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Abstract

A stopping problem for a dynamic fuzzy system with fuzzy rewards is formulated,
which is thought of as a natural fuzzification of non-fuzzy stopping problem for a
determistic dynamic system. And, the validity of the approach by a-cuts of fuzzy
sets will be discussed in constructing an one-step look ahead optimal fuzzy stopping
time. A numerical example is given to illustrate the theoretical results.

Keywords: Fuzzy stopping problem; dynamic fuzzy system; a-cuts of fuzzy sets; optimal
fuzzy stopping time.

1. Introduction and notations

The multistage decision-making models with fuzziness is introduced by Bellman and
Zadeh [1]) using the method of dynamic programming, and many paper are published af-
terward. For a recent survey of the theories and applications, refer the paper by Kacprzyk
and Esogbue [7]. Here we consider a stopping problem incorpolated with Fuzzyness. The
idea of a fuzzy stopping time has been introduced by Kacprzyk [5, 6], though the decision
is assumed to be the intersection of fuzzy constraints and a fuzzy goal. In this paper
we have tried to formulate a stopping problem under a dynamic fuzzy system with fuzzy
rewards discussed by [9, 10], which is thought of as a natural fuzzification of non-fuzzy
stopping problems induced by determistic dynamic systems. The interpretation of fuzzy
stopping time is difficult in general. But the validity of the approach by a-cuts of fuzzy
sets will be discussed in constructing an optimal fuzzy stopping time. As a closely related
work, see Yoshida [14] in which Snell’s optimal stopping for a Markov fuzzy process has
been studied. In remainder of this section, we will give some notations, by which a fuzzy
stopping problem is formulated in the following section.

Let F, Ei, K5 be convex compact subsets of some Banach space. Throughout the
paper, we will denote a fuzzy set and a fuzzy relation by their membership functions. For
the theory of fuzzy sets, refer to Zadeh [15] and Novak [12]. A fuzzy set @ : ' — [0,1] is
called convex if

a(Ax + (1 = Ny) > alz) Naly), =x,y€ E, X €]0,1],

where a A b := min{a,b} (c.f. Chen-wei Xu [2]). Also, a fuzzy relation h : Ey x Fy —
[0, 1] is called convex if

h(Azy + (1= Naa, Ay + (1= Nyz) > h(zi, 1) A h(za,92)



for x1,29 € F1, y1,y2 € Fy and A € [0,1]. The a-cut (o € [0,1]) of the fuzzy set @ is
defined by

Uy :={r € F|a(z)>a} (a>0) and wp:=cl{zec £ |a(z)> 0},

where cl denotes the closure of a set.

Let F(E) be the set of all convex fuzzy sets, @, on £ whose membership functions
are upper semi-continuous and have compact supports and the normality condition :
sup,cp i(z) = 1. We denote by C(F) the collection of all compact convex subsets of F
and by pg the Hausdorff metric on C(FE). Clearly, & € F(E) means t, € C(F) for all & €
[0, 1].

Let R be the set of all real numbers. We see, from the definition, that C(R) and F(R)
are the set of all bounded closed intervals in R and all upper semi-continuous and convex
fuzzy numbers on R with compact supports, respectively.

The addition and the scalar multiplication on F(R) are defined as follows (see Puri
and Ralescu [13]): For i, n € F(R) and A > 0,

(h+i)(e)i=  sup  {m(@) Ai(e2)} (€ R) (1.1)

z1,22€ER: z14wo=1

and
(W)(z) 1= { ’;:Sf(g) 1170 eR). (1.2)

and, hence
(M4 n)y =my+n, and (M), = A, (o € [0,1])

where A+ B:={z+ylze€ Ajye B}, MM ={ x|z A}, A+0=0+ A:= Aand
A := ) for any non-empty closed intervals A, B € (R). We use the following lemma.

Lemma 1.1 (Chen-wei Xu [2]).
(i) For any m,n € F(R) and A > 0, it holds that m 4+ n € F(R).

(ii) For any @ € F(FE1) and p € F(Fy x Ey), it holds that sup {u(z) A p(x, )} € F(FE3).

rek,

We consider the fuzzy system([9, 10]) with fuzzy rewards, which is characterized by
the elements (5, ¢, 7) as follows:

Definition 1.

