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Abstract

In this paper, some properties of the monotone set-valued func-
tion defined by the set-valued Choquet integral are discussed. It is
shown that several important structural characteristics of the origi-
nal set function, such as null-additivity, strong order continuity, prop-
erty(S) and pseudometric generating property, etc., are preserved by
the new set-valued function. It is also shown that integrable assump-
tion is inevitable for the preservation of strong order continuous and
pseudometric generating property. Several kind of absolute continuity
of set-valued function with respect to set function are also discussed.
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1 Introduction

Given a measurable space (X, .A), a nonnegative monotone set function
pon A with p(@) = 0, and a nonnegative measurable function f, then the
set function vy defined by the Chouqet integral

0(4) = (©) [ fan (v € A)
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is also nonnegative and monotone on A with v¢(0) = 0[1]. Wang and Klir
([1]) have discussed that vf(A) preserved some important structure char-
acteristics of the original function u, such as null-additivit, subadditivity,
autocontinuity, e.t.c. Ouyang and Li ([2]) further discussed that vy pre-
served other important structure characteristics of u, such as strong order
continuity, order continuity, property(S), pseudometric generating property.

Similarly to the single-valued fuzzy measure, we can define the structural
characteristics for a set-valued fuzzy measure, whether these characteristics
can be preserved by the set-valued set functions defined by set-valued Cho-
quet integral?

In this paper, we give the definition of these characteristics of set-valued
set function, and we prove that a new monotone set-valued function defined
by set-valued Choquet integral also preserved the characteristics of original
set-valued set function. We also discuss several kind of absolute continuity
of set-valued function with respect to set function.

2 Preliminaries

Throughout this paper, we suppose that (X,.4) is a measurable space,
f is a nonnegative measurable function on (X,.A), and p is a monotone set
function with p(@) = 0. RT denotes the interval [0,00], Po(RT)(Ps(RT),
resp.) denotes the class of all nonempty subsets(closed, resp.) of RT.

Definition 2.1 ([3]) The Choquet integral of f on A with respect to p,
denoted by (C) [, fdu, is defined as

© [ san= [ u(pun Ao

where F, = {f > a} = {z|f(x) > a} for any a > 0 and the right-hand side
1s the Lebesgue integral.

Definition 2.2 ([5] ) A set-valued function F : X — Py(R™) is said to be
measurable if its graph is measurable, that is ,

G (F)={(z,r) € X xR" :r € F(z)} € A® Borel(R")

where Borel(R™) is the Borel field of R*. F is said to be closed-valued if it
values in Py(RT)



Definition 2.3 ([4]) A set-valued function F is said to be Choquet integrably
bounded if there is a Choquet integrable function g such that

[F(2)|| = sup |r| < g(x)

reF(z)

Definition 2.4 ([5]) Let F' be a set-valued function and A € A. The Cho-
quet integral of F' on A with respect to p, denote by (C) fA Fdu, is defined
as

(©) [ Fin=4(C) [ paus e 5P}
where S(F) is the family of p-a.e. measurable selection of F.

Instead of (C) [y Fdu, we will write (C) [ Fdu. Obviously, (C) [ Fdu
may be empty. A set-valued function F is said to be integrable existing if
C) [ Fdu # 0, and F is said to be integrable if (C') [ Fdu exists and does
not include oo.

Definition 2.5 ([6]) Let A, B € Po(R"), then A < B means that
(1) For each xo € A,there exists yo € B, such that xo < yo;
(2) For each yg € A,there exists xg € B, such that ¢ < yo.

Definition 2.6 A set-valued function @ : A — Po(RT) is said to be a
monotone set-valued function if it satisfies

(1) w(0) =
(2) A C B implies m(A) < w(B)

Definition 2.7 The set-valued function (C)mp is defined as
(©)me(4) = (©) [ Fau(a e A
A
where Fis a set-valued function with S(F) # 0, u is a monotone set function.

Remark 2.1 By proposition 3.5[5] , we know that (C)wp is a monotone
set-valued function.

Definition 2.8 ([6]) Let {A,} C Po(RT), we write

limsup A, = {zr € R : 2 = klim Ty, Tny, € Ap, (k> 1)}
— 00

n—oo

limiann ={zreR":z= 1im Tn,Tn € Ap (n> 1)}

If lim sup A,, = hm inf A, = A, then {An} is said to be convergent to A

n—oo

and it is stmply noted with A, — A.



Similarly to the single-valued function, we will defined several important
structural characteristics for a set-valued function.

Definition 2.9 Let 7w is a set-valued function.

(1) 7 is called null-additive if for any A, B € A, m(A) = {0} implies
(AU B) = n(B).

(2) 7 is called weakly null-additive if for any A, B € A;n(A) = n(B) =
{0} implies 1(AU B) = {0}.

