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Abstract

This paper is concerned with a fuzzy stopping time for a dynamic fuzzy system.
A new class of fuzzy stopping times, which is called as a monotone fuzzy stopping
time is introduced. This notion is well-known in a stochastic process. We have
constructed it by subsets of a-sets of fuzzy states under appropriate assumptions.
The aim is to consider the optimization of a stopping problem with an additive
weighting function in the class of monotone fuzzy stopping times.
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1 Introduction and notations

The stopping time with fuzziness, which is called a ‘fuzzy stopping time’, is discussed by
our previous paper [11] where we have considered the optimization of the corresponding
fuzzy stopping problem by the constructive method. This kind of stopping times are first
introduced by Kacprzyk [5, 6] for a restriction of stoppable times, and he gave dynamic
programming under a time restriction for the multistage decision-making with fuzziness
introduced by Bellman and Zadeh [1] (see [7]). In [11], we have discussed a stopping
problem for a system with fuzzy states, which is called a ‘dynamic fuzzy system’ (][9],
[15]), using fuzzy stopping times not as a restriction of stoppable times but as stopping
strategies. Alternatively, it is well-known that a class of stopping times which has a
monotone property is useful for various application problems. Because it is simple to
understand and easy to calculate. Refer to Chow,Robbins and Siegmund [3] and Ross [14].
In this paper, we introduce a new class of fuzzy stopping times with a kind of monotone
property and we apply it to a fuzzy stopping problem with additive weighting functions
as the scalarization of the fuzzy total rewards.

In the remainder of this section, a fuzzy dynamic system is defined and we prepare
some notations for Section 2. In Section 2, a new class of fuzzy stopping times, which
we call them ‘monotone fuzzy stopping times’, is introduced and their construction is
also discussed. These results are applied to the ‘optimization’ of a corresponding fuzzy
stopping problem in Section 3. In Section 4, a example is given to illustrate the results.

Throughout the paper, we will denote a fuzzy set and a fuzzy relation by their mem-
bership functions defined on a convex compact subsets of some Banach space. For the



theory of fuzzy sets, refer to Zadeh [16] and Novék [12]. The detail of its definition is
omitted here.

Let F be a given convex compact subsets of some Banach space. F(F) denotes the
set of all convex fuzzy sets, @, on I/ whose membership functions are assumed to be upper
semi-continuous and have a compact support with the normality condition: sup .5 @(z) =
1. The a-cut (a € [0,1]) of the fuzzy set @ is denoted as @,. C(F) means the collection
of all compact convex subsets of F. Then clearly, & € F(F) means @, € C(F) for all « €
[0,1]. Let R be the set of all real numbers and let C(R) be the set of all bounded closed
intervals in R. The elements of F(R) are called fuzzy numbers. The addition and the
scalar multiplication on F(R) are well-known. See Puri and Ralescu [13] for the details.
The following results are known, so the proofs are omitted.

Lemma 1.1 (Chen-wei Xu [2], Kurano et al.[11]).
(i) For any m,n € F(R) and A > 0, it holds that m 4+ n € F(R) and A € F(R).

(ii) Let Ey and Ey be convexr compact subsets. If t € F(Fy) and p € F(F, x E,) salisfy
p(x,-) € F(Ey) for x € Ey, then sup,cp {u(x) A p(z,-)} € F(Fs),

where a A b = min{a,b} for real numbers a,b.

Now we will formulate the dynamic fuzzy system.

Definition 1 (Kurano et al. [9]). The pair of (.5, ) is called a dynamic fuzzy system if
the following conditions (i) and (ii) are satisfied:

(i) The state space S is a convex compact subset of some Banach space. In generally,
the state of the system is simply called as a fuzzy state and it is denoted by an
element of F(95).

(ii) The law of motion for the system is based on a time-invariant fuzzy relations ¢ :

S x S+ [0,1], and we assume ¢ € F(S x S) and §(z,-) € F(S) for z € S.