(i) The state space S is convex compact subsets of some Banach space. In general, the
system is fuzzy, so that the state of the system is called a fuzzy state and is denoted

by a element of F(S5).

(ii) The law of motion and the fuzzy reward for the system are denoted by time-invariant
fuzzy relations ¢ : S x S +— [0,1] and 7 : S x R — [0, 1] respectively. We assume
that § € F(S x S) and 7 € F(S x R).



If the system is in a fuzzy state § € F(5), a fuzzy reward R(3) is earned and the state
is moved to a new fuzzy state Q)(8), where ) : F(5) — F(S) and R : F(S) — F(R) are
defined by

Q)W) = sup (&) A i(w0) (v € S) (1.3
and
R(3)(z) := iuelg $(z) AN7(z,2) (2 € R). (1.4)

Note that by Lemma 1.1 the maps ) and R are well-defined.

For the dynamic fuzzy system (S, §,7), if we give an initial fuzzy state § € F(Y5),
we can define a sequence of fuzzy rewards {R(3;)};2,, where a sequence of fuzzy states
{5:}52, is defined by

5 :=8 and 34 :=0Q(3) (t>1). (1.5)

In the following section, a fuzzy stopping problem for {R(3:)}72, is formulated.

2. A fuzzy stopping problem

For the sake of brevity, denote F = F(S). The metric p on F is given as p(u,0) =
SUP,e[0,1] £5(Uas Vo) for 4,0 € F (see Nanda [11]). Let B(F) be the set of Borel measurable
subsets of F with respect to p. Putting by ©; := F* the ¢ times product of F and by
B; := B(F") the set of Borel measurable subsets of F* with a metric p’ on F' defined by

pt({gl}}f:l? {‘g; }f:l) = 22_(1_1)10(‘;17 g;) fOI‘ {gl}}f:l? {gl}}f:l € Ft (21)
=1

for 1 <t < oo, we can interpret {3:}52, € Q.,, where {8;}72, is defined by (1.5) with any
given initial fuzzy state 5, = § € F. Here, applying the idea of fuzzy termination time
in Kacprzyk [5, 6], we will define a fuzzy stopping time. Let IN be the set of all natural
numbers.

Definition 2. A fuzzy stopping time is a fuzzy relation & : Q. x N — [0, 1] such that
(i) for each t > 1, &(+,t) is Bi-measurable, and
(ii) for each @ € O, &(w, ) is non-increasing and there exists {7z € N with (@, 1) = 0

for all t > iz

In the grade of membership of stopping times, ‘0’ and ‘1’ represent ‘stop’ and ‘continue’
respectively. We denote by ¥ the set of all fuzzy stopping times.

Lemma 2.1. Let any ¢ € . Define a map 6, : 0o, — N by
(@) =min{t > 1|6(0,t) < a} (W€ N) forac(0,1]. (2.2)
Then, we have:

() {ea<ifeB, (121)



(il) 6.(@) <6(0) (@WE Q) ifa>d;

Proof. (i) is from {6, >t} = {w € Q. | 6(,t) > a} € B;. Also, (ii) and (iii) follow
clearly. O

In order to complete the description of an optimal fuzzy stopping problem, we will
specify a function which measures the system’s performance when a fuzzy stopping time
& € ¥ and an initial fuzzy state § € F are given. We define w..(-) : F — Qo by

Weo(8) 1= {81 }724, (2.3)

and {5;}2, is defined by (1.5) with § = 3. Let g : C(R) — R be a continuous and
monotone function. Using this g as a weighting function (see Fortemps and Roubens [4]),
the scalarization of the total fuzzy reward will be done by

1 g (&il R(ét)a) da, (2.4)

t=1

1
G@ﬁy:Ag@@ﬁ%ma:A
where &, 1= 5,(we(3)) and ¢(5,6)s 1= 027" R(3:)s (We define 39 := {0}). Note that
©(8,6)s € C(R) and the map o — ¢g(¢(8,8),) is left-continuous on (0, 1], so that the
right-hand integral of (2.4) is well-defined. Now, our objective is to maximize (2.4) over
all fuzzy stopping times & € ¥ for each initial fuzzy state s € F.