(3)m is said to be strongly order continuous if for any A, € A, A, | A
and w(A) = {0} implies lim w(A,) = {0}

n—oo

(4) 7 is said to be order continuous if for any {An,} C A, Ay, | 0 implies
lim 7(A,) = {0}

(5) 7 is said to have the property (S) if for any A, € A that satis-
fies lim 7w(A,) = {0} there exists a subsequence {Ay,} C {An} such that
W(klim sup 4,, ) = {0}.

(6) m is said to have the pseudometric generating property, abbreviated

as p.g.p. if for any € > 0, there exists § > 0 such that (AU B) C [0, €]
whenever A, B € A, w(A) C [0,4] and ©(B) C [0,0].

It is easy to prove that the above definition is the generalization of single-
valued case.

3 Preservation of structural characteristics
In this section, we suppose that F is a measurable closed-valued function.

Theorem 3.1 If p is null-additive, then so is (C)7p.

Proof. For any A, Be A with (C)rp(B) = {0}, ie. (C) [ Fdu = {0},
then for any f € S(F), we have (C) [5 fdu = 0. Hence by theorem 7 [1] ,

we have

© [ fap=(0) /A fdu.

AUB
Let ap € (C)mp(A U B), then exists f € S(F), such that

w=(C) [ fin=(©) [ faue Crmra).

Similarly, for by € (C)mp(A), we can prove that by € (C)rrp(AU B).
The proof is completed.



Theorem 3.2 If u is weakly null-additive , then so is (C)mp.

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.3 Let F is integrable. If u is strongly order continuous, then
so is (C)rp.

Proof. For any {A,} C A with A,, | A and (¢)7rp(A) = {0}, then for any
feSF),v(A) = (C)/ fdu =0, hence by Theorem 3.(2) ([2]), we have
A

lim vf(A,) =0, for any f e S(F).

Hence
lim sup(C)(F)(4,) = lim inf(C)(F)(4,) = {0}.
So

lim (C)mp(Ay) = {0}.

n—oo

Theorem 3.4 Let F is integrable. If p is order continuous, then so is
(C)WF

Proof. Similar to Theorem 3.3.

Theorem 3.5 Let F is integrable. If p has p.g.p, then so is (C)mp.

Proof. Since F is integrable, hence (C) [ fdu < oco. Since p have p.g.p.,
there exists 0 > 0, such that u(E U F) < € whenever E, F' € A and u(E) Vv
p(F) < 6.

We will prove that (C)mp(AUB) C [0, €] whenever A, B € A, (¢)rp(A) C
[0,0] and (¢)wp(B) C [0,6]. In fact, for any f € S(F), we have (C) [, fduV
(C) [ fdu < &, by Theorem 5 ([2]), we have (C) [, 5 fdp < e. Hence(C)mp(AU
B) C [0,€].

Remark 3.1 Observe that Theorem 3.3 to Theorem 3.5 are based on the
assumption that F is integrable. The following examples show that the
conclusions in Theorem 3.3 to Theorem 3.5 may not be true when the as-
sumption is abandoned.

Example 3.1 Let X ={1,2,...,}, A=P(X). p is defined as
0, E = ®7

w(E) =
max{l/ili € E}, FE #0.

!



It is easy to see that p is strongly order continuous (so p is order
continuous) monotone set function. Let FI(X) = {z}(z € X), then we have
(C)rp(X) = {0}, hence F is not Choquet integrable. we will show that
(C)mF is not order continuous (so (C)7p is not strongly order continuous).

In fact, let E, = {n,n+1,...,}, then E,, | 0. For any f € S(F),
flz) =z

oo n
(0)/ Fdp = / (B 0 Ey)do > / (B 0 Ey)do = 1.
E, 0 0

Hence (C)7p is not order continuous.

Example 3.2 Let X7 ={1,3,...,}, X2 ={2,4,..}, X = X; X3, A = P(X).
1 is defined as

0, it E=0,
w(E) =14 max{l/i®li € E}, if E€ XjorXy

max{l/ili € E}, otherwise
It is easy to see that p have p.g.p.. Let F(X) = {z}(x € X), then we
have (C)mp(X) = {oo}, hence F is not Choquet integrable. we will show
that (C)mr do not have p.g.p..
Let A, = {2n}, B,, = {2n + 1},then
oo 2n
(C)/ fdp = / w(Ap N Fy)do = / 1/(2n)%da = 1/2n — 0(n — o0)
An 0 0

Similarly,
© [ fdu—0 (n— o)
Br
But

(©) /A g = /0 1((An U By 1 Fa)da

2n+2

2n
_ / 1((An U By) 0 Fy)dor + / 1((An U By) 0 Fy)do
0 2n+1

2n+2

2n
= / 1/2nd0<—|—/ 1/(2n + 1)%da
0 2

n—+1

= 1+1/2n+1)% = 1(n — o).



Hence (C)7p do not have p.g.p..

Theorem 3.6 Let F is Choquet bounded and p is continuous . If u have
property (S), then so is (C)rp.