If the dynamic fuzzy system (.9, q) is given, then we consider a sequential transition
of states as follows. Firstly, a fuzzy state § € F(S) is moved to a new fuzzy state Q(3)
after a unit time has passed, where @ : F(5) — F(S) is defined by

Q()(y) :=sup{s(e) A gla,y)} fory €5. (1.1)

Note that the map @ is well-defined by Lemma 1.1. Explicitly, for the dynamic fuzzy
system (S, ¢) with a given initial fuzzy state § € F(5), a sequence of fuzzy states {8;}2;
is defined by

§1:=8 and Sy :=Q(8) (t>1). (1.2)

We need the following preliminaries to define fuzzy stopping times for this sequence
{3:}32,, which are given in the next section. Associated with the fuzzy relation ¢, the

corresponding maps @, : C(S) — C(S5) (a € [0,1]) are defined as follows: For D € C(5),

{y € S|q4(z,y) > aforsomex € D} ifa>0

@alP):= { My € 5 |(r,y) > 0 for somez € D} if =0, -
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where ¢l means the closure of a set. From the assumption on ¢, the maps (), are well-
defined. The iterates Q°, (¢ > 0) are defined by setting Q2 := I(identity) and iteratively,

QZ}_I = QaQZz (t > O)

In the following lemma, which is easily verified by the idea in the proof of Kurano et al. [9,
Lemma 1], the a-cuts of fuzzy state, (,(8), are specified using the maps @), of (1.3).

Lemma 1.2 (Kurano et al. [9, 10]).  For any a € [0,1] and $ € F(S), we have:
() Q(8)a = Qal3a);
(i) 0 = QT (5a) (21),

where 3, and 8;, are the a-culs of fuzzy state § and 3; respectively and {3,}72, is defined
by (1.2) with the initial state 5, = 3.

2 Fuzzy stopping times

In this section, we define a fuzzy stopping time to be discussed here, and we introduce a
new class of fuzzy stopping times, which is constructed through subsets of a-cuts of fuzzy
states. For the sake of simplicity, denote F := F(S) and let F’ be a subset of F.

Definition 2 (Kurano et al. [11]). A fuzzy stopping time on F' is a fuzzy relation &:
F' x N + [0,1] such that, for each fuzzy state 3§ € F’, 6(3,1) is non-increasing in ¢ and
there exists a natural number ¢(3) > 1 with 6(5,¢) = 0 for all ¢ > #(3), where N :=

{1’27 .. }

We note here that ‘G = 0’ represents ‘stop’ and ‘6 = 1’ represents ‘continuity’ in the
grade of membership (Kurano et al. [11]). Between the two decisions, the intermediate
value ‘0 < & < 17 is a notion of ‘fuzzy stopping’. A fuzzy stopping time &(3, ) means the
degree of ‘continuity’ at timet starting from a fuzzy state 5. The set of all fuzzy stopping

times on F’ is denoted by L(F’).

Definition 3. A fuzzy stopping time & € X(F’) is called monotone if there exists a map
§: F' — [0, 1] satisfying

() 5(Q(3) < 3(3), and
(i) a(3,t) = Aj_1 6(3;) for all 5 € F' and t > 1,
where {3;}72, is defined by (1.2) with §; = 3.

The real-valued map § on fuzzy states in the above definition is called a support of
&. The definition means a natural and good property for fuzzy stopping times, which
is simple and easy to calculate optimal stopping times in actual optimization problems.
The degree of monotone fuzzy stopping times is given by only the fuzzy state atcurrent



time ¢. Therefore, in stopping problems, the criterion is reduced whether the fuzzy state
at current time ¢ belongs to the optimal stopping region or not.

We now construct a monotone fuzzy stopping times to be the subject of this paper.
For the purpose of this construction, we assume the following condition.

Condition 1. For each a € [0, 1], there exists a non-empty subset X, of C(.5) satisfying

Qa(Ka) C Ky (2.1)

Using this subset K, we define a sequence of subsets {K! }:2, inductively by

Kl =K,;
KD = {e€C(8) | Qule) X} (122), 22)

Clearly, Kf, = Q7' (K™!) = Q7Y(K,). Also, it holds from (2.4) that K! C Kt (¢t >

1). To simplify our discussion, we assume the following condition holds henceforth.

Condition 2. For all a € [0, 1], it holds that

es) = U Kt (2.3)

For ¢ € C(S) and « € [0, 1], we define a stopping time &,(c) by
Go(c):=min{t >1|ce K’} (2.4)

This is the first entry time of a closed interval c(€ C(5)) with the grade o. We define a
restricted class F(C F) by

F:={5€ F|64(5,) is non-increasing in o € [0, 1]}. (2.5)
Using the class {64(34) | @ € [0,1]}, for the restricted element § € F, we define

o(3,t) = 861[1(})1]{@ ANp,(t)} (t>1), (2.6)

where 1p, is the indicator of a set D, := {t > 1| 6,(5,) > t}. This is the usual technique
to construct a fuzzy number from a family of level sets. Then we obtain the following

theorem.

Theorem 2.1 Under Conditions 1 and 2, the following (i) and (ii) hold.
(i) 6a(30) =min{t > 1| 6(5,1) <a} forse F and a € [0,1].