Definition 3. For § € F, a fuzzy stopping time &* is called $-optimal if G(3,6) <
G/(8,6%) for all & € X. If &* is S-optimal for all § € ¥, &* is called optimal.

In the following section, the a-cuts of fuzzy stopping time will be investigated, whose
results are used to construct an optimal fuzzy stopping time in Section 4.

3. a-cut of fuzzy stopping times

First, we establish several notations that will be used in the sequel. Associated with the
fuzzy relations ¢ and 7, the corresponding maps @, : C(S) — C(S) and R, : C(S) —
C(R) (a € [0,1]) are defined, respectively, as follows: For D € C(S),

Qu(D) = {y € S| §(z,y) > a for somez € D}  for a >0 (3.1)
; o cl{y €S | C?(il?,y) > ( for some z € D} for a = 0, :
and
| {z€eR|F(z,2z) > aforsomez € D}  fora >0
RQ(D) o { d{z €eR | f(:I?,Z) > 0 for somez € D} for a = 0. (3-2)

By g € F(S x S)and 7 € F(S x R), the maps @, and R, (a € [0,1]) are well-defined.
The iterates @7, (¢ > 0) are defined by setting Q% := I(identity) and iteratively,

QL :=Q.Q, (1>0).
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In the following lemma, which is easily verified by the idea in the proof of Kurano et al. [9,
Lemma 1], the a-cuts of Q(8) and R(3) defined by (1.3) and (1.4) are specified using the
maps @, and R,.

Lemma 3.1 ([9, 10]). For any a € [0,1] and § € F, we have:
(1) Q(3)a = Qu(8a);
(i) R(S)a = Ra(3a);

(if)) S0 = Q5 '(5a) (L= 1),
where 3, , 1= (8¢), and {5,};2, is defined by (1.5) with §, = 3.

Here we need the following assumption which is assumed to hold henceforth.

Assumption A (Lipschitz condition). There exists a constant K > 0 such that

ps(Qa(D1), Qa(D2)) < Kps(Dy, D) (3.3)
for all @ € [0,1] and Dy, Dy € C(5).

Theorem 3.1. Let a fuzzy stopping time & € ¥. Then, the map 6'(-,-) : F x N — [0, 1]
defined by ¢'(8,1) 1= 6(we(3),1) (5§ € F,t € N) has the following properties (i) and (ii):

(i) &'(-,t) is B(F)-measurable for each t > 1.

(ii) Foreach s € F,&'(8,-) is non-increasing and there exists t; € N such that 6'(3,t) =
0 for all t > ;.

Proof. For ¢ > 1, we define a map w; : F — F' by wi(8) := {5/}i_;, where {§}2, is
defined by (1.5) with 3§; = 3. For (i), it suffices to prove that w; is continuous for each
t > 1, together with the measurability of 6. We will show only the case of ¢ = 2, since
the case of ¢t > 3 is proved in the same manner. For §,§ € F, we have

P (2(8),2(5)) < p(5.8) +27p(Q(3), Q) < (1 + K/2)p(3, ),

from Lemma 3.1 and Assumption A. This shows the continuity of wy(-). Also, (ii) follows
from the definition of a fuzzy stopping time. O

Observing (2.4) and the form of the objective function G(3, ) for our stopping prob-
lem, we can confine ourselves to the class of fuzzy stopping times &'(-,-) : F x N +— [0, 1]
satisfying (i) and (ii) in Theorem 3.1, and so the class of such fuzzy stopping times will
be denoted by ¥'. The following theorem is useful in constructing an optimal fuzzy time
which is done in Section 4.

Theorem 3.2. Suppose that, for each a € [0, 1], there exists a B(C(S))-measurable map
oo C(S) +— N. Using this family {0, }aejo1], define the map & : F x N~ [0,1] by

G(5,t) := sup {a Al a0, SEF, 1>1. (3.4)
a€[0,1]

Then, if for each § € F, 0,(8,) is non-increasing and left-continuous in « € [0, 1], it holds
that



(i) 6 € ¥, and

(ii) 0a(fa) =min{t > 1]5(3,1) <al (a€(0,1))

