Fdµ = {0},

then for any f ∈ S(F ), we have (C)
∫
B fdµ = 0. Hence by theorem 7 [1] ,

we have
(C)

∫
A∪B

fdµ = (C)
∫

A
fdµ.

Let a0 ∈ (C)πF (A ∪B), then exists f ∈ S(F ), such that

a0 = (C)
∫

A∪B
fdµ = (C)

∫
A

fdµ ∈ (C)πF (A).

Similarly, for b0 ∈ (C)πF (A), we can prove that b0 ∈ (C)πF (A ∪B).
The proof is completed.
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Theorem 3.2 If µ is weakly null-additive , then so is (C)πF .

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.3 Let F is integrable. If µ is strongly order continuous, then
so is (C)πF .

Proof. For any {An} ⊂ A with An ↓ A and (c)πF (A) = {0}, then for any

f ∈ S(F ), vf (A) = (C)
∫

A
fdµ = 0 , hence by Theorem 3.(2) ([2]), we have

lim
n→∞

vf (An) = 0, for any f ∈ S(F ).

Hence
lim sup

n→∞
(C)π(F )(An) = lim inf

n→∞
(C)π(F )(An) = {0}.

So
lim

n→∞
(C)πF (An) = {0}.

Theorem 3.4 Let F is integrable. If µ is order continuous, then so is
(C)πF .

Proof. Similar to Theorem 3.3.

Theorem 3.5 Let F is integrable. If µ has p.g.p, then so is (C)πF .

Proof. Since F is integrable, hence (C)
∫

fdµ < ∞. Since µ have p.g.p.,
there exists δ > 0, such that µ(E ∪ F ) < ε whenever E,F ∈ A and µ(E) ∨
µ(F ) < δ.

We will prove that (C)πF (A∪B) ⊂ [0, ε] whenever A,B ∈ A , (c)πF (A) ⊂
[0, δ] and (c)πF (B) ⊂ [0, δ]. In fact, for any f ∈ S(F ), we have (C)

∫
A fdµ∨

(C)
∫
B fdµ < δ, by Theorem 5 ([2]), we have (C)

∫
A∪B fdµ < ε. Hence(C)πF (A∪

B) ⊂ [0, ε].

Remark 3.1 Observe that Theorem 3.3 to Theorem 3.5 are based on the
assumption that F is integrable. The following examples show that the
conclusions in Theorem 3.3 to Theorem 3.5 may not be true when the as-
sumption is abandoned.

Example 3.1 Let X = {1, 2, ..., }, A = P(X). µ is defined as

µ(E) =


0, E = ∅,

max{1/i|i ∈ E}, E 6= ∅.

5



It is easy to see that µ is strongly order continuous (so µ is order
continuous) monotone set function. Let F (X) = {x}(x ∈ X), then we have
(C)πF (X) = {∞}, hence F is not Choquet integrable. we will show that
(C)πF is not order continuous (so (C)πF is not strongly order continuous).

In fact, let En = {n, n + 1, ..., }, then En ↓ ∅. For any f ∈ S(F ),
f(x) = x.

(C)
∫

En

fdµ =
∫ ∞

0
µ(En ∩ Fα)dα ≥

∫ n

0
µ(En ∩ Fα)dα = 1.

Hence (C)πF is not order continuous.

Example 3.2 Let X1 = {1, 3, ..., }, X2 = {2, 4, ...}, X = X1
⋃

X2, A = P(X).
µ is defined as

µ(E) =


0, if E = ∅,

max{1/i2|i ∈ E}, if E ∈ X1orX2

max{1/i|i ∈ E}, otherwise

It is easy to see that µ have p.g.p.. Let F (X) = {x}(x ∈ X), then we
have (C)πF (X) = {∞}, hence F is not Choquet integrable. we will show
that (C)πF do not have p.g.p..

Let An = {2n}, Bn = {2n + 1},then

(C)
∫

An

fdµ =
∫ ∞

0
µ(An ∩ Fα)dα =

∫ 2n

0
1/(2n)2dα = 1/2n → 0(n →∞)

Similarly,

(C)
∫

Bn

fdµ → 0 (n →∞)

But

(C)
∫

An∪Bn

fdµ =
∫ ∞

0
µ((An ∪Bn) ∩ Fα)dα

=
∫ 2n

0
µ((An ∪Bn) ∩ Fα)dα +

∫ 2n+2

2n+1
µ((An ∪Bn) ∩ Fα)dα

=
∫ 2n

0
1/2ndα +

∫ 2n+2

2n+1
1/(2n + 1)2dα

= 1 + 1/(2n + 1)2 → 1(n →∞).
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Hence (C)πF do not have p.g.p..

Theorem 3.6 Let F is Choquet bounded and µ is continuous . If µ have
property (S), then so is (C)πF .

Proof. For any For any {An} ⊂ A with lim
n→∞

(C)πF (An) = {0}, we have

lim
n→∞

d(0, (C)πF (An)) = 0

i.e.
lim inf
n→∞ f∈S(F ) | (C)

∫
An

fdµ |= 0

Then from the definition of limit inferior, we have that

lim
m→∞

(C)
∫

An

fn(m)
dµ = inf

f∈S(F )
| (C)

∫
An

fdµ | fn(m)
∈ S(F )

Since F is integrably bounded , so there exists a Choquet integrable function
g , such that | f(x) |≤ g(x) for any f ∈ S(F ). Hence we have

lim
m→∞

(C)
∫

An

fn(m)
dµ = (C)

∫
An

lim
m→∞

fn(m)
dµ.

