An Approach to Stopping Problems of a Dynamic Fuzzy System

Masami KURANO † , Masami YASUDA ‡ , Jun-ichi NAKAGAMI ‡ and Yuji YOSHIDA §

[†]Faculty of Education, [‡]Faculty of Science, Chiba University, Yayoi-cho,Inage-ku,Chiba 263, Japan. [§]Faculty of Economics and Business Administration, Kitakyushu University, Kokuraminami, Kitakyushu 802, Japan

Abstract

A stopping problem for a dynamic fuzzy system with fuzzy rewards is formulated, which is thought of as a natural fuzzification of non-fuzzy stopping problem for a determistic dynamic system. And, the validity of the approach by α -cuts of fuzzy sets will be discussed in constructing an one-step look ahead optimal fuzzy stopping time. A numerical example is given to illustrate the theoretical results.

Keywords: Fuzzy stopping problem; dynamic fuzzy system; α -cuts of fuzzy sets; optimal fuzzy stopping time.

1. Introduction and notations

The multistage decision-making models with fuzziness is introduced by Bellman and Zadeh [1]) using the method of dynamic programming, and many paper are published afterward. For a recent survey of the theories and applications, refer the paper by Kacprzyk and Esogbue [7]. Here we consider a stopping problem incorpolated with Fuzzyness. The idea of a fuzzy stopping time has been introduced by Kacprzyk [5, 6], though the decision is assumed to be the intersection of fuzzy constraints and a fuzzy goal. In this paper we have tried to formulate a stopping problem under a dynamic fuzzy system with fuzzy rewards discussed by [9, 10], which is thought of as a natural fuzzification of non-fuzzy stopping problems induced by determistic dynamic systems. The interpretation of fuzzy stopping time is difficult in general. But the validity of the approach by α -cuts of fuzzy sets will be discussed in constructing an optimal fuzzy stopping time. As a closely related work, see Yoshida [14] in which Snell's optimal stopping for a Markov fuzzy process has been studied. In remainder of this section, we will give some notations, by which a fuzzy stopping problem is formulated in the following section.

Let E, E_1 , E_2 be convex compact subsets of some Banach space. Throughout the paper, we will denote a fuzzy set and a fuzzy relation by their membership functions. For the theory of fuzzy sets, refer to Zadeh [15] and Novák [12]. A fuzzy set $\tilde{u}: E \to [0,1]$ is called convex if

$$\tilde{u}(\lambda x + (1-\lambda)y) \ge \tilde{u}(x) \wedge \tilde{u}(y), \quad x,y \in E, \ \lambda \in [0,1],$$

where $a \wedge b := \min\{a, b\}$ (c.f. Chen-wei Xu [2]). Also, a fuzzy relation $\tilde{h} : E_1 \times E_2 \to [0, 1]$ is called convex if

$$\tilde{h}(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) \ge \tilde{h}(x_1, y_1) \wedge \tilde{h}(x_2, y_2)$$

for $x_1, x_2 \in E_1$, $y_1, y_2 \in E_2$ and $\lambda \in [0, 1]$. The α -cut $(\alpha \in [0, 1])$ of the fuzzy set \tilde{u} is defined by

$$\tilde{u}_{\alpha} := \{ x \in E \mid \tilde{u}(x) \ge \alpha \} \ (\alpha > 0) \quad \text{and} \quad \tilde{u}_{0} := \text{cl } \{ x \in E \mid \tilde{u}(x) > 0 \},$$

where cl denotes the closure of a set.

Let $\mathcal{F}(E)$ be the set of all convex fuzzy sets, \tilde{u} , on E whose membership functions are upper semi-continuous and have compact supports and the normality condition: $\sup_{x\in E} \tilde{u}(x) = 1$. We denote by $\mathcal{C}(E)$ the collection of all compact convex subsets of E and by ρ_E the Hausdorff metric on $\mathcal{C}(E)$. Clearly, $\tilde{u} \in \mathcal{F}(E)$ means $\tilde{u}_{\alpha} \in \mathcal{C}(E)$ for all $\alpha \in [0,1]$.

Let \mathbf{R} be the set of all real numbers. We see, from the definition, that $\mathcal{C}(\mathbf{R})$ and $\mathcal{F}(\mathbf{R})$ are the set of all bounded closed intervals in \mathbf{R} and all upper semi-continuous and convex fuzzy numbers on \mathbf{R} with compact supports, respectively.