Proof. If 0,(3,) is non-increasing in « € [0, 1], the inequalities &(3,¢) > &(8,t + 1) (¢t >
1) follow from (3.4). Also, (3.4) implies that, for each ¢ > 1 and « € [0, 1],
{5eF|a(5t)>at={5€F|oaciml3aciym) >t} (3.5)
n=1

For a continuous map n, : F — C(S) defined by 7,(3) = 3, (5§ € F), we have
{3 € Floa(sa) >t} =" ({D € C(5) | 0a(D) = t +1}),

so that {3 € F | &(3,t) > a} € B(F) follows from (3.5) and B(C(5))-measurability of o,.
The above facts imply & € ¥'. Also, (ii) holds obviously. O

4. Optimal fuzzy stopping times

In this section, we try to construct an optimal fuzzy stopping time, by applying an
approach by a-cuts. Now, we define a non-fuzzy stopping problem specified by C(5),
Qo and R, (a € [0,1]), associated with the fuzzy stopping problem considered in the
preceding section. For each @ € [0, 1] and any initial subset ¢ € C(59), a sequence {¢;}32, C
C(9) is defined by

cr:=c and ¢q1 = Qule) (E2>1). (4.1)

Let
Yy:={0:C(S)— N |{o=1t} € B(C(S5)) for each t > 1}. (4.2)

Using this sequence {¢;}:2; given by (4.1) with ¢; := ¢, let

t—1

(e, t) = ZRQ(Q) for ¢ € C(9). (4.3)

=1

Note that ¢*(e,o(c)) = Z}j:(cl)_l R,(Q'-(c)) € C(R) for all ¢ € %;. The non-fuzzy
stopping problem considered here is to maximize g(¢*(c,0(c))) over all o € ¥y, where
g 1s the weighting function given in Section 2. A map 7, € ¥; is called an a-optimal
stopping time if

g(¢%(c,a(c))) > g(e®(c,0(c))) for all o € ¥y.

In order to characterize a-optimal stopping times, let

v (c) = (jsél%)t g(¢”(c,0(c))) fort>1and ¢ € C(9), (4.4)

where ¥; := {oVt | o € ¥} (t > 1). Then, the next lemma is given as deterministic
versions of the results for stochastic stopping problems in Chow et al. [3] and Kadota et

al. [8].



Assumption B (Closedness). For any a € [0,1], if (¢*(54,1),58:0) € K%(g) for some
t, then (p*(84,1"),3p4) € K%(g) for all ¢ > t, where K?(g) := {(h,c) € C(R) x C(S5) |
g(h) = g(h + Ra(Qa(c)))}-

For ¢ € C(9), let

72(¢) :=min{t € N | (¢*(¢,t),¢:) € K%(g)}. (4.5)

Lemma 4.1 (c.f. [3, Theorems 4.1 and 4.5] and [8]). Suppose Assumption B holds. Let
a € [0,1]. The following (i) and (ii) hold:

(i) 7 (e) = max{g(®(c,0), v ()} (1 2 1,¢€C(9)),

(ii) Suppose that 7}(c) < oo and sup,sy g(p”(c,t)) < oo for each ¢ € C(S). Then, 7} is

*

a-optimal and {(+) = g(e*(-, 72())).

(iii) If Timyeo g(©% (e, 1)) = —o0, it holds 72(c) < oc.

Chow et al. [3] studied the general case in optimal stopping problems, and Kadota et
al. [8] discussed the one-step look ahead optimal stopping times given by (4.5). For each
a € [0,1], applying the above lemma, we can find an a-optimal stopping time 7% under
conditions of Lemma 4.1(ii). Assuming the existence of a-optimal stopping times for each
a € [0,1], let {72}aepo,1) be the family of such stopping times. Here, we try to construct
an optimal fuzzy stopping time from {7} },e[0,1]. For this purpose, we need a regularity
condition.

Assumption C (Regularity). 77(3,) is non-increasing in « € [0, 1].

We can assume the left-continuity of the map a — 775(3,), by considering limg it 775(347)

instead of 7%(3,). Define a map 7* : F x N — [0, 1] by

%*(g,t) = sup | {Oz A 1{T§(§a)>t}} (46)

a€lo,1
for all s € F and ¢t € N.

Theorem 4.1. Suppose Assumptions B and C hold. Then, 7 defined by (4.6) is a
s-optimal fuzzy stopping time.

