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Abstract

A stopping game problem is formulated by cooperating with fuzzy stopping
time in a decision environment. The dynamic fuzzy system is a fuzzification
version of a deterministic dynamic system and the move of the game 1s a fuzzy
relation connecting between two fuzzy states. We define a fuzzy stopping time
using several degrees of levels and instances under a monotonicity property,
then an “‘expectation” of the terminal fuzzy state via the stopping time. By
inducing a scalarization function (a linear ranking function) as a payoff for the
game problem we will evaluate the expectation of the terminal fuzzy state. In
particular, a two-person zero-sum game is considered in case its state space
is a fuzzy set and a payolff is ordered in a sense of the fuzzy max order. For
both players. our aim is to find the equilibrium point of a payoff function. The
approach depends on the interval analysis, that is, manipulating a class of sets
arising from a-cut of fuzzy sets. We construct an equilibrium fuzzy stopping
time under some conditons.
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1 Introduction

Optimal stopping on stochastic processes contributes to an essential problem in the
sequential decision problem. It is a simple and interesting one because its decision
has only two forms, that is, stop or continue. Their applications by many authors
are well-known to various fields. economics, engineering etc. The game version
of the stopping problem was originated by Dynkin (2] and then Neveu [3] whose
pioneering work is named Dynkin Game. See [13,11,5] for more references. The
results are described clearly and are very attractive, however, we cannot avoid an

uncertainty modeling the real problem.

On the other hand the fuzzy theory was founded by Zadeh [17] and then there
have been many papers on applications and modeling for extending the results of
the classical systems. For example, the fuzzy random variable was studied by Puri
and Ralescu 1n [9].

Here we will discuss a stopping problem concerned with dynamical fuzzy
systems. The main discussion is regarding the following two points: One 1s to
define a game value in the zero-sum matrix game under fuzzification and the
next is to formulate a fuzzy stopping game using this fuzzy game value for the
sequence.

Dynamic fuzzy systems [6] are an extension of Markov decision processes
induced by fuzzy configuration. That is, the transition law depending on the state
and the action corresponds to a fuzzy relational equation.

In Section 1 the formulation of the fuzzy dynamic system (FDS) and the fuzzy
stopping time (FST) are described in order to define a composition of FDS and
FST. This base process corresponds to each player’s payoff and will be evaluated
using the following scalarization called a linear ranking function. In Section 2
we define a game value of a matrix whose elements are fuzzy numbers. A fuzzy
stopping model is formulated in Section 3, provided by the previous notons. Also
the equilibrium strategy of the model and its game value are obtained under a

suitable assumption.

1.1 Preliminaries on Fuzzy Sets

A brief sketch of the notation using here is given as follows: A fuzzy set a =
a(x): x € R — [0, 1] on R is normal, upper semi-continuous, fuzzy convex such
thata(Ax + (1 — A)y) > min{a(x), a(y)) for A € [0, 1]. It may be called a fuzzy
number instead of fuzzy set because we are considering the real number of the
space R. The operation of sum + and a scalar product - for fuzzy sets are defined
by (@ + b)(x) := Sup,_y, 41, {@(x1) A b(x2)} and (A - @)(x) := a(x/A) if A >
0.:=1y0)(x) if A =0, where A = min and 1{,) means the characteristic function.
The a-cut (o € [0, 1]) of the fuzzy set a is denoted by

ay '={x e E|alkx) > a}) (¢ > 0) (1)
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and ap := cl{x € E | a(x) > 0}. where ‘cl’ denotes the closure of a set. We
frequently use the a-cut in order to define the model and analyze an existence of

strategies.
If the operations +, - for any non-empty closed intervals A, B in R are defined

as A + B = {x+y|lx €A yeB})A-A:={Ax| x € A} and especially
A+ =0+ A := Aand A .0 := @, then the following two properties are
known.

(1) (Interchanges) Interchanging the operation for fuzzy sets and a-cut is useful in
the following discussion. (@+b)q = @g + by and (A-@)q = A-dy (@ € [0, 1])
holds.

(2) (Relation between a-cuts and a fuzzy set) The relation between a fuzzy sét

and its -cut a(x) = sup, {a A 1z, (x)}. x € R, holds.

The following construction of a fuzzy set from a family of subsets was given
by Zadeh [17]. So when the family of subsets is given, it can be constructed as a
fuzzy set provided the condition are satisfied.