(i1) o of (2.9) is a fuzzy stopping time on F.



Proof. By the definition, 6(3,t) < a is equivalent to 6,(3,) < t. This fact shows (i). From
Condition 2, there exists t* > 1 with 3, € K} So, Ga(8a) < 60(30) < t* for all a € [0, 1],
which implies that &(3,¢) = 0 for all £ > ¢* by the definition of F. Since g(5,t+1) <
6(3,1) holds clearly for ¢t > 1 from the definition (2.9), we also obtain (ii). O

In order to show the monotone property of &, we need the following lemma.

Lemma 2.1 Lel § € F. Then
(i) 6(3,t) = a if and only if, for any ¢ > 0,

and 3,_. € K!__;

€ a—e!

ga—}—e S ,Cta_}_
(i) & € F (t>1),
Proof. By (2.9), 6(3,t) = sup{a | 64(3,) > t}. So, (i) follows from (2.7). From Lemma
1.2(ii), for [ > 1, 64((51)a) = 6a(314) = 6.(Q71(34)). By (2.5) and (2.7),

5a((3)a) = min{t > 1] Q" (3.) € KL}
= min{t > 1|3, € K}
= max{0a(S.) — ([ —1),1},

and it is non-increasing in « € [0, 1] since § € F. Therefore we obtain (ii). O

Theorem 2.2 Lel § € F be given and assume that Conditions 1 and 2 hold. Then, ¢ =
6(3,1), t > 1, is a monotone fuzzy stopping time with the initial state 3.

Proof. Let {3,}72, be defined by (1.2) with 3; = 3. First, we will prove that
o(8,t+r)=05(5,t) AN6(3i41,r) fort,r > 1. (2.7)

Note that 6(3;41,r) is well-defined from Lemma 2.1(ii). Let @ = 6(3,¢{+r). From Lemma
2.1(i), we have
Sa4e € ICL':Z and §,_. ¢ ICZ"_’"E for any ¢ > 0.

Noting Q! (K') = K=" (1 <t < l) and Lemma 1.2(ii), we obtain

St+l,ate = Q;+e(§a+e) < Qgﬁ(lc?fe) =Kot
and
§f+1704—6 = Qta—e(‘ga—ﬁ) g Qta—e(lcta—l——re) = IC;—E'

Therefore, we get 6(8i41,7) = o from Lemma 2.1(i). Namely, 6(5,¢t 4+ r) = 6(841,7).
Since 6(5,t +r) < 6(8,t) from Theorem 2.1(ii), we obtain 6(3,%) A 6(8¢41,7) = @, and so



(2.10) holds. Next, we put §(3) = (3,1) for 3 € F. From (2.10), we get
(5,t) = o (82,6 — 1)

A
A6 (5, 1) A 633, 1 — 2)

Since we also have §(Q(3)) < §(3) from Theorem 2.1(ii), & is a monotone fuzzy stopping
time with 8. The proof of this theorem is completed. O

3 Fuzzy stopping problems

In this section, applying the results in the previous section, we obtain the optimal fuzzy
stopping time for a fuzzy dynamic system with fuzzy rewards (see Kurano et al. [10])
when the weighting function is additive.

Firstly, we formulate the stopping problem to be considered here. Let 7 : S x R +—
[0,1] be a fuzzy relation satisfying # € F(S x R) and 7(z,-) € F(R) for 2 € S. If the

system is in a current fuzzy state s € F, a fuzzy reward is earned:

R(3)(z) == sup{s(z) ANF(z,2)}, =z€R.

rzeS

Then we can define a sequence of fuzzy rewards {R(3;)}2,, where {5,};2, is defined
in (1.2) with the initial fuzzy state §; = 3. Let

©(5,1) := ZR(Q) fort > 1. (3.1)

=1

Note that (3.11) designates the summation of fuzzy numbers. For details, refer to Puri
and Ralescu [13] and Kurano et al. [10]. We need the following lemma, which is proved
in Kurano et al. [9, 10].

Lemma 3.1 (Kurano et al.[9, 10]). Fort>1 and a > 0,

P(3,)a =D Ral310)

=1
holds, where

{z e R |F(z,2) > a for some z € § .} ifa>0

Ro(310) := { c{z e R|7(x,z) >0 for some z € §;,} if a=0. (3.2)



Let g : C(R) — R be any additive map, that is,
g+ ") =g(d)+g(") for " € C(S). (3.3)

Adapting this map ¢ for a weighting function (see Fortemps and Roubens [4]), for a fuzzy
stopping time 6 € ¥(F) and an initial fuzzy state § € F, the scalarization of the total
fuzzy reward is given by

G(3,6) = /Olg(aio(E,&a)) da
_ /Olg(g Ba(ém)) do,

o(8,1) < a} for simplicity. Since ¢(§,5,) € C(R)
and the map a — ¢g(¢(8,04)a) is left-continuous in a € (0, 1], therefore the right-hand
integral of (3.14) is well-defined. For a given F'(C F), our objective is to maximize (3.14)
over all fuzzy stopping times 6 € X(F’) for each initial fuzzy state § € F'.