The addition and the scalar multiplication on $\mathcal{F}(\mathbf{R})$ are defined as follows (see Puri and Ralescu [13]): For $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbf{R})$ and $\lambda \geq 0$,

$$(\tilde{m} + \tilde{n})(x) := \sup_{x_1, x_2 \in \mathbf{R}: \ x_1 + x_2 = x} {\{\tilde{m}(x_1) \land \tilde{n}(x_2)\}} \quad (x \in \mathbf{R})$$
 (1.1)

and

$$(\lambda \hat{m})(x) := \begin{cases} \hat{m}(x/\lambda) & \text{if } \lambda > 0\\ I_{\{0\}}(x) & \text{if } \lambda = 0 \end{cases} \quad (x \in \mathbf{R}). \tag{1.2}$$

and, hence

$$(\tilde{m} + \tilde{n})_{\alpha} = \tilde{m}_{\alpha} + \tilde{n}_{\alpha}$$
 and $(\lambda \tilde{m})_{\alpha} = \lambda \tilde{m}_{\alpha} \ (\alpha \in [0, 1])$

where $A + B := \{x + y \mid x \in A, y \in B\}$, $\lambda A := \{\lambda x \mid x \in A\}$, $A + \emptyset = \emptyset + A := A$ and $\lambda \emptyset := \emptyset$ for any non-empty closed intervals $A, B \in (\mathbf{R})$. We use the following lemma.

Lemma 1.1 (Chen-wei Xu [2]).

- (i) For any $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbf{R})$ and $\lambda \geq 0$, it holds that $\tilde{m} + \tilde{n} \in \mathcal{F}(\mathbf{R})$.
- (ii) For any $\tilde{u} \in \mathcal{F}(E_1)$ and $\tilde{p} \in \mathcal{F}(E_1 \times E_2)$, it holds that $\sup_{x \in E_1} {\{\tilde{u}(x) \land \tilde{p}(x, \cdot)\}} \in \mathcal{F}(E_2)$.

We consider the fuzzy system([9, 10]) with fuzzy rewards, which is characterized by the elements $(S, \tilde{q}, \tilde{r})$ as follows:

Definition 1.

- (i) The state space S is convex compact subsets of some Banach space. In general, the system is fuzzy, so that the state of the system is called a fuzzy state and is denoted by a element of $\mathcal{F}(S)$.
- (ii) The law of motion and the fuzzy reward for the system are denoted by time-invariant fuzzy relations $\tilde{q}: S \times S \mapsto [0,1]$ and $\tilde{r}: S \times \mathbf{R} \mapsto [0,1]$ respectively. We assume that $\tilde{q} \in \mathcal{F}(S \times S)$ and $\tilde{r} \in \mathcal{F}(S \times \mathbf{R})$.

If the system is in a fuzzy state $\tilde{s} \in \mathcal{F}(S)$, a fuzzy reward $R(\tilde{s})$ is earned and the state is moved to a new fuzzy state $Q(\tilde{s})$, where $Q: \mathcal{F}(S) \to \mathcal{F}(S)$ and $R: \mathcal{F}(S) \to \mathcal{F}(\mathbf{R})$ are defined by

$$Q(\tilde{s})(y) := \sup_{x \in S} \tilde{s}(x) \wedge \tilde{q}(x,y) \quad (y \in S)$$
(1.3)

and

$$R(\tilde{s})(z) := \sup_{x \in S} \tilde{s}(x) \wedge \tilde{r}(x, z) \quad (z \in \mathbf{R}). \tag{1.4}$$

Note that by Lemma 1.1 the maps Q and R are well-defined.

For the dynamic fuzzy system $(S, \tilde{q}, \tilde{r})$, if we give an initial fuzzy state $\tilde{s} \in \mathcal{F}(S)$, we can define a sequence of fuzzy rewards $\{R(\tilde{s}_t)\}_{t=1}^{\infty}$, where a sequence of fuzzy states $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by

$$\tilde{s}_1 := \tilde{s} \quad \text{and} \quad \tilde{s}_{t+1} := Q(\tilde{s}_t) \quad (t \ge 1).$$

$$\tag{1.5}$$

In the following section, a fuzzy stopping problem for $\{R(\tilde{s}_t)\}_{t=1}^{\infty}$ is formulated.