Proposition 1.1. (Répresentation Theorem) For a given family of {My} in R, if
(iJ)a <= My D Mg (ii)a, t a = Mg =[), Mg, then there exists a fuzzy
set M (x) such that

M(x) = sup{a A 1, (x)) 2)

for x € R

There are special fuzzy sets, whose «a-cuts become closed intervals as follows:

(1) Interval case: There exist two real numbers such that

o

d, = {xeR|a <x<all

where a} = [a]} = sup{x|a(x) > @} and @, = [a]; = inf{x]a(x) > a}.
(i1) Triangular-type symmetric L-fuzzy number: (a) L(x) = L(—x), (b) L(x) =
l == x=0,(c)L{x) ! 0 (x 7 00), (d) its support is finite.

For an example, if

F(x) = L({(m—x)/k) if, x>m
" | L((x —m)/k) otherwise,
where L(x) := max{1 — |x|, 0}, then its a-cut equals to

dy ={xeR|m—-(1-a)k<x<m+(l —ak).

The number m is called a center and & is a spread.
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1.2 Fuzzy Dynamic System (FDS)

A fuzzy dynamic system is a sequence of fuzzy states generated by the pair of
an initial state 5(x) and a convex fuzzy relation g(x, y). The state space herein
is R = (—00, 00) of real numbers and an initial fuzzy set i1s a fuzzy number

5 = 5(x), x € R. These are assumed to be given.
Then a finite sequence {5;; ¢ = |, 2. ..., N}is generated by the fuzzy transition

law Q recursively as

| :=?,

Se+1 := Q) = sup{s(x) Agq(x. y)},

xelR

3)

where ¢ = g(x. y) : R x R — [0, 1] is a convex fuzzy relation, that is. a fuzzy
number defined by two variables, which satisfies

g(Axy + (1 — Mx2. Ayr + (1 = X)y2) > g(x1, y1) A q(x2, y2) (4)

for x;, x2, y1.y2 € Rand A € [0, 1].
We call the sequence {s;,r = 1,2, ... . N} a fuzzy dynamic system.

1.3 Fuzzy Stopping Time (FST)

A fuzzy stopping time ¢ = & (t) on a time-index sett € {1,2, ..., N} is

(a) afuzzy number (set) on {1,2,..., N},

(b) and non-increasing, that 1s,
o(t)>o0(s) for 1 <r<s<N (5)

with ¢ (1) = 1. The interpretation of a fuzzy stopping time o means a degree
of continuity, explicitly as the next three kinds

e o(t) = 1 is to continue at time ¢,

e 0(1) =a (0 < ¢ < 1) is an intensity of degree for continuity with level «
and degree for stopping with level 1 — «,

e o(t) = 01s to stop at tume ¢.

Since the real value o (¢) fort € {1.2,... N} should decrease with time, we
impose the requirement of (b). By the definition of a-cut for o, clearly

o ={1.2....,0q} (6)

provided that oy := max{t € N | o(t) > a} for0 < aandgg :=cl{t € N |
o (1) > 0} sothat 0,(0 < a < 1) isaconnected subsetof {1.2,...,N}.
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1.4 Composition of FDS and FST

Now we consider, by using a-cut and then a representation theorem. a composition
of {5/}, {6 ()} fort = 1,2,..., N which are the fuzzy dynamic system (FDS)
and the fuzzy stopping time(FST) respectively. ‘

Because a-cut of a fuzzy set s on R equals a closed interval, denoted by the
superscript 0, O,

?a — G;}:]

Conversely, if a family [5,5F]), 0 < « < 1, of bounded closed sub-intervals in
R is given, we can construct a fuzzy numbers = 5(x), x € R by

s(x) = sup {aA o =-(0)}. x e R.
a€l0,1] * e

Definition 1.2. A composed fuzzy system 5; = 5;(x). x € R for a pair of a
fuzzy dynamic system and a fuzzy stopping time (5;,0(t)), t = 1,2,... . N, is
defined in the following two steps:

Step 1. For each «a, if a-cut of a fuzzy stopping time ¢ is {1,2, ... ,t},1.e. 6y =
{1,2....,t}, then we define a-cut of a composed fuzzy system 55 by
(E&)cx = ?5,11 = ?f.a = [E;'-at F:q]* (7)

Step 2. By letting Sy := 55 o, @ € [0, 1], the presentation theorem is applied to a
family of S,:

L

55 (x) :

sup {x¢ Alg (x)}, x e R. (8)
aelf0,1]

Thus a composed fuzzy system s; of FDS {s;;r = 1,2,...,N) and FST
(oc(t);t=1,2,..., N}is obtained. -

