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Abstract

Some asymptotic properties of point estimation with n-dimensional
fuzzy data with respect to a special L2-metric ρ are investigated in this
paper. It is shown that the collection of all n-dimensional fuzzy data
endowed with the ρ-metric is a complete and separable space. Some
criterions for point estimation in such fuzzy environments are proposed
and the sample mean and variance and covariance with n-dimensional
fuzzy data under these criterions are further studied.
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1 Introduction

The theory of statistical inference with vague data has been developed exten-
sively in recent years (see Feng(2001), Kruse and Meyer(1987), Körner(1997,
2000), Näther(1997,2000), Lubiano et al (2000) etc. and their references).
Kruse and Meyer(1987) investigated some asymptotical statistics with one-
dimensional fuzzy random variables with respect to the Hausdorff metric.
Extension of it to n-dimensional fuzzy random variables has been discussed
by Näther(2000) preliminarily, and some results like that the sample mean
and variance with n-dimensional fuzzy data are consistent unbiased esti-
mators of the expectation and variance of population concerned in a fuzzy
observation had been obtained via a SLLN (Strong Law of Large Number)
of fuzzy random variables given by Klement et al.(1986).
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Also a ρ-metric as a unification of different metric applied in statistical
inference with fuzzy data was introduced by Näther(2000). As far as we are
aware there is a few literatures on the properties of statistical estimation
with n-dimensional fuzzy data under this metric ρ. Some SLLN for fuzzy
random variables have been achieved under some metric such as d1, dp and
ρp, 1 ≤ p < ∞ (see Diamond and Kloeden (1994)), and recently under d∞,
(see Proske(1998), Molchanov(1999), Colubi et al.(1999)).

Based on the results mentioned above we re-examin some asymptotic
properties of point estimation with n-dimensional fuzzy data under this ρ-
metric in this paper. The rest of this article is orgnized as follows. In section
2 we recall some definitions and results which will be used in the sequel, some
criterions such as unbiasedness, consistency, uniform mean square error,
uniform minimum variance unbiasedness as well as efficiency for estimation
with n-dimensional fuzzy data under ρ-metric are re-defined. In section 3
we investigate the structure of space (En(K), ρ), and with these criterions
some asymptotic properties and statistical relations of the sample mean and
variance with n-dimensional fuzzy data are further studied.

2 Preliminaries

In this section,we give some notions for fuzzy random variables and fuzzy
random samples.

Definition 1. A map u : Rn → [0, 1] is called a normal compact convex
fuzzy set of Rn, if u satisfies (i) u is normal, i.e. {x ∈ Rn|u(x) = 1} 6= φ;
(ii) ∀α ∈ (0, 1], [u]α := {x ∈ Rn|u(x) ≥ α} is compact and convex; (iii)
[u]0 := cl{x ∈ Rn|u(x) > 0}, the support of u, is compact.

The set of all normal compact convex fuzzy sets of Rn is denoted by En.
The addition and scalar multiplication in En are defined by

(u + v)(z) = sup
x+y=z

min{u(x), v(y)}, ∀z ∈ Rn

au(x) = u(x/a), (a 6= 0), x ∈ Rn

0u(x) = 0(x) =
{

1, x = 0,
0, x 6= 0

where u, v ∈ En, a ∈ R. It is easy to check that [u+v]α = [u]α+[v]α, [au]α =
a[u]α.

Note that the space (En,+, ·) is not a linear space under Minkovski
addition + and scalar multiplication · .

Definition 2. For a normal compact convex fuzzy set u, the map u∗ :
Sn−1 × [0, 1] → R, i.e. (x, α) 7→ sup{x · a|a ∈ [u]α}, x ∈ Sn−1 is called
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a support function of u, where · is the inner product in Rn, Sn−1 the n-
dimensional unit sphere {x ∈ Rn| ‖ x ‖= 1} in Rn and [u]α is α-cut of u for
α ∈ [0, 1].

For a non-fuzzy set B, the support function of which is uniquely deter-
mined as B∗(x) := sup{x · b|b ∈ B}, x ∈ Sn−1 provided B is compact and
convex. En can be embedded in a space of functions on Sn−1× [0, 1] via the
support function, namely, the mapping u → u∗ is an isomophism of En on to
the cone of continuous functions on Sn−1 × [0, 1] preserving the semi-linear
structure

(λu + µv)∗ = λu∗ + µv∗, λ ≥ 0, µ ≥ 0.

and u, v ∈ En. For further details on the properties of support function of
a set the reader is referred to Näther(2001) and its references.

