Monotone set-valued functions defined by set-valued Choquet integrals

Sun Hongxia

Department of Mathematics, Dezhou University, Dezhou, Shandong 253023, China

Li Jun*

School of Science, Communication University of China, Beijing, 100024, China

Masami Yasuda

Department of Mathematics & Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

Abstract

In this paper, some properties of the monotone set-valued function defined by the set-valued Choquet integral are discussed. It is shown that several important structural characteristics of the original set function, such as null-additivity, strong order continuity, property(S) and pseudometric generating property, etc., are preserved by the new set-valued function. It is also shown that integrable assumption is inevitable for the preservation of strong order continuous and pseudometric generating property. Several kind of absolute continuity of set-valued function with respect to set function are also discussed.

Keywords: Monotone set-valued function; set-valued Choquet integrals; Choquet integral

1 Introduction

Given a measurable space (X, \mathcal{A}) , a nonnegative monotone set function μ on \mathcal{A} with $\mu(\emptyset) = 0$, and a nonnegative measurable function f, then the set function v_f defined by the Chouqet integral

$$v_f(A) = (C) \int_A f d\mu \quad (\forall A \in \mathcal{A})$$

^{*}*E-mail address*: lijun@cuc.edu.cn

is also nonnegative and monotone on \mathcal{A} with $v_f(\emptyset) = 0[1]$. Wang and Klir ([1]) have discussed that $v_f(A)$ preserved some important structure characteristics of the original function μ , such as null-additivit, subadditivity, autocontinuity, e.t.c. Ouyang and Li ([2]) further discussed that v_f preserved other important structure characteristics of μ , such as strong order continuity, order continuity, property(S), pseudometric generating property.

Similarly to the single-valued fuzzy measure, we can define the structural characteristics for a set-valued fuzzy measure, whether these characteristics can be preserved by the set-valued set functions defined by set-valued Choquet integral?

In this paper, we give the definition of these characteristics of set-valued set function, and we prove that a new monotone set-valued function defined by set-valued Choquet integral also preserved the characteristics of original set-valued set function. We also discuss several kind of absolute continuity of set-valued function with respect to set function.

2 Preliminaries

Throughout this paper, we suppose that (X, \mathcal{A}) is a measurable space, f is a nonnegative measurable function on (X, \mathcal{A}) , and μ is a monotone set function with $\mu(\emptyset) = 0$. R^+ denotes the interval $[0,\infty]$, $\mathcal{P}_0(R^+)(\mathcal{P}_f(R^+),$ resp.) denotes the class of all nonempty subsets(closed, resp.) of R^+ .

Definition 2.1 ([3]) The Choquet integral of f on A with respect to μ , denoted by $(C) \int_A f d\mu$, is defined as

$$(C)\int_{A}fd\mu = \int_{0}^{\infty}\mu(F_{\alpha}\cap A)d\alpha$$

where $F_{\alpha} = \{f \geq \alpha\} = \{x | f(x) \geq \alpha\}$ for any $\alpha \geq 0$ and the right-hand side is the Lebesgue integral.

Definition 2.2 ([5]) A set-valued function $F : X \to \mathcal{P}_0(R^+)$ is said to be measurable if its graph is measurable, that is,

$$G_r(F) = \{(x, r) \in X \times R^+ : r \in F(x)\} \in \mathcal{A} \otimes Borel(R^+)$$

where $Borel(R^+)$ is the Borel field of R^+ . F is said to be closed-valued if it values in $\mathcal{P}_f(R^+)$

Definition 2.3 ([4]) A set-valued function F is said to be Choquet integrably bounded if there is a Choquet integrable function g such that

$$||F(x)|| = \sup_{r \in F(x)} |r| \le g(x)$$

Definition 2.4 ([5]) Let F be a set-valued function and $A \in \mathcal{A}$. The Choquet integral of F on A with respect to μ , denote by $(C) \int_A F d\mu$, is defined as

$$(C)\int_A Fd\mu = \{(C)\int_A fd\mu: f\in S(F)\}$$

where S(F) is the family of μ -a.e. measurable selection of F.