2 Game Value for Fuzzy Matrix Game

The usual sequential decision problems consist of several decisions but the sim-
plest one is two cases, that is, Stopping problem - 2-decision (Stop, Conti). Con-
sidering the straightforward version in a two-person zero sum game for players
PL(max), PLj;(min), one may adapt the following problem: When either of
the player declares “stop”, then the system stops and each can get rewards. In case
of this stop rule the next three cases occur,

(Stop. Stop) (Stop, Conti))

Decision table of (PL;, PL;;) = |
(Conti, Stop) Next
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and the corresponding value of the matrix game (zero sum) is

res,s) 7(s.C
v, = val S o1 =1,2...
ra,s) Vi+l

where v, is a payoff at time 7 and val means a value of the matrix provided their
payoffs r(. . are given.

From now we will consider the fuzzy version of this sequential decision problem.
First define a value of matrix whose elements are fuzzy numbers.

2.1 Fuzzy Game Value

Definition 2.1. For a matrix A with each (i, j) element g;; = a;j(x),x € R. is
a fuzzy number, define

~ o~ o~ ~ (an a2
val(A) = val(A)(x) =val{ . . | (x) (9)
azr 4z
as amap x € R —— [0, 1] in the following steps.
Step 1. For 0 < o < 1, let the a-cut of each element (Eff)a = [ai}, a,f;] and

define the a-cut of the matrix by

-+ -+
[ay;. ap} ] [‘112*“12])

- 4+ -+
[az;. a51] [ay,, ap,]

Za = (@fj)a) = (

Step 2. For each i, j, two real numbers a; i

the matrix game
val (aa) and val (a;;)

x
t

+ .
a;; € (@;j)a. consider each value of

o

das mjnj madx; (a‘.j) = Mmax; minj (a ) in the usual sense.

Step 3. Using these values, define a closed interval, denoted by val (Za), as

] - = g- at - at\’
val(Ay) = [ual (ag) , val (a‘j)] = | val ( I 12)  val ( }l_l f)
i 91 922/ _

ay1 Q39 22

for each .

Step 4. Construct a fuzzy set (number) val (Z Yon R from a family of {val (Za ): 0 <
a < 1)as

JEI(Z)(x) = sup {ax A lwl(;a)(x)}
ae(0,1]

forx € R.
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Proposition 2.1. From the definition of val, it holds that
(U;Z(Z))a = val(za). (10)

Proof. From the definition of the a-cut of val. the result is immediately obtained.

A fuzzy max order (Ramik and Rimének [10]), between fuzzy numbers is a
partial order which defined by the order for interval of e-cut in fuzzy numbers.

Definition 2.2. For two fuzzy numbers in R, b < @ if and only if the next
inequality b7 < a7 and b“" < g hold in both for all c.

Proposition 2.2. (Special case with order of elements) If A = (i 2) with

b<a<¢ (11)

where < means a fuzzy max order, then

b if d=<b
val(A) = {d if b=<d<?C (12)
¢ if T=d.

Proof. The proof depends on the usual case that a matrix game with each element
is a real number. Because of assumption (11) the game has a pure strategy and
the element “@” / (Stop,Stop) does not become an equilibrium. So this result 1s
extended easily to the interval version and this fuzzy value. n

2.2 A Linear Ranking Function (Scalarization)

In this section we will discuss the evaluation for a fuzzy set. This leads us to define

an objective function and an equilibrium strategy for each player.
The first is to consider a function of the scalarization (evaluation) from an interval
to a real number. Let a map g from an interval in R to R which satisties

(1) g(A+ B) = g(A) + g(B),
(i) g(AA) = Ag(A), A > 0,
(iii)) A = [a1,a2] = a) < g([ay, a2]) < aa.

This map is called a linear ranking function (Fortemps and Roubens [4]) and 1t
is adapted to the correspondence from the «-cut of a fuzzy number to its reduced-
scalar.

Lemma 2.1. The following three assertions are equivalent.

(a) A map g is a linear ranking function.
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(b) (Affine property) For A > 0. u,
gA[0. 1]+ ) = Ag({0. 1]) + wt.
(c) By letting k := g([0, 1]).

gllay. az]) = a1 (1 — k) + axk.