It is known that there are various definitions of distance between two
normal compact convex fuzzy sets such as dp, ρp, d∞, 1 ≤ p < ∞ as follows:
For u, v ∈ En

dp(u, v) =

(∫ 1

0
(dH([u]α, [v]α))pdα

)1/p

,

ρp(u, v) =

(∫ 1

0
(δp([u]α, [v]α))pdα

)1/p

,

d∞(u, v) = supα∈(0,1]{dH([u]α, [v]α)}
where dH is the Hausdorff metric, i.e.

dH(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖, sup
y∈B

inf
x∈A

‖x− y‖}

and

δp(A,B) =

(∫

Sn−1

|A∗(x)−B∗(x)|pµ(dx)

)1/p

for compact sets A,B ⊂ Rn.

However, we are interested in the metric ρ proposed by Näther(2000),
since some metrics applied in a statistical inference with vague data could
be unified.

Definition 3(Näther (2000)). For any two u, v ∈ En, the distance ρ between
u and v is defined as

ρ(u, v)

:=
(∫∫∫∫

S
{(u∗ − v∗)(x, α)} {(u∗ − v∗)(y, β)} dK(x, α, y, β)

)1/2

where S = Sn−1 × [0, 1]× Sn−1 × [0, 1] and K is a symmetric and positive
definite kernel. The distance ρ satisfies the following properties:
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(i) ρ(tu, tv) = tρ(u, v), t ≥ 0;

(ii) ρ(u + w, v + w) = ρ(u, v);

(iii) ρ(u + v, u1 + v1) ≤ ρ(u, u1) + ρ(v, v1) + 2(u− u1)¯ (v − v1).

where

(u− u1)¯ (v − v1)

:=
(∫∫∫∫

S
{(u∗ − u∗1)(x, α)} {(v∗ − v∗1)(y, β)} dK(x, α, y, β)

)1/2

.

Note that dp is equivalent to ρp (Diamond and Kloeden(1994)) and for
each nonempty compact subset C of Rn both (En(C), dp), (En(C), ρp) are
complete and separable metric space, where En(C) := {u ∈ En : [u]0 ⊆ C}.
Later in section 3 we prove that (En(C), ρ) also be a complete and separable
metric space.

Definition 4. Let (Ω,A,P) be a complete probability space, Rn,B) be a
measurable space. The mapping X : Ω → En is called a fuzzy random vari-
able if X satisfies that for any measurable subset D ∈ Rn, {ω|Xα(ω)

⋂
D 6=

φ} ∈ A, where Xα(ω) := {x ∈ Rn|X(ω)(x) ≥ α} = [X(ω)]α, α ∈ [0, 1],
ω ∈ Ω. All fuzzy random variables from Ω to En is denoted by L(Ω, En).

Puri and Ralescu(1986) have proposed an expectation of fuzzy random
variables, an advantage of which lies in its linear property.

Definition 5. The expectation EX of a fuzzy random variable X is a normal
compact fuzzy set of Rn with the property of

(EX)α = EXα, ∀α ∈ [0, 1], EX∗ < ∞,

where EXα is the Aumann-expectation of the random set Xα defined by

EXα = {Eη | η(ω) ∈ Xα(ω) a.e., η ∈ L(Ω,R)}

here L(Ω,R) is the set of all real random variables with existing expectation
defined on Ω.

Note that in the case of one dimensional fuzzy random variables the
expectation described above is same as the expectation of fuzzy random
variables proposed by Kruse and Meyer(1987), and also Feng(2001).

There are several different definitions on variance of fuzzy random vari-
ables (see Kruse and Meyer(1987), Feng(2001), Körner(1997) etc.). In our
case, by the definition of fuzzy random variables in this paper, we favuor
that the variance of fuzzy random variables (here the fuzzy random vari-
ables are different from that of Kwakernaak-Kruse-Meyer) is an accurate
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measure of the spread or dispersion of the fuzzy random variables about its
mean from a viewpoint of the essentiality of the classical variance, also the
covariance or the correlation coefficient of two fuzzy random variables must
measure their linear interdependence, they should have no fuzziness.

Definition 6. Let X ∈ L(Ω, En) and E‖X‖2
ρ < ∞. The variance V ar(X)

of X is defined as Var(X) := Eρ2(X,EX) where ‖X‖ρ = ρ(X, {0}).
Feng (2001) proposed a variance under the metric d2 for the one dimen-

sional fuzzy random variables, which can be viewed as a special case of the
variance in definition 6 approximately.

Lemma 2.1. (Näther (2001)). If X ∈ L(Ω, En) then (EX)∗ = EX∗ and

V ar(X) =
∫∫∫∫

S
Cov(X∗(x, α), X∗(y, β))dK(x, α, y, β).

For the fuzzy random variables X and Y , let 〈X, Y 〉 be

〈X, Y 〉 :=
∫∫∫∫

S
X∗(x, α)Y ∗(y, β)dK(x, α, y, β),

where S = Sn−1 × [0, 1]× Sn−1 × [0, 1], then 〈X, Y 〉 is a ”real” random
variable and the variance, covariance of the fuzzy random variables can be
defind in a similar form as

(i) Cov(X, Y ) := E〈X, Y 〉 − 〈EX,EY 〉;
(ii) Var(X) = E〈X, X〉 − 〈EX,EX〉 ;

(iii) R(X, Y ) := Cov(X, Y )/
√

Var(X)Var(Y ).