Instead of $(C) \int_X F d\mu$, we will write $(C) \int F d\mu$. Obviously, $(C) \int F d\mu$ may be empty. A set-valued function F is said to be integrable existing if $(C) \int F d\mu \neq \emptyset$, and F is said to be integrable if $(C) \int F d\mu$ exists and does not include ∞ .

Definition 2.5 ([6]) Let $A, B \in \mathcal{P}_0(\mathbb{R}^+)$, then $A \leq B$ means that

- (1) For each $x_0 \in A$, there exists $y_0 \in B$, such that $x_0 \leq y_0$;
- (2) For each $y_0 \in A$, there exists $x_0 \in B$, such that $x_0 \leq y_0$.

Definition 2.6 A set-valued function $\pi : \mathcal{A} \to \mathcal{P}_0(\mathbb{R}^+)$ is said to be a monotone set-valued function if it satisfies

(1) $\pi(\emptyset) = 0.$ (2) $A \subset B$ implies $\pi(A) \le \pi(B)$

Definition 2.7 The set-valued function $(C)\pi_F$ is defined as

$$(C)\pi_F(A) = (C)\int_A Fd\mu(A \in \mathcal{A})$$

where F is a set-valued function with $S(F) \neq \emptyset$, μ is a monotone set function.

Remark 2.1 By proposition 3.5[5], we know that $(C)\pi_F$ is a monotone set-valued function.

Definition 2.8 ([6]) Let $\{A_n\} \subset \mathcal{P}_0(R^+)$, we write

$$\limsup_{n \to \infty} A_n = \{ x \in \mathbb{R}^+ : x = \lim_{k \to \infty} x_{n_k}, x_{n_k} \in A_{n_k} (k \ge 1) \}$$
$$\liminf_{n \to \infty} A_n = \{ x \in \mathbb{R}^+ : x = \lim_{k \to \infty} x_n, x_n \in A_n \ (n \ge 1) \}$$

If $\lim_{n \to \infty} \sup A_n = \lim_{n \to \infty} \inf A_n = A$, then $\{A_n\}$ is said to be convergent to A and it is simply noted with $A_n \to A$.

Similarly to the single-valued function, we will defined several important structural characteristics for a set-valued function.

Definition 2.9 Let π is a set-valued function.

(1) π is called null-additive if for any A, $B \in \mathcal{A}$, $\pi(A) = \{0\}$ implies $\pi(A \cup B) = \pi(B).$

(2) π is called weakly null-additive if for any $A, B \in \mathcal{A}, \pi(A) = \pi(B) =$ $\{0\} \text{ implies } \pi(A \cup B) = \{0\}.$

 $(3)\pi$ is said to be strongly order continuous if for any $A_n \in \mathcal{A}, A_n \downarrow A$ and $\pi(A) = \{0\}$ implies $\lim_{n \to \infty} \pi(A_n) = \{0\}$ (4) π is said to be order continuous if for any $\{A_n\} \subset \mathcal{A}, A_n \downarrow \emptyset$ implies

 $\lim \pi(A_n) = \{0\}$

(5) π is said to have the property (S) if for any $A_n \in \mathcal{A}$ that satisfies $\lim_{n \to \infty} \pi(A_n) = \{0\}$ there exists a subsequence $\{A_{n_k}\} \subset \{A_n\}$ such that $\begin{aligned} \pi(\lim_{k \to \infty} \sup A_{n_k}) &= \{0\}. \\ (6) \ \pi \ is \ said \ to \ have \ the \ pseudometric \ generating \ property, \ abbreviated \end{aligned}$

as p.q.p. if for any $\epsilon > 0$, there exists $\delta > 0$ such that $\pi(A \cup B) \subset [0, \epsilon]$ whenever $A, B \in \mathcal{A}, \pi(A) \subset [0, \delta]$ and $\pi(B) \subset [0, \delta]$.