2. A fuzzy stopping problem

For the sake of brevity, denote $\mathcal{F} = \mathcal{F}(S)$. The metric ρ on \mathcal{F} is given as $\rho(\tilde{u}, \tilde{v}) = \sup_{\alpha \in [0,1]} \rho_S(\tilde{u}_\alpha, \tilde{v}_\alpha)$ for $\tilde{u}, \tilde{v} \in \mathcal{F}$ (see Nanda [11]). Let $\mathcal{B}(\mathcal{F})$ be the set of Borel measurable subsets of \mathcal{F} with respect to ρ . Putting by $\Omega_t := \mathcal{F}^t$ the t times product of \mathcal{F} and by $\mathcal{B}_t := \mathcal{B}(\mathcal{F}^t)$ the set of Borel measurable subsets of \mathcal{F}^t with a metric ρ^t on \mathcal{F}^t defined by

$$\rho^{t}(\{\tilde{s}_{l}\}_{l=1}^{t}, \{\tilde{s}'_{l}\}_{l=1}^{t}) := \sum_{l=1}^{t} 2^{-(l-1)} \rho(\tilde{s}_{l}, \tilde{s}'_{l}) \quad \text{for } \{\tilde{s}_{l}\}_{l=1}^{t}, \{\tilde{s}'_{l}\}_{l=1}^{t} \in \mathcal{F}^{t}$$
(2.1)

for $1 \leq t \leq \infty$, we can interpret $\{\tilde{s}_t\}_{t=1}^{\infty} \in \Omega_{\infty}$, where $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by (1.5) with any given initial fuzzy state $\tilde{s}_1 = \tilde{s} \in \mathcal{F}$. Here, applying the idea of fuzzy termination time in Kacprzyk [5, 6], we will define a fuzzy stopping time. Let **N** be the set of all natural numbers.

Definition 2. A fuzzy stopping time is a fuzzy relation $\tilde{\sigma}: \Omega_{\infty} \times \mathbf{N} \to [0,1]$ such that

- (i) for each $t \geq 1$, $\tilde{\sigma}(\cdot, t)$ is \mathcal{B}_t -measurable, and
- (ii) for each $\overline{\omega} \in \Omega_{\infty}$, $\tilde{\sigma}(\overline{\omega}, \cdot)$ is non-increasing and there exists $t_{\overline{\omega}} \in \mathbf{N}$ with $\tilde{\sigma}(\overline{\omega}, t) = 0$ for all $t \geq t_{\overline{\omega}}$.

In the grade of membership of stopping times, '0' and '1' represent 'stop' and 'continue' respectively. We denote by Σ the set of all fuzzy stopping times.

Lemma 2.1. Let any $\tilde{\sigma} \in \Sigma$. Define a map $\tilde{\sigma}_{\alpha} : \Omega_{\infty} \to \mathbf{N}$ by

$$\tilde{\sigma}_{\alpha}(\overline{\omega}) = \min\{t \ge 1 \mid \tilde{\sigma}(\overline{\omega}, t) < \alpha\} \quad (\overline{\omega} \in \Omega_{\infty}) \quad \text{for } \alpha \in (0, 1].$$
 (2.2)

Then, we have:

(i) $\{\tilde{\sigma}_{\alpha} \leq t\} \in \mathcal{B}_t \ (t \geq 1);$

- (ii) $\tilde{\sigma}_{\alpha}(\overline{\omega}) \leq \tilde{\sigma}_{\alpha'}(\overline{\omega}) \quad (\overline{\omega} \in \Omega_{\infty}) \quad \text{if } \alpha \geq \alpha';$
- (ii) $\lim_{\alpha' \uparrow \alpha} \tilde{\sigma}_{\alpha'}(\overline{\omega}) = \tilde{\sigma}_{\alpha}(\overline{\omega}) \quad (\overline{\omega} \in \Omega_{\infty}) \quad \text{if } \alpha > 0.$

Proof. (i) is from $\{\tilde{\sigma}_{\alpha} > t\} = \{\overline{\omega} \in \Omega_{\infty} \mid \tilde{\sigma}(\overline{\omega}, t) \geq \alpha\} \in \mathcal{B}_t$. Also, (ii) and (iii) follow clearly. \square