It is easy to prove that the operation 〈·, ·〉 posseses the following properties:

(i) 〈X, X〉 = ‖X‖2
ρ is a non-negative real valued random variable.

(ii) 〈X, Y 〉 = 〈Y, X〉,
(iii) 〈λX + µY, Z〉 = λ〈X, Z〉+ µ〈X, Z〉,

where X, Y , Z ∈ L(Ω, En) and λ, µ ∈ [0,∞).

Lemma 2.2. (Näther(2000), Feng(2001)). Let X, Y be fuzzy random vari-
ables with E‖X‖2

ρ < ∞, Then for any positive squared integrable random
variable ξ, any a ∈ En and any real numbers λ, µ it holds that

(1) E(λX + µY ) = λEX + µEY ,

(2) E(λX · µY ) = λµEXEY if X and Y are independent (fuzzy random
variable X and Y are independent if and only if Xα and Yα are inde-
pendent random sets, α ∈ [0, 1]),
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(3) Var(X) = E ‖ X ‖2
ρ − ‖ EX ‖2

ρ,

(4) Var(λX) = λ2VarX, λ > 0,

(5) Var(ξa) =‖ a ‖2
ρ V arξ,

(6) Var(a + X) = VarX,

(7) Var(ξX) = E ‖ X ‖2
ρ Var(ξ)+Eξ2Var(X) if ξ and X are independent,

(8) Var(X + Y ) = Var(X) + Var(Y ) if X and Y are independent,

(9) Cov(X, Y ) = 0 if X and Y are independent,

(10) Cov(λX + u, µY + v) = λµCov(X, Y ) where λµ ≥ 0.

Let X1, . . . , Xm be a simple random samples (or n-dimensional fuzzy
data) of size m from a population represented by a fuzzy random variable
X, namely, X1, . . . , Xm are independent and identically distributed (i.i.d.)
with X. Let θ be an unknown parameter with respect to the distribution of
X and let Tm be a statistic with respect to the random sample X1, . . . , Xm

from the fuzzy random variable X and Tm can be used to estimate the
unknown parameter θ.
Remark 2.1. (1). Tm can be obtained from a given ordinary statistic de-
pending real random sample by using Zadeh’s extension principle.
(2).The distribution of the fuzzy random variable X here means that theo-
retically there exist a distribution for the fuzzy random variable X, however,
it is not easy to define a concrete distribution for X in detail. we favour
that the distribution of a fuzzy random varible defined in this paper can be
followed as a capacity functional of a random compact set (cf. Matheron
(1975) , Molchanov (1998)).
(3). The concerned unknown parameter θ in the distribution of the popula-
tion X is assumed as a fuzzy set on the parameter space.

Definition 7. Tm(X1, . . . , Xm) is called

(i) an unbiased estimator for θ in ρ if it satisfies

E(Tm(X1, . . . , Xm)) = θ;

(ii) a weak consistent estimator for θ in ρ if it satisfies

lim
m→∞P (ρ(Tm(X1, . . . , Xm), θ) > ε) = 0 for any ε > 0.

(iii) a strong consistent estimator for θ in ρ if it satisfies

ρ(Tm(X1, . . . , Xm), θ) → 0 a.s. (m →∞)
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(iv) A sequence {Tm} of estimators with respect to random samples from
fuzzy random variable X is called a uniform mean square error esti-
mator for unknown fuzzy parameter θ in ρ if

lim
m→∞E(ρ2(Tm, θ)) = 0

.

For the random variable ρ(T (X1, . . . , Xm), θ) provided whose expecta-
tion exist, the Tchebyshev inequality obviously holds, i.e.

P ({ρ(Tm(X1, . . . , Xm), θ) > ε}) ≤ Eρ2(Tm(X1, . . . , Xm), θ)
ε2

for any ε > 0, therefore, the uniform mean square error estimation implies
the consistent estimation in metric ρ.

Definition 8.

(i) Let Tm1 and Tm2 be two unbiased estimates with respect to random
samples from the fuzzy random variable X for unknown parameter θ,
Tm1 is said to be more efficient than Tm2 if Var(Tm1) ≤ Var(Tm2).

(ii) An unbiased estimator Tm for θ with respect to random samples from
the fuzzy random variable X is said to be an uniform minimum vari-
ance unbiased estimator(UMVUE) if and only if ETm = θ and Var(Tm) ≤
Var(U) for any other unbiased estimator U of θ with respect to ran-
dom samples from the fuzzy random variable X.

Obviously an UMVUE is more efficient than any other unbiased estima-
tor and also is asymptotically efficient.