It is easy to prove that the above definition is the generalization of singlevalued case.

Preservation of structural characteristics 3

In this section, we suppose that F is a measurable closed-valued function.

Theorem 3.1 If μ is null-additive, then so is $(C)\pi_F$.

Proof. For any A, B $\in \mathcal{A}$ with $(C)\pi_F(B) = \{0\}$, i.e. $(C)\int_B Fd\mu = \{0\}$, then for any $f \in S(F)$, we have $(C) \int_B f d\mu = 0$. Hence by theorem 7 [1], we have

$$(C)\int_{A\cup B}fd\mu = (C)\int_Afd\mu$$

Let $a_0 \in (C)\pi_F(A \cup B)$, then exists $f \in S(F)$, such that

$$a_0 = (C) \int_{A \cup B} f d\mu = (C) \int_A f d\mu \in (C) \pi_F(A).$$

Similarly, for $b_0 \in (C)\pi_F(A)$, we can prove that $b_0 \in (C)\pi_F(A \cup B)$. The proof is completed.

Theorem 3.2 If μ is weakly null-additive, then so is $(C)\pi_F$.

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.3 Let F is integrable. If μ is strongly order continuous, then so is $(C)\pi_F$.

Proof. For any $\{A_n\} \subset \mathcal{A}$ with $A_n \downarrow A$ and $(c)\pi_F(A) = \{0\}$, then for any $f \in S(F), v_f(A) = (C) \int_A f d\mu = 0$, hence by Theorem 3.(2) ([2]), we have $\lim_{n \to \infty} v_f(A_n) = 0, \quad for \quad any \quad f \in S(F).$

Hence

$$\limsup_{n \to \infty} (C)\pi(F)(A_n) = \liminf_{n \to \infty} (C)\pi(F)(A_n) = \{0\}.$$

 So

$$\lim_{n \to \infty} (C) \pi_F(A_n) = \{0\}.$$

Theorem 3.4 Let F is integrable. If μ is order continuous, then so is $(C)\pi_F$.

Proof. Similar to Theorem 3.3.

Theorem 3.5 Let F is integrable. If μ has p.g.p, then so is $(C)\pi_F$.

Proof. Since F is integrable, hence $(C) \int f d\mu < \infty$. Since μ have p.g.p., there exists $\delta > 0$, such that $\mu(E \cup F) < \epsilon$ whenever $E, F \in \mathcal{A}$ and $\mu(E) \lor \mu(F) < \delta$.

We will prove that $(C)\pi_F(A\cup B) \subset [0,\epsilon]$ whenever $A, B \in \mathcal{A}$, $(c)\pi_F(A) \subset [0,\delta]$ and $(c)\pi_F(B) \subset [0,\delta]$. In fact, for any $f \in S(F)$, we have $(C) \int_A f d\mu \vee (C) \int_B f d\mu < \delta$, by Theorem 5 ([2]), we have $(C) \int_{A\cup B} f d\mu < \epsilon$. Hence $(C)\pi_F(A\cup B) \subset [0,\epsilon]$.

Remark 3.1 Observe that Theorem 3.3 to Theorem 3.5 are based on the assumption that F is integrable. The following examples show that the conclusions in Theorem 3.3 to Theorem 3.5 may not be true when the assumption is abandoned.

Example 3.1 Let $X = \{1, 2, ..., \}$, $\mathcal{A} = \mathcal{P}(X)$. μ is defined as

$$\mu(E) = \begin{cases} 0, & E = \emptyset, \\ \\ max\{1/i | i \in E\}, & E \neq \emptyset. \end{cases}$$

It is easy to see that μ is strongly order continuous (so μ is order continuous) monotone set function. Let $F(X) = \{x\} (x \in X)$, then we have $(C)\pi_F(X) = \{\infty\}$, hence F is not Choquet integrable. we will show that $(C)\pi_F$ is not order continuous (so $(C)\pi_F$ is not strongly order continuous).