Lemma 2.2. If a < b, then ||a|lg < ||blly where

]
”E”g :=L g(ay) da. (13)

3 A Fuzzy Stopping Game and Equilibrium Strategies

Our stopping model for the zero-sum case is based on FDS in Section 1.2 and the
linear ranking function in Section 2.2 for its evaluation in order to define an objec-
tive function and discuss an equilibrium strategy. The data are generated sequen-
tially to define the model by fuzzy transition laws Q, FDS {~: 1 =1,2,...,N}.
A stopping strategy is a pair of FSTs o;, o4 defined by (5). Assocmted W1th a stop-
ping strategy, we consider a payoff function and thus an equilibrium of the integral

(16).
(1) Initial fuzzy state defined on R:
r(s.5): (C.8): T(5.C)

where (. ) = 7. )(x), x € R.
(2) Fuzzy translation law:

Q.5 Q.5 Q.o

where fuzzy translation laws Q. .y are generated by some convex fuzzy rela-
tions g¢...)(x, ¥), x,y € R.
(3) FDS [?'('_'_): t =1,2,..., N} generated by Q similar to (3):

~t ~1 ~1 .
(5,8 T(c.8) 7(s.0)

where

(14)

(4) Stopping strategy: Two ESTs &, 6; for each play'er defined by (5).
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(5) Payoft function: R (o7, 071) whose «-cuts are

~1 . - ~
r(C.S).cr if 1= Ola £ 01,
oF,

RG1.61)a = {Flg 010 if 1 =610 <614, (15)

(6) Objective functions:

min max | R(&;. 611)llg and max min [|[R(S7. 677)lg
grr 0Oy ] g O}l

where

Pt 1 At
IR(ar.011)llg i=f0 g(R(o1,011)q)de (16)

with a given linear ranking function g similar to (13).

Thus we have defined a stopping game problem for dynamic fuzzy systems and
we shall look for the equilibrium of (16). In order to avoid analytical difficulty, the
game values for the zero-sum matrix are restricted within only pure strategies, that
1s, this is enough to consider the class of FST. Referto [13]. Explicitly we need
the following assumption, which is assumed in several papers [3,5] as

Assumption 3.1. (Dynkin Game) For eacht,

~ ~1 ~1 '
ris.c) 27,5 3.5y (17)
Consider the next in backward induction
~ [ r!
Go=val [ ) OOV =N—1 200 (18)
fc.sy Ur+l
by val in a fuzzy sense of (9) and
?IN p—— ?}{JS‘S’).

Lemma3.l. (i) Fort=N—-1,...,2, 1, and each c.

8(ris.s)«) 8T(s.0).a)
g(Urq) = val [ ° ke © e (19)
3(;('(;"5),,_-,) g(VUr+1,a) |
by the scalarization. Here val means in the normal usage.
(ii) Fort=N—-1,...,2,1,
~ "?ES S) "g ”?ES C) ”g
Jvellg = val | ™ ~
”r(c"g)"g [ve+1lg
IFis.oplle i Wisillg < 175 oy llg (20)
— ||Fr+l”g if ”'F(IS'C) "g < ||Ut+l ”g = "?EC.S) ”g

~z » o
”r(cls)”g if ”?EC,S)HS < llve+1llg-
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Definition 3.1. For each «,

07 o = inf{l <t < N|g(Wa) < 8 (s5.c)a)): 1)
G}'} o inf{l <t <N g(ﬁt.cr) > gG:EC,S).a)}*
and define
o =a5(t) := SE}P”{Q’ Alpgq; 1(0)},
aegjy,
_ ) (22)
G =67;(t) == sup {@Alpgr (1))
ac[0,1] '

fortr=1,2,...,N.

- The next assumption is too technical. However we have to induce the class of
strategy under the fuzzy configuration as a class of FST that needs to be well
defined as (5).

Assumption 3.2. (Regularity of strategy) Each epoch of a}':a, 01 1D (21)
decrease monotonically in a € [0, 1].

Theorem 3.1. Under Assumptions 3.1 and 3.2,

supinf | R(67.611)llg = inf sup | R(Gy. 511l (23)

gy ol oIl &

holds and its equilibrium strategy a; ,. o}, , for each player satisfies

IR@G) .65 e = 1Tl (24)

Proof. The proof i1s immediately obtained from the previous assumptions and
lemmas. u

Remark 3.1. Here we do not show a concrete example, however, there are many
examples 1n the crisp case, that is, « = 1. Thus the assumptions are satisfied in

the ordinary case.

Remark 3.2.  An infinitely planned horizon case, should be considered a fixed
point concerned with the fuzzy relational equation (18) of val. Details are not
discussed in this paper.
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