In the following, for statistical studies of fuzzy random variables in metric
ρ, we state some useful limit theroems for fuzzy random variable.

The law of large number(LLN) for fuzzy random variables under the
metric d1 has been obtained by Klement et al (1986), and under the metric
dp, ρp, 1 ≤ p < ∞ by Diamond and Kloeden (1994).

Lemma 2.3. (Klement et al.(1986), Diamond and Kloeden (1994)) Let
X1, X2, . . . be independent and identically distributed fuzzy random variables
with E‖X1‖ < ∞, Then Xm =

∑m
i=1 Xm/m is an unbiased and consistent

estimator of the expectation, i.e.

EXm = EX1

and
Xm

a.s.−→ EX1 (n →∞)
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with respect to metrics d1, dp and ρp, 1 ≤ p < ∞.

A direct consquence of the LLN applied to statistical inference with fuzzy
random variables has been obtained as follows.

Lemma 2.4. (Näther (2000)). Let X1, X2, . . . be a sequence of independent
and identically distributed fuzzy random variables with E‖X1‖ < ∞, Then

S∗2m =
1

m− 1

m∑

k=1

ρ2(Xk, Xm)

is an unbiased and consistent estimator of Var(X1), i.e.

E(S∗2m ) = V ar(X1), S∗2m
a.s.−→ Var(X1) (m →∞).

Some important SLLN for fuzzy random variables had been given by
Körner(1997), Proske(1998), Molchanov (1999), Colubi et al.(1999). These
SLLN establish a theoretical foundation for the research on the consistency
of the estimation with n-dimensional fuzzy data.

3 Main results

In this section we shall investigate some asymptotical properties of statistical
estimations with fuzzy data under the ρ-metric with an assumption: For
X ∈ L(Ω, En) and positive integer r, E‖X‖r

ρ < ∞.

Theroem 3.1. (En(C), ρ) is a complete and separable metric space for each
nonempty compact subset C of Rn.
Proof. By Cauchy-Schwarz inequality of integral and the property of kernel
K we have

ρ2(u, v)

=
∫∫∫∫

S
{(u∗ − v∗)(x, α)} {(u∗ − v∗)(y, β)} dK(x, α, y, β)

≤
(∫∫∫∫

S
(u∗ − v∗)2(x, α)dK(x, α, y, β)

)1/2

×
(∫∫∫∫

S
(u∗ − v∗)2(y, β)dK(x, α, y, β)

)1/2

=
∫∫

Sn−1×[0,1]
(u∗ − v∗)2(x, α)

∫∫

Sn−1×[0,1]
dK(x, α, y, β)

=
∫∫

Sn−1×[0,1]
(u∗ − v∗)2(x, α)m(x, α)µ(dx)dα

≤ Mρ2
2(u, v)
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where S = Sn−1× [0, 1]×Sn−1× [0, 1], m(x, α) is an integrable function and
|m(x, α)| ≤ M , M is a positive real number. By the Proposition 7.2.6 and
Proposition 7.3.3 of Diamond and Kloeden(1994), we see that (En(C), ρ2)
is a complete and separable metric space. Thus obviously (En(C), ρ) is also
a complete space. The separability of the space (En(C), ρ2) implies that for
any u ∈ En(C) there exists some countable subset U = {u1, . . . , un, . . .} of
En(C) such that cl(U) = En(C), i.e. lim

n→∞ ρ2(un, u) = 0, then we have that

lim
n→∞ ρ(un, u) = 0, which means (En(C), ρ) be separable. This completes the
proof of Theorem 3.1.

We obviously see that LLN and SLLN also hold for the metric ρ since
ρ(u, v) ≤ ρ2(u, v) ≤ d∞(u, v) for u, v ∈ En from the proof of Theorem 3.1.
(cf. Diamond and Kloeden(1994), Körner(1997), Lyashenko(1982)).

In the following, based on the LLN and SLLN with respect to the metric
ρ, we shall present a limit theorem for the r order moment of fuzzy random
variables.

For a fuzzy random variable X with E‖X‖r < ∞, let Xr(ω) := (X(ω))r

ω ∈ Ω and let
y = (y1, . . . , yn), x = (x1, . . . , xn)

be elements of Rn. By abuse of notation, we define

yr := (yr
1, . . . , y

r
n).

using Zadeh’s extension principle, we have

Xr(ω)(x) = sup
x=yr

min{X(ω)(y), . . . , X(ω)(y)}.