In order to complete the description of an optimal fuzzy stopping problem, we will specify a function which measures the system's performance when a fuzzy stopping time $\tilde{\sigma} \in \Sigma$ and an initial fuzzy state $\tilde{s} \in \mathcal{F}$ are given. We define $\omega_{\infty}(\cdot) : \mathcal{F} \to \Omega_{\infty}$ by

$$\omega_{\infty}(\tilde{s}) := \{\tilde{s}_t\}_{t=1}^{\infty},\tag{2.3}$$

and $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by (1.5) with $\tilde{s}_1 = \tilde{s}$. Let $g : \mathcal{C}(\mathbf{R}) \to \mathbf{R}$ be a continuous and monotone function. Using this g as a weighting function (see Fortemps and Roubens [4]), the scalarization of the total fuzzy reward will be done by

$$G(\tilde{s}, \tilde{\sigma}) := \int_0^1 g(\varphi(\tilde{s}, \tilde{\sigma})_{\alpha}) d\alpha = \int_0^1 g\left(\sum_{t=1}^{\tilde{\sigma}_{\alpha} - 1} R(\tilde{s}_t)_{\alpha}\right) d\alpha, \tag{2.4}$$

where $\tilde{\sigma}_{\alpha} := \tilde{\sigma}_{\alpha}(\omega_{\infty}(\tilde{s}))$ and $\varphi(\tilde{s}, \tilde{\sigma})_{\alpha} := \sum_{t=1}^{\tilde{\sigma}_{\alpha}-1} R(\tilde{s}_{t})_{\alpha}$ (We define $\sum_{t=1}^{0} := \{0\}$). Note that $\varphi(\tilde{s}, \tilde{\sigma})_{\alpha} \in \mathcal{C}(\mathbf{R})$ and the map $\alpha \mapsto g(\varphi(\tilde{s}, \tilde{\sigma})_{\alpha})$ is left-continuous on (0, 1], so that the right-hand integral of (2.4) is well-defined. Now, our objective is to maximize (2.4) over all fuzzy stopping times $\tilde{\sigma} \in \Sigma$ for each initial fuzzy state $\tilde{s} \in \mathcal{F}$.

Definition 3. For $\tilde{s} \in \mathcal{F}$, a fuzzy stopping time $\tilde{\sigma}^*$ is called \tilde{s} -optimal if $G(\tilde{s}, \tilde{\sigma}) \leq G(\tilde{s}, \tilde{\sigma}^*)$ for all $\tilde{\sigma} \in \Sigma$. If $\tilde{\sigma}^*$ is \tilde{s} -optimal for all $\tilde{s} \in \Sigma$, $\tilde{\sigma}^*$ is called optimal.

In the following section, the α -cuts of fuzzy stopping time will be investigated, whose results are used to construct an optimal fuzzy stopping time in Section 4.

3. α -cut of fuzzy stopping times

First, we establish several notations that will be used in the sequel. Associated with the fuzzy relations \tilde{q} and \tilde{r} , the corresponding maps $Q_{\alpha}: \mathcal{C}(S) \to \mathcal{C}(S)$ and $R_{\alpha}: \mathcal{C}(S) \to \mathcal{C}(R)$ ($\alpha \in [0,1]$) are defined, respectively, as follows: For $D \in \mathcal{C}(S)$,

$$Q_{\alpha}(D) := \begin{cases} \{ y \in S \mid \tilde{q}(x,y) \ge \alpha \text{ for some } x \in D \} & \text{for } \alpha > 0 \\ \operatorname{cl}\{ y \in S \mid \tilde{q}(x,y) > 0 \text{ for some } x \in D \} & \text{for } \alpha = 0, \end{cases}$$
(3.1)

and

$$R_{\alpha}(D) := \begin{cases} \{z \in R \mid \tilde{r}(x,z) \ge \alpha \text{ for some } x \in D\} & \text{for } \alpha > 0 \\ \operatorname{cl}\{z \in R \mid \tilde{r}(x,z) > 0 \text{ for some } x \in D\} & \text{for } \alpha = 0. \end{cases}$$
(3.2)

By $\tilde{q} \in \mathcal{F}(S \times S)$ and $\tilde{r} \in \mathcal{F}(S \times R)$, the maps Q_{α} and R_{α} ($\alpha \in [0,1]$) are well-defined. The iterates Q_{α}^{t} ($t \geq 0$) are defined by setting $Q_{\alpha}^{0} := I(\text{identity})$ and iteratively,

$$Q_{\alpha}^{t+1} := Q_{\alpha} Q_{\alpha}^{t} \quad (t \ge 0).$$

In the following lemma, which is easily verified by the idea in the proof of Kurano et al. [9, Lemma 1], the α -cuts of $Q(\tilde{s})$ and $R(\tilde{s})$ defined by (1.3) and (1.4) are specified using the maps Q_{α} and R_{α} .