Denote f0 = lim
m→∞

fn(m)
dµ, then lim

n→∞
(C)

∫
An

f0dµ = 0. By Theorem 2 in

[2], there exists {Ank
} ⊂ An, such that vf0(lim

k
supAnk

) = 0. i.e.

(C)
∫

lim
k

supAnk

f0dµ =
∫

0

∞
µ(lim sup

k
Ank

∩ {f0 ≥ α})) = 0.

Hence for any a0 > 0, we have

µ(lim
k

supAnk
∩ {f0 ≥ α}) = 0 a.e.

Denote Bnk
= Ank

∩ {f0 ≥ α0}, then

µ(lim sup
k

Bnk
) = 0 a.e.

Therefore, for any f ∈ S(F )

(C)
∫

lim
k

sup Bnk

fdµ =
∫

0

∞
µ(lim sup

k
Ank

∩ {f ≥ α})) = 0.

Hence
(C)πF (lim sup

k
Bnk

) = {0}.
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Definition 3.1 ([3]) A set N ∈ A is called a null set (with respect to µ) if
µ(A ∪N) = µ(A), for all A ∈ A.

Definition 3.2 ([3]) A fuzzy measure µ is said to be m-continuous if there
exists a complete and finite measure m, such that µ � m, i.e. m(A)=0
implies A is a null set (with respect to µ).

Lemma 1 (C)
∫
A Fdµ = (C)

∫
XA ◦ Fdµ where XA is the characteristic

function of A, and

XA ◦ F (x) =


F (x), x ∈ A,

0, otherwise.

Proof. It is easy to be proved.

Theorem 3.7 Let µ is m-continuous and F is Choquet integrable bounded.
If µ is continuous, then so is (C)πF .

Proof. It is similar to the proof of Proposition 3 in [7].

4 Absolutely continuity

Absolutely plays an important role in measure theorem, we expect that
most of the classical results, such as Radon-Nikodym theorem, etc., remain
valid for monotone set-valued function. In this section, we will introduce
several absolutely continuous.

Definition 4.1 Let µ is a set function and π is a set-valued function , we
say that

(1) π is absolutely continuous of type I with respect to µ, denote by
π �I µ, if and only if π(A) = {0} whenever µ(A) = 0.

(2) π is absolutely continuous of type II with respect to µ, denote by
π �IIα µ, if and only if π(A) = π(B) whenever B⊂A and µ(A \B) = 0.

(3) π is absolutely continuous of type III with respect to µ, denote by
π �IIIα µ, if and only if lim

n→∞
π(An) = {0} whenever An ↓ ∅ and lim

n→∞
µ(An) =

0
(4) π is absolutely continuous of type IV with respect to µ, denote by

π �IV µ, if and only if for any ε > 0, there exists δ > 0, such that π(A) ⊂
[0, ε] whenever µ(A) < δ.
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Theorem 4.1 (c)πF �I µ.

Proof. For any A ∈ A with µ(A) = 0 . Then for any f ∈ S(F )

(C)
∫

A
fdµ =

∫ ∞

0
µ(A ∩ Fα)dα = 0

Hence (C)πF (A) = 0.

Theorem 4.2 If µ is null additive,then (C)πF �IIa µ;

Proof. For any A,B ∈ A with B ⊂ A and µ(A−B) = 0. Let a0 ∈ (C)πF (A),
there exists f ∈ S(F ) such that

a0 = (C)
∫

A
fdµ = e

∫
0

∞
µ(Fα ∩A)dα

From the monotonicity of µ, we have µ((A − B) ∩ Fα) = 0. Since µ is null
additive , hence

µ(A ∩ Fα) = µ[((A−B) ∩ Fα) ∪ (B ∩ Fα)] = µ(B ∩ Fα)

So
a0 =

∫
0

∞
µ(Fα ∩B)dα = (C)

∫
B

fdµ ∈ πF (B)

Theorem 4.3 Let F is Choquet integrable .(c)πF �IIIa µ;

Proof. For any {An} ⊂ A, An ↓ ∅. since lim
n→∞

µ(An) = 0 for any f ∈ S(F ),
so

lim
n→∞

∫
fdµ = lim

n→∞

∫
µ(Fα ∩An)dα =

∫
lim

n→∞
µ(Fα ∩An)dα

hence
lim sup

n→∞
(C)π(F )(An) = lim inf

n→∞
(C)π(F )(An) = {0}

i.e.
lim

n→∞
(C)πF (An) = {0}.

Theorem 4.4 Let F is Choquet integrable. (C)πF �IV µ.

Proof. Since F is Choquet integrable, so (C)
∫

fdµ < ∞ for any f ∈ S(F ),
i.e. ∫ ∞

0
µ(Fα)dα < ∞
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Hence for any ε > 0, there exits 0 < a < b, such that

(C)
∫ a

0
µ(Fα)dα +

∫ ∞

b
µ(Fα)dα <

ε

2

Letδ = ε
2(b−a) and µ(A) < δ , then for any f ∈ S(F )

(C)
∫

fdµ = (C)
∫ ∞

0
µ(Fα ∩A)dα

= (C)
∫ a

0
µ(Fα ∩A)dα +

∫ ∞

b
µ(Fα ∩A)dα +

∫ b

a
µ(Fα ∩A)dα

<
ε

2
+ µ(Fα ∩A)(b− a)

<
ε

2
+

ε

2
= ε

Hence π(A) ⊂ [0, ε].
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