By x = yr, we have that xi = yr
i , i = 1, . . . , n. Assume that yi = r

√
xi > 0 if

r is a positive even number, and yi = r
√

xi ∈ R if r is a positive odd number.
We define that

r
√

x := ( r
√

x1, . . . , r
√

xn)

Under these assumptions, we obtain that

Xr(ω)(x) =
{

X(ω)( r
√

x), r = 2l, x ∈ Rn
+,

X(ω)( r
√

x), r = 2l − 1, x ∈ Rn.

l ∈ N.
Note that Xr is a fuzzy random variable but may no longer preserve the

convexity, however, it is not difficult to see that Xr takes on values in the
set of normal compact fuzzy subsets of Rn. We also assume that expectation
EXr is one in the sense of Puri-Ralescu. Then

Theorem 3.2. Let {Xi} be a squence of independent and identically dis-
tributed fuzzy random variables with E‖Xi‖r

ρ < ∞, r be a positive integer
and r

√
x is defined as in the preceding. Then
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(1) Xr
m =

∑m
k=1 Xr

k/m is an unbiased estimate of the expectation EXr
1 ,

i.e. EXr
m = EXr

1

(2) Xr
m

a.s.−→ E(co(Xr
1)) (m →∞) in the metric ρ;

(3) Sr∗2
m =

∑m
k=1 ρ2(Xr

k , Xr
m)/(m−1) is an unbiased estimate of Var(Xr

1),
i.e. E(Sr∗2

m ) = Var(Xr
1),

(4) Sr∗2
m

a.s.−→ E‖Xr
1‖2

ρ − ‖E(co(Xr
1))‖2

ρ (n →∞) in the metric ρ.

Here co(X) denotes a convex hull of X (see Klement et al (1986)).
Proof. (1) and (2). It follows from Theorem 5.1 of Klement et al (1986) and
the relationship between two members of the metrics dp, ρp, andρ (Diamond
and Kloeden (1994) and Theorem 3.1).
(3) and (4). The proof of theorem 6 of Näther (2000) and (1), (2) yield the
conclusion (3) and (4). This completes the proof.

Note that conclusion (1) and (2) also holds for the metrics dp, ρp, 1 ≤
p < ∞.

Theorem 3.3. Let X, Y be fuzzy random variables as in Lemma 2.2, then
it holds that

(i) |R(X, Y )| 6 1.

(ii) If R(X, Y ) = 1 then P ({ρ(Y + λEX, EY + λX) = 0}) = 1; if Y +
λEX = EY + λX then R(X, Y ) = 1, where λ =

√
VarY/VarX ;

(iii) If R(X, Y ) = −1 then P ({ρ(Y + λX, EY + λEX) = 0}) = 1; if
Y +λX = EY +λEX then R(X, Y ) = −1, where λ =

√
VarY/VarX.

Proof. (i) By the classical Fubini theorem and the definition of 〈X, Y 〉
and the assumption of the theorem, it holds that

E〈X, EY 〉 = 〈EX, EY 〉,

we prove that

f(t) = t2VarX − 2tCov(X, Y ) + VarY

=
{
Eρ2(Y + tEX, EY + tX) , t > 0
Eρ2(Y + |t|X, EY + |t|EX) , t < 0

holds for all t ∈ R.
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In fact, let t > 0, then

Eρ2(Y + tEX, EY + tX) =

= E[
∫

(Sd−1)2×[0,1]2

(
(Y + tEX)∗(x, α)− (EY + tX)∗(x, α)

)

×(
(Y + tEX)∗(y, β)− (EY + tX)∗(y, β)

)
dK(x, α, y, β)]

= E‖Y ‖2
ρ + 2tE〈Y,EX〉+ t2‖EX‖2

ρ − 2E〈Y,EY 〉 − 2tE〈X, Y 〉
−2t2E〈X,EX〉 − 2tE〈EX,EY 〉+ 2tE〈X,EY 〉+ E‖EY ‖2

ρ + t2E‖X‖2
ρ

= t2(E‖X‖2
ρ − ‖EX‖2

ρ)− 2t(E〈X, Y 〉 − 〈EX,EY 〉) + E‖Y ‖2
ρ − ‖EY ‖2

ρ

= t2VarX − 2tCov(X, Y ) + VarY.

let t < 0, then

Eρ2(Y + |t|X, EY + |t|EX) =

= E[
∫

(Sd−1)2×[0,1]2

(
(Y ∗ + |t|X∗)(x, α)((EY )∗ + |t|(EX)∗)(x, α)

)

×(
(Y ∗ + |t|X∗)(y, β)((EY )∗ + |t|(EX)∗)(y, β)

)
dK(x, α, y, β)]

= E[〈Y, Y 〉+ 2|t|〈X, Y 〉|t|2〈X, X〉 − 〈EY, Y 〉 − |t|〈EY, X〉 − |t|〈EX, Y 〉 − |t|2〈EX, X〉
−〈Y,EY 〉 − |t|〈X,EY 〉 − |t|〈Y,EX〉 − |t|2〈X,EX〉+ 〈EY,EY 〉
+|t|〈EX,EY 〉+ 2|t|〈Y, Y 〉+ |t2|〈EX,EX〉]

= E‖Y ‖2
ρ − ‖EY ‖2

ρ + 2|t|(E〈X, Y 〉 − 〈EX,EY 〉) + |t|2(E‖X‖2
ρ − ‖EX‖2

ρ)

= VarY + 2|t|Cov(X, Y ) + |t|2VarX

= VarY − 2tCov(X, Y ) + |t|2VarX.

thus, obviously f(t) > 0, whence

(2Cov(X, Y ))2 − 4VarXVarY 6 0.

i.e.,
|R(X, Y )| 6 1.