In fact, let $E_n = \{n, n+1, ..., \}$, then $E_n \downarrow \emptyset$. For any $f \in S(F)$, f(x) = x.

$$(C)\int_{E_n} f d\mu = \int_0^\infty \mu(E_n \cap F_\alpha) d\alpha \ge \int_0^n \mu(E_n \cap F_\alpha) d\alpha = 1.$$

Hence $(C)\pi_F$ is not order continuous.

Example 3.2 Let $X_1 = \{1, 3, ..., \}, X_2 = \{2, 4, ...\}, X = X_1 \bigcup X_2, \mathcal{A} = \mathcal{P}(X).$ μ is defined as

$$\mu(E) = \begin{cases} 0, & \text{if } E = \emptyset, \\\\ max\{1/i^2 | i \in E\}, & \text{if } E \in X_1 or X_2 \\\\ max\{1/i | i \in E\}, & otherwise \end{cases}$$

It is easy to see that μ have p.g.p.. Let $F(X) = \{x\}(x \in X)$, then we have $(C)\pi_F(X) = \{\infty\}$, hence F is not Choquet integrable. we will show that $(C)\pi_F$ do not have p.g.p..

Let $A_n = \{2n\}, B_n = \{2n+1\},$ then

$$(C) \int_{A_n} f d\mu = \int_0^\infty \mu(A_n \cap F_\alpha) d\alpha = \int_0^{2n} 1/(2n)^2 d\alpha = 1/2n \to 0 (n \to \infty)$$

Similarly,
$$(C) \int_{-\pi} f d\mu \to 0 \quad (n \to \infty)$$

$$(C)\int_{B_n} f d\mu \to 0 \quad (n \to \infty)$$

But

$$(C) \int_{A_n \cup B_n} f d\mu = \int_0^\infty \mu((A_n \cup B_n) \cap F_\alpha) d\alpha$$

= $\int_0^{2n} \mu((A_n \cup B_n) \cap F_\alpha) d\alpha + \int_{2n+1}^{2n+2} \mu((A_n \cup B_n) \cap F_\alpha) d\alpha$
= $\int_0^{2n} 1/2n d\alpha + \int_{2n+1}^{2n+2} 1/(2n+1)^2 d\alpha$
= $1 + 1/(2n+1)^2 \to 1(n \to \infty).$

Hence $(C)\pi_F$ do not have p.g.p..

Theorem 3.6 Let F is Choquet bounded and μ is continuous. If μ have property (S), then so is $(C)\pi_F$.

Proof. For any For any $\{A_n\} \subset \mathcal{A}$ with $\lim_{n \to \infty} (C)\pi_F(A_n) = \{0\}$, we have

$$\lim_{n \to \infty} d(0, (C)\pi_F(A_n)) = 0$$

i.e.

$$\liminf_{n \to \infty} \inf_{f \in S(F)} | (C) \int_{A_n} f d\mu | = 0$$

Then from the definition of limit inferior, we have that

$$\lim_{m \to \infty} (C) \int_{A_n} f_{n_{(m)}} d\mu = \inf_{f \in S(F)} |(C) \int_{A_n} f d\mu | \quad f_{n_{(m)}} \in S(F)$$

Since F is integrably bounded, so there exists a Choquet integrable function g, such that $|f(x)| \leq g(x)$ for any $f \in S(F)$. Hence we have

$$\lim_{m \to \infty} (C) \int_{A_n} f_{n_{(m)}} d\mu = (C) \int_{A_n} \lim_{m \to \infty} f_{n_{(m)}} d\mu$$

Denote $f_0 = \lim_{m \to \infty} f_{n_{(m)}} d\mu$, then $\lim_{n \to \infty} (C) \int_{A_n} f_0 d\mu = 0$. By Theorem 2 in [2], there exists $\{A_{n_k}\} \subset A_n$, such that $v_{f_0}(\lim_k sup A_{n_k}) = 0$. i.e.