Lemma 3.1 ([9, 10]). For any $\alpha \in [0,1]$ and $\tilde{s} \in \mathcal{F}$, we have:

- (i) $Q(\tilde{s})_{\alpha} = Q_{\alpha}(\tilde{s}_{\alpha});$
- (ii) $R(\tilde{s})_{\alpha} = R_{\alpha}(\tilde{s}_{\alpha});$
- (iii) $\tilde{s}_{t,\alpha} = Q_{\alpha}^{t-1}(\tilde{s}_{\alpha}) \quad (t \ge 1),$

where $\tilde{s}_{t,\alpha} := (\tilde{s}_t)_{\alpha}$ and $\{\tilde{s}_t\}_{t=1}^{\infty}$ is defined by (1.5) with $\tilde{s}_1 = \tilde{s}$.

Here we need the following assumption which is assumed to hold henceforth.

Assumption A (Lipschitz condition). There exists a constant K > 0 such that

$$\rho_S(Q_\alpha(D_1), Q_\alpha(D_2)) \le K\rho_S(D_1, D_2)$$
(3.3)

for all $\alpha \in [0,1]$ and $D_1, D_2 \in \mathcal{C}(S)$.

Theorem 3.1. Let a fuzzy stopping time $\tilde{\sigma} \in \Sigma$. Then, the map $\tilde{\sigma}'(\cdot, \cdot) : \mathcal{F} \times \mathbf{N} \mapsto [0, 1]$ defined by $\tilde{\sigma}'(\tilde{s}, t) := \tilde{\sigma}(\omega_{\infty}(\tilde{s}), t)$ ($\tilde{s} \in \mathcal{F}, t \in \mathbf{N}$) has the following properties (i) and (ii):

- (i) $\tilde{\sigma}'(\cdot,t)$ is $\mathcal{B}(\mathcal{F})$ -measurable for each $t \geq 1$.
- (ii) For each $\tilde{s} \in \mathcal{F}$, $\tilde{\sigma}'(\tilde{s}, \cdot)$ is non-increasing and there exists $t_{\tilde{s}} \in N$ such that $\tilde{\sigma}'(\tilde{s}, t) = 0$ for all $t \geq t_{\tilde{s}}$.

Proof. For $t \geq 1$, we define a map $\omega_t : \mathcal{F} \mapsto \mathcal{F}^t$ by $\omega_t(\tilde{s}) := \{\tilde{s}_l\}_{l=1}^t$, where $\{\tilde{s}_l\}_{l=1}^\infty$ is defined by (1.5) with $\tilde{s}_1 = \tilde{s}$. For (i), it suffices to prove that ω_t is continuous for each $t \geq 1$, together with the measurability of $\tilde{\sigma}$. We will show only the case of t = 2, since the case of $t \geq 3$ is proved in the same manner. For $\tilde{s}, \tilde{s}' \in \mathcal{F}$, we have

$$\rho^{2}(\omega_{2}(\tilde{s}), \omega_{2}(\tilde{s}')) \leq \rho(\tilde{s}, \tilde{s}') + 2^{-1}\rho(Q(\tilde{s}), Q(\tilde{s}')) \leq (1 + K/2)\rho(\tilde{s}, \tilde{s}'),$$

from Lemma 3.1 and Assumption A. This shows the continuity of $\omega_2(\cdot)$. Also, (ii) follows from the definition of a fuzzy stopping time. \square

Observing (2.4) and the form of the objective function $G(\tilde{s}, \tilde{\sigma})$ for our stopping problem, we can confine ourselves to the class of fuzzy stopping times $\tilde{\sigma}'(\cdot, \cdot) : \mathcal{F} \times \mathbf{N} \mapsto [0, 1]$ satisfying (i) and (ii) in Theorem 3.1, and so the class of such fuzzy stopping times will be denoted by Σ' . The following theorem is useful in constructing an optimal fuzzy time which is done in Section 4.