This completes the proof of (i).
(ii). Assume that R(X, Y ) = 1, then there exist unique real number

t0 =
−2Cov(X, Y )

2VarX
=

√
VarY/VarX > 0

such that
f(t0) = Eρ2(Y + λEX, EY + λX) = 0,

where λ =
√

VarY/VarX. By the Tchebyshev inequality

P ({ρ(Y + λEX, EY + λX) > ε}) 6 Eρ2(Y + λEX, EY + λX)
ε2

,
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for any ε > 0, we obtain that

P ({ρ(Y + λEX, EY + λX) = 0}) = 1

where λ =
√

VarY/VarX.
Assume that Y +λEX = EY +λX, then by the property (viii) of Lemma

2.2, it follows that

Cov(X, Y ) =
1
λ
Cov(λX + EY, Y + λEX)

=
1
λ
Cov(Y + λEX, Y + λEX)

=
1
λ
Cov(Y, Y ) =

√
VarXVarY ,

thus, R(X, Y ) = 1. This completes the proof of (ii).
(iii). Assume that R(X, Y ) = −1, then there exist unique real number

t0 =
Cov(X, Y )

VarX
=
−√VarXVarY

VarX
= −

√
VarY/VarX < 0,

such that
f(t0) = Eρ2(Y + |t0|X,EY + |t0|EX) = 0.

then by Tchebyshev ineuality, we also obtain that

P ({ρ(Y + λX, EY + λEX) = 0}) = 1

where λ = |t0| =
√

VarY/VarX.
Assume that Y + λX = EY + λEX, then by the properties of the oper-

ation 〈·, ·〉 and the classical Fubini theorem, it follows that

Cov(X, Y ) = E〈X, Y 〉 − 〈EX,EY 〉
= E〈Y + λX, X〉 − λE〈X, X〉 − 〈EX,EY 〉
= E〈EY + λEX, X〉 − λE〈X, X〉 − 〈EX,EY 〉
= λ〈EX,EX〉 − λE〈X, X〉
= −λVarX = −|t0|VarX

= −
√

VarXVarY ,

thus R(X, Y ) = −1. This completes the proof of (iii).

Theorem 3.4. Let X1, X2, . . . , Xm be independent and identically dis-
tributed fuzzy random variables, put Xm :=

∑m
k=1 Xk/m, S2

m :=
∑m

k=1 ρ2(Xk, Xn)/n,
S∗2m := m

m−1S2
m. Then

(1) Var(S∗2m ) = 3E‖X1‖4
ρ − 4Var(X1)2,

12



(2) Cov(Xm, S2
m) = 1

2E〈X1, ‖X1‖2
ρ〉 − E〈X1, ‖Xm‖2

ρ〉 + (1− 1
m)c‖EX1‖2

ρ,

where c = E
∫

Sm−1×[0,1]
X∗

1 (x, α)dK(x, α).

Proof. It holds that ES∗2m = Var(X1) from Lemma 4, whence

Var(S∗2m )
= E〈S∗2m , S∗2m 〉 − 〈ES∗2m ,ES∗2m 〉

= E
〈

1
m− 1

m∑

k=1

ρ2(Xk, Xm),
1

m− 1

m∑

k=1

ρ2(Xk, Xm)
〉
− 〈Var(X1),Var(X1)〉

=
1

(m− 1)2

( m∑

k=1

E〈‖Xk‖2
ρ, ‖Xk‖2

ρ〉

+2
∑

1≤i<j≤m

E〈‖Xi‖2
ρ, ‖Xj‖2

ρ〉
)
− 2m

(m− 1)2

m∑

k=1

E〈‖Xk‖2
ρ, ‖Xm‖2

ρ〉

+
m2

(m− 1)2
E〈‖Xm‖2

ρ, ‖Xm‖2
ρ〉 − 〈Var(X1),Var(X1)〉

=
m2

(m− 1)2
(
E〈‖Xm‖2

ρ, ‖Xm‖2
ρ〉 − E〈‖X1‖2

ρ, ‖X1‖2
ρ〉

)
− 4Var(X1)

2

=
3− 6m + 3m2

(m− 1)2
E‖X1‖4

ρ − 4Var(X1)
2

= 3E‖X1‖4
ρ − 4Var(X1)