$$(C)\int_{\lim_{k} sup A_{n_k}} f_0 d\mu = \int_0^\infty \mu(\limsup_{k} A_{n_k} \cap \{f_0 \ge \alpha\})) = 0.$$

Hence for any $a_0 > 0$, we have

$$\mu(\lim_k \sup A_{n_k} \cap \{f_0 \ge \alpha\}) = 0 \quad a.e.$$

Denote $B_{n_k} = A_{n_k} \cap \{f_0 \ge \alpha_0\}$, then

$$\mu(\limsup_k B_{n_k}) = 0 \quad a.e.$$

Therefore, for any $f \in S(F)$

$$(C)\int_{\limsup_{k} \sup B_{n_{k}}} fd\mu = \int_{0}^{\infty} \mu(\limsup_{k} A_{n_{k}} \cap \{f \ge \alpha\})) = 0.$$

Hence

$$(C)\pi_F(\limsup_k B_{n_k}) = \{0\}.$$

Definition 3.1 ([3]) A set $N \in \mathcal{A}$ is called a null set (with respect to μ) if $\mu(A \cup N) = \mu(A)$, for all $A \in \mathcal{A}$.

Definition 3.2 ([3]) A fuzzy measure μ is said to be m-continuous if there exists a complete and finite measure m, such that $\mu \ll m$, i.e. m(A)=0 implies A is a null set (with respect to μ).

Lemma 1 (C) $\int_A F d\mu = (C) \int X_A \circ F d\mu$ where X_A is the characteristic function of A, and

$$X_A \circ F(x) = \begin{cases} F(x), & x \in A, \\ 0, & otherwise. \end{cases}$$

Proof. It is easy to be proved.

Theorem 3.7 Let μ is m-continuous and F is Choquet integrable bounded. If μ is continuous, then so is $(C)\pi_F$.

Proof. It is similar to the proof of Proposition 3 in [7].

4 Absolutely continuity

Absolutely plays an important role in measure theorem, we expect that most of the classical results, such as Radon-Nikodym theorem, etc., remain valid for monotone set-valued function. In this section, we will introduce several absolutely continuous.

Definition 4.1 Let μ is a set function and π is a set-valued function, we say that

(1) π is absolutely continuous of type I with respect to μ , denote by $\pi \ll_I \mu$, if and only if $\pi(A) = \{0\}$ whenever $\mu(A) = 0$.

(2) π is absolutely continuous of type II with respect to μ , denote by $\pi \ll_{II_{\alpha}} \mu$, if and only if $\pi(A) = \pi(B)$ whenever $B \subset A$ and $\mu(A \setminus B) = 0$.

(3) π is absolutely continuous of type III with respect to μ , denote by $\pi \ll_{III_{\alpha}} \mu$, if and only if $\lim_{n \to \infty} \pi(A_n) = \{0\}$ whenever $A_n \downarrow \emptyset$ and $\lim_{n \to \infty} \mu(A_n) = 0$

(4) π is absolutely continuous of type IV with respect to μ , denote by $\pi \ll_{IV} \mu$, if and only if for any $\epsilon > 0$, there exists $\delta > 0$, such that $\pi(A) \subset [0, \epsilon]$ whenever $\mu(A) < \delta$.

Theorem 4.1 (c) $\pi_F \ll_I \mu$.