(3.4)

where &, means 6(8,-), = min{t > 1

Definition 4. A fuzzy stopping time ¢* with § € F' is called an 3-optimal if
G(5,6) < G(8,6%) forall & € X(F').
If 6* is S-optimal for all § € F’, then 6* is called optimal in F'.

Now we will seek an s-optimal or an optimal fuzzy stopping time by using the results
in the previous sections. For each a € [0, 1], let

Ka(g) :=A{c e C(S5) | g(Ra(Qalc))) < 0}. (3.5)

Hence we need the following Assumptions 1 and 2, which are assumed to hold hence-

forth.
Assumption 1 (Closedness). For all a € [0,1], Q.(K.(9)) C K.(g).

By (2.5), we define a sequence {K! (g)}:2; by

Kt (g) := Q7Y (K.(g)) fort>1. (3.6)

Assumption 2. For all a € [0,1], C(S) = U2, K.(g).

Using the sequence {K(g)}:2, given in (3.16), we define &, F, & and 7(3,+)q by
(2.7) = (2.9). Then, from Theorems 2.1 and 2.2, & is a monotone fuzzy stopping time on
F. The following theorem will be proved by applying the idea of the monotone policy
([3, 8, 14]) for stochastic stopping problems.

Theorem 3.1 Under Assumptions 1 and 2, & is an optimal monotone fuzzy stopping
timein F.



Proof. Firstly, we will consider a deterministic stopping problem which maximizes the
reward of a weighting function g(p(8,1),) over t > 1. Since g is additive, g(p(8,1),) =
Si_1 9(Ra(310)) holds. Therefore g(p(3,1)a) > g(@(3,t+ 1),) if and only if 3, € K.(g).
By Assumption 1, §;, € K,(g) implies g(¢(8,1)s) > g(@(3,1),) for all [ > t. Together
with (3.5), we obtain
9(#(5,8(5,4)a))) 2 9(#(3,5(5,)a)))

for all & € £(F') and a € [0,1]. This implies that G(3,6) > G(8,5) for all & € X(F') by
using (3.14). This completes the proof. O

4 A numerical example

An example is given to illustrate the previous results of fuzzy stopping problem in this
section.
Let S :=[0,1]. The fuzzy relations ¢ and 7 are given by
. 1 if y =0z
qz,y) = { 0 otherwise

F(sz):{l fz=z2 -\

0 otherwise

and

for x,y € [0,1] and z € R, where A > 0 is an observation cost and 0 < 3 < 1. Then, @,
and R, defined by (1.3) and (3.12) are independent of a and are calculated as follows:

Qa([aab]) = [ﬁaa ﬁb] and Ra([a7b]) = [a - /\7b - /\]

for0<a<b< 1.

Let g([a,b]) := (a +2b)/3 for 0 < a < b < 1, which is additive. Then, K, := K,(g) is
given as

Ko = Kalg) = {la,0] € C(5) [ a + 2b < 3X/5},

So K = Q;""V(K,) = {[a,b] € C(S) | a+2b < 3)\/B'}. Since K is independent of o,
we see that Q,(K,) = {Ba,b] | [a,b] € K.} and U2, K = C(S). Thus Assumptions 1
and 2 in Section 3 are fulfilled in this example.

Let the initial fuzzy state be

5(z) := max{l — |8z —4[,0} for z € [0,1].

For the stopping time 6,(3,) given in (2.7), we easily obtain that 3, = [(34+«)/8, (5—«)/8§]
and 6,(3,) = min{f > 1|13 —a <24X37"}. Thus, as 6,(5,) is non-increasing in a €
[0, 1], we have § € F. Since 6,(8,) € K'(g) means 13 — a < 24\, we obtain

&(3,t) = min{1, max{(13 — 24\)37*,0}}.

The numerical value of & is given in Table 1.

Table 1. An $-optimal fuzzy stopping time (A = 0.48, 3 =0.98).

r 1 2 3 1 5 6 7
5(5,0)|1 1 .7603 5108 .2552 .00 .00
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