2

To prove (2), note that Cov(Xm, S2
m) = E〈Xm, S2

m〉−〈EXm, S2
m〉 and S2

m =
1
m

∑m
k=1 ‖Xk‖2

ρ − ‖Xm‖2
ρ. Therefore

E〈Xm, S2
m〉 =

1
m2
E

( m∑

i=1

m∑

k=1

〈Xi, ‖Xk‖2
ρ〉

)
− 1

m
E

( m∑

k=1

〈Xk, ‖Xm‖2
ρ〉

)

=
1

m2

[ m∑

j=1

∫

Sm−1×[0,1]
E(‖Xj‖2

ρX
∗
j (x, α))dK(x, α)

+2
∑

16i<j6m

E‖Xi‖2
ρ

∫

Sm−1×[0,1]
EX∗

j (x, α)dK(x, α)
]

− 1
m

m∑

k=1

E〈Xk, ‖Xm‖2
ρ〉

=
1
m
E〈X1, ‖X1‖2

ρ〉+
n− 1

m
cE‖X1‖2

ρ − E〈X1, ‖Xm‖2
ρ〉

and

〈EXm,ES2
m〉 =

〈
EX1,

m− 1
m

Var(X1)
〉

=
m− 1

m
cVar(X1)

13



where c = E
∫

Sm−1×[0,1]
X∗

1 (x, α)dK(x, α) is a constant. Thus we obtain the

result of (2). 2

Theorem 3.5. Let X1, . . . , Xm be fuzzy random variables, then

(1) Var
(∑m

k=1 Xk

)
=

∑m
k=1 Var(Xk) + 2

∑
16i<j6m Cov(Xi, Xj);

(2) Var
(
Xm

)
= 1

m

∑m
k=1 Var(Xk) + 2

m2

∑
16i<j6m Cov(Xi, Xj);

(3) Var
(
Xr

m

)
= 1

m

∑m
k=1 Var(Xr

k) + 2
m2

∑
16i<j6m Cov(Xr

i , Xr
j ).

where r is a positive integer with E‖Xi‖r
ρ < ∞, i = 1, 2, . . . , m.

Proof. (1).

V ar
( m∑

k=1

Xk

)

= E〈
m∑

k=1

Xk,
m∑

k=1

Xk〉 − 〈E(
m∑

k=1

Xk), E(
m∑

k=1

Xk)〉

=
m∑

k=1

E〈Xk, Xk〉+ 2
∑

16i<j6m

E〈Xi, Xj〉

−
m∑

k=1

〈EXk, EXk〉 − 2
∑

16i<j6m

〈EXi, EXj〉

=
m∑

k=1

Var(Xk) + 2
∑

16i<j6m

Cov(Xi, Xj).

(2) and (3) can be followed similarly.

Theorem 3.6. If {Tm} is a consistent estimator of θ with respect to ρ and

lim
m→∞Var(Tm) = 0,

then {Tm} is an asymptotical unbiased estimator of θ, i.e.

lim
m→∞P ({ρ(E(Tm), θ) > ε}) = 0

for every ε > 0.
Proof. Since {Tm} be a consistent estimator of θ , thus for every ε > 0,

we have
lim

m→∞P ({ρ(Tm, θ) > ε}) = 0.

Since here ρ(E(Tm), Tm) is a real integrably bounded random variable, by
Tchebyshev inequality, we have that

lim
m→∞Var(Tm) = 0

14



implies that
lim

m→∞P ({ρ(E(Tm), Tm) > ε}) = 0.

whence

lim
m→∞P ({ρ(E(Tm), θ) > ε}) 6 lim

m→∞P ({ρ(E(Tm), Tm) + ρ(Tm, θ) > ε})

6 lim
n→∞P ({ρ(E(Tm), Tm}) >

ε

2
)

+ lim
m→∞P ({ρ(Tm, θ) >

ε

2
})

= 0.

which completes the proof.

Theorem 3.7.

(1) Let Tmi be an unbiased estimator of θi with respect to random sample
from fuzzy random variable X, then their linear combination

∑k
i=1 aiTmi

defined by means of Zadeh’s extension principle is an unbiased esti-
mator of

∑k
i=1 aiθi, i.e.

E

(
k∑

i=1

aiTmi

)
=

k∑

i=1

aiθi.

(2) Let Tmi be a UMVUE estimator of θi with respect to random sample
from fuzzy random variable X, i = 1, . . . , k, and R(Tmi, Tmj) = 0,
i 6= j, then their linear combination

∑k
i=1 aiTmi defined by means of

Zadeh’s extension principle is a UMVUE of
∑k

i=1 aiθi.

(3) If Tm is a UMVUE of θ and U is an unbised estimator for fuzzy set
0, then E〈Tm, U〉 = 0. Conversely, if Tm is an unbiased estimator
for θ and for all unbiased estimators U of fuzzy set 0 it holds that
Cov(Tm, U) = E〈Tm, U〉 = 0, then Tm is a UMVUM of θ.