Proof. For any $A \in \mathcal{A}$ with $\mu(A) = 0$. Then for any $f \in S(F)$

$$(C)\int_{A}fd\mu = \int_{0}^{\infty}\mu(A\cap F_{\alpha})d\alpha = 0$$

Hence $(C)\pi_F(A) = 0.$

Theorem 4.2 If μ is null additive, then $(C)\pi_F \ll_{II_a} \mu$;

Proof. For any $A, B \in \mathcal{A}$ with $B \subset A$ and $\mu(A-B) = 0$. Let $a_0 \in (C)\pi_F(A)$, there exists $f \in S(F)$ such that

$$a_0 = (C) \int_A f d\mu = e \int_0^\infty \mu(F_\alpha \cap A) d\alpha$$

From the monotonicity of μ , we have $\mu((A - B) \cap F_{\alpha}) = 0$. Since μ is null additive , hence

$$\mu(A \cap F_{\alpha}) = \mu[((A - B) \cap F_{\alpha}) \cup (B \cap F_{\alpha})] = \mu(B \cap F_{\alpha})$$

 So

$$a_0 = \int_0^\infty \mu(F_\alpha \cap B) d\alpha = (C) \int_B f d\mu \in \pi_F(B)$$

Theorem 4.3 Let F is Choquet integrable $.(c)\pi_F \ll_{III_a} \mu;$

Proof. For any $\{A_n\} \subset \mathcal{A}, A_n \downarrow \emptyset$. since $\lim_{n \to \infty} \mu(A_n) = 0$ for any $f \in S(F)$, so

$$\lim_{n \to \infty} \int f d\mu = \lim_{n \to \infty} \int \mu(F_{\alpha} \cap A_n) d\alpha = \int \lim_{n \to \infty} \mu(F_{\alpha} \cap A_n) d\alpha$$

hence

$$\limsup_{n \to \infty} (C)\pi(F)(A_n) = \liminf_{n \to \infty} (C)\pi(F)(A_n) = \{0\}$$

i.e.

$$\lim_{n \to \infty} (C)\pi_F(A_n) = \{0\}.$$

Theorem 4.4 Let F is Choquet integrable. $(C)\pi_F \ll_{IV} \mu$.

Proof. Since F is Choquet integrable, so $(C) \int f d\mu < \infty$ for any $f \in S(F)$, i.e.

$$\int_0^\infty \mu(F_\alpha) d\alpha < \infty$$

Hence for any $\epsilon > 0$, there exits 0 < a < b, such that

$$(C)\int_0^a \mu(F_\alpha)d\alpha + \int_b^\infty \mu(F_\alpha)d\alpha < \frac{\epsilon}{2}$$

 ${\rm Let} \delta = \frac{\epsilon}{2(b-a)}$ and $\mu(A) < \delta$, then for any $f \in S(F)$

$$(C) \int f d\mu = (C) \int_0^\infty \mu(F_\alpha \cap A) d\alpha$$

= $(C) \int_0^a \mu(F_\alpha \cap A) d\alpha + \int_b^\infty \mu(F_\alpha \cap A) d\alpha + \int_a^b \mu(F_\alpha \cap A) d\alpha$
< $\frac{\epsilon}{2} + \mu(F_\alpha \cap A)(b-a)$
< $\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Hence $\pi(A) \subset [0, \epsilon]$.

References

- Wang Z., Klir G.J., Monotone set function defined by Choquet integral, Fuzzy sets and system, 81 (1996) 241-250.
- [2] Ouyang Y., Li J., Some properties of monotone set function defined by Choquet integral, *Journal of southeast university (English Edition)*, Vol.19 No. 4. Dec.(2003)423-426.
- [3] Murofushi T., Sugeno M., A theorem of fuzzy measures: reprentation, the Choquet integral and null sets, J Math Anal Appl. 159 (1991)532-549.
- [4] Jang L.C., Kwon J.S., On the representation of Choquet integral of se-valued functions, and null sets, *Fuzzy set and system*, 112 (2000) 233-239.
- [5] Zhang D., Wang Z. Set-valued Choquet integrals revisited, *Fuzzy Sets and Systems*, 147(2004) 475-485.
- [6] Zhang D., Wang Z., On set-valued fuzzy integrals, *Fuzzy Sets and Systems*, 56 (1993)237-241.
- [7] Guo C., Zhang D. On set-valued fuzzy measures, *Information sciences*, 160 (2004) 13-25.