Proof. For any For any {A,} C A with lim (C)np(A,) = {0}, we have

lim d(0,(C)rrp(Ay)) =0

n—oo
i.e.

lim inf rcg(p) / fdu =0

n—oo

Then from the definition of limit inferior, we have that

lim (C) / Frgmn = i 1C) [ fdul fu,y € SP)

m~>c>o feS(F)

Since F is integrably bounded , so there exists a Choquet integrable function
g , such that | f(z) |< g(x) for any f € S(F'). Hence we have

lim (C’)/ Jrmy A = (C’)/ im fn,.,d

Denote fy = lim fn(m)d,u,7 then lim ( fA fodu = 0. By Theorem 2 in
m—0o0 n—oo
[2], there exists {A,, } C Ay, such that vy, (hlgn supAp,) = 0. ie.

© [ = [ alimsup Ay, 0 {fo 2 o) =
lim supAn, 0 k
Hence for any ag > 0, we have
,u(liin supAp, N{fo>a})=0 a.e.
Denote By, = Ap, N{fo > ap}, then
u(limksup B,,)=0 a.e.
Therefore, for any f € S(F)

© [ g, J1= [ ttimsup 4, 147 = ap) =

Hence
(C)mp(limsup By, ) = {0}.
k



Definition 3.1 ([3]) A set N € A is called a null set (with respect to u) if
p(AUN) = u(A), for all A € A.

Definition 3.2 ([3]) A fuzzy measure p is said to be m-continuous if there
exists a complete and finite measure m, such that p < m, i.e. m(A)=0
implies A is a null set (with respect to ).

Lemma 1 (C) [, Fdu = (C) [ X4 o Fdp where X4 is the characteristic
function of A, and

F(z), =z€A,
XA OF(%) =

0, otherwise.

Proof. It is easy to be proved.

Theorem 3.7 Let u is m-continuous and F is Choquet integrable bounded.
If u is continuous, then so is (C)7p.

Proof. It is similar to the proof of Proposition 3 in [7].

4  Absolutely continuity

Absolutely plays an important role in measure theorem, we expect that
most of the classical results, such as Radon-Nikodym theorem, etc., remain
valid for monotone set-valued function. In this section, we will introduce
several absolutely continuous.

Definition 4.1 Let p is a set function and 7 is a set-valued function , we
say that

(1) 7 is absolutely continuous of type I with respect to n, denote by
T L1 W, if and only if m(A) = {0} whenever u(A) = 0.

(2) m is absolutely continuous of type II with respect to p, denote by
T L1, W, if and only if m(A) = n(B) whenever BCA and u(A\ B) = 0.

(3) 7 is absolutely continuous of type III with respect to u, denote by
T <L 111, K, if and only intLIgo w(Ayn) = {0} whenever A, | O and nh_)n()l() u(Ay) =
0

(4) 7 is absolutely continuous of type IV with respect to u, denote by
T L1v [, if and only if for any € > 0, there exists § > 0, such that w(A) C
[0, €] whenever u(A) < 9.



Theorem 4.1 (¢)7p <1 p.
Proof. For any A € A with u(A) =0 . Then for any f € S(F)

© [ fan= [ 4 Fajda =0
Hence (C)np(A) = 0.

Theorem 4.2 If p is null additive,then (C)rp <1, 14;

Proof. For any A, B € Awith B C Aand u(A—B) = 0. Let ag € (C)nr(A),
there exists f € S(F') such that

a0 = (C) /A fdp = e/ooo,u(Fa N A)da

From the monotonicity of u, we have u((A — B) N F,) = 0. Since  is null
additive , hence

M(AmFoa):M[((A_B)mFa)U(BmFa)]:M(BmFa)
So -
aop :/0 w(Fo N B)da = (C)/de,LLEﬂ'F(B)

Theorem 4.3 Let F is Choquet integrable .(c)mp < 11, 1t
Proof. For any {A4,} C A, A, | 0. since lim u(A,) =0 for any f € S(F),
n—oo

SO
lim /fd,u = lim /M(Fa NA,)da :/ lim pu(F, N Ap)da
hence
limsup(C)7w(F)(A,) = liminf(C)n(F)(A,) = {0}
ie.

lim (C)mp(Ay) = {0}.

n—oo
Theorem 4.4 Let F is Choquet integrable. (C)mp <y ji-

Proof. Since F is Choquet integrable, so (C) [ fdu < oo for any f € S(F),
ie.

/ pu(Fo)da < 0o
0



Hence for any € > 0, there exits 0 < a < b, such that

(©) /Oa w(Fa)da + /boo (Fa)da < %

Letd = s+5—

sp—ay and p(A) <6 , then for any f € S(F)

[ s = © [ utFa A)da
a [e9) b
= (C’)/O M(FaﬂA)da—i—/b M(FQDA)da+/CL w(Fy N A)da
< %Jru(FaﬂA)(b—a)
< %—l—%:e

Hence 7(A) C [0, €].
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