Proof. From Assumption C, 73(5,) < 75(3,) if @ > ¢/, so that 7* € ¥’ follows from
Theorem 3.2. For any § € F and & € ¥/, from Lemmas 2.1 and 3.1 we have

—_
~

Fa(Fa)—1 Fa(3a)=1

©0(5,6), = Ro(510) = > Ra(QT'(54)). (4.7)

1 t=1

o+
Il

Also, since o, € ¥, the optimality of 7 implies by (4.7) that, for all a € [0, 1],
9(#(3,6)a) = 9(¢" (80, 0a(34))) < g(¢" (80, 73(30))) = 9((3,77)a)-

7



Therefore, we have

G(35.5) = [ g(p(5,8)) da < [ g(p(5,7).) da = G(5,77).

This means that 7* is $-optimal, as required. O

Remark. It seems to be difficult to check the regularity Assumption C. But, as example,
Efor some scalar Wi, Wy with 0 < wy < wy, ¢([a,b]) = wia + web for all [a,b] € C(R) and
Roz' (Qa’(ga’,t)) - Roz (Qa(goz,t)) 2 Ea (Qa(‘ga,t)) - Ea/ (Qa’(ga’,t)) for all ¢ 2 1 and 0 S

o < a <1, Assuption C holds for an initial state 3, where

Ro (Qa’(ga’,t)) = [Ea’ (Qa'(ga’,t)) 7Ea’ (Qa’(ga’ﬂf))}

D Re(Qal3a0)) = [Ro (Qul50s)) s R (Qal5a,))] -

In fact, we can easily assure that (npa/(§a,,t), §a/7t) € K*'(g) implies (¢ (34,1), 30.4) €
K*(g) for all & > o.

5. A numerical example

In this section, an example is given to illustrate the theoretical results. Let S :=[0,1]
and 0 < § < 0.98. the fuzzy relations ¢ and r are given by

q(z,y) = (1 = |y = Bz|/100) V0, 2,y €[0,1]

and

f(a;,z):{l ifz=2—A for z € [0,1], z € R,

0 otherwise
where X is an observation cost satisfying A > 1/100(1 — 3). Then, @), and R, defined by
(3.1) and (3.2) are as follows:
Qalla,b]) = [fa—(1—a),Bb+(1—a)] and R,([a,b]) =[a—A,b—A] for0<a<b< 1.

Now, let ¢ = [a,b] (0 <a <b<1)and g(c) =b. Then

dte (e =a (X o) = U2 )

and
1710 = sp ol (oo = s { U2 -

oEY: n>t

where b, := b — (1 — a)/100(1 — 3) and A, := XA — (1 — «)/100(1 — ) for a € [0,1].
Applying Lemma 4.1, for each o € [0, 1], the a-optimal stopping time 7* is given by

(b)) = min{t(>1) | (¢*([a,8],1), 8" '[a,b]) € K*(g)}

= min{t(z 1) | %—/\a(t—l) > %—/\at}.
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Let
5(z)=(1—1[8z —4])v0 for z €[0.1].

Then we see

So = ,
8 8

A (1 —
Ta(3a) = llog —b(%osjﬁ)/logﬂ] + 1,

where for a real number z, [z] is the largest integer equal to or less than z. Since § is
regular with respect to {7} },e[0,1, Theorem 4.1 implies that the 5-optimal fuzzy stopping

. [S—I-oz 5—a]‘

Therefore

time 7* is given by

%*(g,t) = sup {Oz A 1{7§(§Q)>t}}
a€[0,1]
Aa(l —
= sup{a € [0,1] | llog_b(Togf/}B)/logﬁ 2 t}

oy (8(1 — B+ B'log 3) + 5005 log B + 800(1 — ﬁ)A) ol
8(1 — B+ B'log 3) + 1003 log 3 ’

where a V b := max{a, b} and a A b := min{a,b} for a,b € R and the values are given in

Table 1.

t 1 2 3 4 D 6 7 1819
7*(5,1) [ 0.938 | 0.812 | 0.681 | 0.546 | 0.405 | 0.260 | 0.108 | 0 | 0

Table 1. 3-optimal fuzzy stopping time 7*(3,-) when A = 0.5 and 3 = 0.97.
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