(4) If Tm1 and Tm2 are two UMVUE of θ with respect to random sample
from fuzzy random variable X, then ρ2(Tm1, θ) = ρ2(Tm2, θ) almost
surely.

Proof. (1) and (2) can be obtained directly from the definitions of unbiased
estimators and UMVUE and the linearity of the expectation of fuzzy random
varibales.
(3).By the assumption of (3),if we assume T := Tm + cU , where c > 0, then
we have ET = ETm + cEU = ETm = θ, thus Var(T ) > Var(Tm), and

VarT = Var(Tm) + c2Var(U) + 2c(Cov(Tm, U)),

15



whence
c2Var(U) + 2c(Cov(Tm, U)) > 0,

which is impossible unless

Cov(Tm, U) =E〈Tm, U〉 − 〈ETm, EU〉
= E〈Tm, U〉 = 0.

thus the first assertion of (3) holds. Conversely, let T be an arbitrary unbi-
ased estimator for θ and let U = T − Tm, then

VarT = Var(U + Tm)
= Var(U) + Var(Tm) + 2Cov(U, Tm)
= Var(U) + Var(Tm) > Var(Tm).

which means Tm is a UMVUE of θ.
(4). By the assumption of (4), it is not difficult to obtain that

Var(Tm1) = Var(Tm2),

which means that

E|ρ2(Tm1, θ)− ρ2(Tm2, θ)| = 0,

thus, we have

Var(ρ2(Tm1, θ)− ρ2(Tm2, θ))

= E(ρ2(Tm1, θ)− ρ2(Tm2, θ)

− E(ρ2(Tm1, θ)− ρ2(Tm2, θ)))2

= E|ρ2(Tm1, θ)− ρ2(Tm2, θ)|2 = 0.

By Tchebyshev inequlity we obtain

P ({|ρ2(Tm1, θ)− ρ2(Tm2, θ)| > ε}) = 0

for each ε > 0. Thus the assertion (4) is followed.

Corollary 3.2. Let the assumption of Theorem 3.5. hold. Then

(1) Xm and S∗2m are uniform mean square error estimates of EX1 and
VarX1 respectively.

(2) Xr
m and Sr∗2

m are also uniform mean square error estimates of EXr
1

and VarXr
1 respectively.

(3) S∗2m and Sr∗2
m are more efficient than S2

m and Sr2
m respectively.
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Proof. To prove (1), it holds that {Xm} is a sequence of unbiased estimate
for EX1 by Lemma 3, and E〈Xi, Xj〉 = 〈EXi,EXj〉, thus

lim
m→∞E(ρ2(Xm,EX1))

= lim
m→∞

[
1
m
E‖X1‖2

ρ + ‖E1‖2
ρ +

m(m− 1)
m2

‖EX1‖2
ρ − 2‖EX1‖2

ρ

]

= lim
m→∞

1
m

Var(X1) = 0

By definition 9, we obtain the resuls of (1). For the proof of (2), it holds that
{S∗2m } is a seqence of unbiased estimates for V ar(X1) by Lemma 2.4, and
‖ · ‖2

ρ is continuous (see Näther (2000)), therefore ‖S∗2m ‖2
ρ

a.s.−→ ‖Var(X1)‖2
ρ,

and E[supn≥1 ‖S∗2m ‖2
ρ] < ∞. By Lebesgue dominated convergence theorem

we have
lim

n→∞E‖S
∗2
m ‖2

ρ = E‖Var(X1)‖2
ρ

whence

lim
m→∞E

[
ρ2(S∗2m ,Var(X1))

]

= lim
m→∞E[〈S∗2m , S∗2m 〉 − 2〈S∗2m ,Var(X1)〉+ ‖Var(X1)‖2

ρ]

= lim
m→∞(E‖S∗2m ‖2

ρ − 2〈ES∗2m ,Var(X1)〉+ ‖Var(X1)‖2
ρ)

= lim
m→∞(E‖S∗2m ‖2

ρ − 2〈Var(X1),Var(X1)〉+ ‖Var(X1)‖2
ρ)

= E‖Var(X1)‖2
ρ − ‖Var(X1)‖2

ρ = 0.

By definition 9, we obtain the result of (2). The assertion (3) is proved
trivially. 2

Conclusion In this paper, we have presented several results concerning
with the statistical studies of fuzzy random variables with respect to the
metric ρ, which reveals some basic properties of the fuzzy statistic in a
multidimensional space with respect to the considered metric. These rather
general results can be used for further investigating statistical properties of
fuzzy random variables with respect to some metric which is in special case
of the metric ρ.

For obtaining an extensive and valuable statistical result for fuzzy ran-
dom variables, the next interesting but complicated problem is assumed to
be that find out a suitable distribution for fuzzy random variable and the
structure of the unknown parameters.

References
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