Theorem 3.2. Suppose that, for each $\alpha \in [0, 1]$, there exists a $\mathcal{B}(\mathcal{C}(S))$ -measurable map $\sigma_{\alpha} : \mathcal{C}(S) \mapsto \mathbf{N}$. Using this family $\{\sigma_{\alpha}\}_{\alpha \in [0,1]}$, define the map $\tilde{\sigma} : \mathcal{F} \times \mathbf{N} \mapsto [0,1]$ by

$$\tilde{\sigma}(\tilde{s},t) := \sup_{\alpha \in [0,1]} \{ \alpha \wedge 1_{\{\sigma_{\alpha}(\tilde{s}_{\alpha}) > t\}} \}, \quad \tilde{s} \in \mathcal{F}, \ t \ge 1.$$
(3.4)

Then, if for each $\tilde{s} \in \mathcal{F}$, $\sigma_{\alpha}(\tilde{s}_{\alpha})$ is non-increasing and left-continuous in $\alpha \in [0,1]$, it holds that

(i) $\tilde{\sigma} \in \Sigma'$, and

(ii)
$$\sigma_{\alpha}(\tilde{s}_{\alpha}) = \min\{t \geq 1 \mid \tilde{\sigma}(\tilde{s}, t) < \alpha\} \quad (\alpha \in (0, 1]).$$

Proof. If $\sigma_{\alpha}(\tilde{s}_{\alpha})$ is non-increasing in $\alpha \in [0,1]$, the inequalities $\tilde{\sigma}(\tilde{s},t) \geq \tilde{\sigma}(\tilde{s},t+1)$ $(t \geq 1)$ follow from (3.4). Also, (3.4) implies that, for each $t \geq 1$ and $\alpha \in [0,1]$,

$$\{\tilde{s} \in \mathcal{F} \mid \tilde{\sigma}(\tilde{s}, t) \ge \alpha\} = \bigcap_{n=1}^{\infty} \{\tilde{s} \in \mathcal{F} \mid \sigma_{\alpha - 1/n}(\tilde{s}_{\alpha - 1/n}) > t\}.$$
(3.5)

For a continuous map $\eta_{\alpha}: \mathcal{F} \mapsto \mathcal{C}(S)$ defined by $\eta_{\alpha}(\tilde{s}) = \tilde{s}_{\alpha} \ (\tilde{s} \in \mathcal{F})$, we have

$$\{\tilde{s} \in \mathcal{F} \mid \sigma_{\alpha}(\tilde{s}_{\alpha}) > t\} = \eta_{\alpha}^{-1}(\{D \in \mathcal{C}(S) \mid \sigma_{\alpha}(D) \ge t + 1\}),$$

so that $\{\tilde{s} \in \mathcal{F} \mid \tilde{\sigma}(\tilde{s},t) \geq \alpha\} \in \mathcal{B}(\mathcal{F})$ follows from (3.5) and $\mathcal{B}(\mathcal{C}(S))$ -measurability of σ_{α} . The above facts imply $\tilde{\sigma} \in \Sigma'$. Also, (ii) holds obviously. \square

4. Optimal fuzzy stopping times

In this section, we try to construct an optimal fuzzy stopping time, by applying an approach by α -cuts. Now, we define a non-fuzzy stopping problem specified by $\mathcal{C}(S)$, Q_{α} and R_{α} ($\alpha \in [0,1]$), associated with the fuzzy stopping problem considered in the preceding section. For each $\alpha \in [0,1]$ and any initial subset $c \in \mathcal{C}(S)$, a sequence $\{c_t\}_{t=1}^{\infty} \subset \mathcal{C}(S)$ is defined by

$$c_1 := c \quad \text{and} \quad c_{t+1} := Q_{\alpha}(c_t) \quad (t \ge 1).$$
 (4.1)

Let

$$\Sigma_1 := \{ \sigma : \mathcal{C}(S) \mapsto \mathbf{N} \mid \{ \sigma = t \} \in \mathcal{B}(\mathcal{C}(S)) \text{ for each } t \ge 1 \}.$$
 (4.2)

Using this sequence $\{c_t\}_{t=1}^{\infty}$ given by (4.1) with $c_1 := c$, let

$$\varphi^{\alpha}(c,t) := \sum_{l=1}^{t-1} R_{\alpha}(c_l) \quad \text{for } c \in \mathcal{C}(S).$$
(4.3)

Note that $\varphi^{\alpha}(c, \sigma(c)) = \sum_{l=1}^{\sigma(c)-1} R_{\alpha}(Q_{\alpha}^{l-1}(c)) \in \mathcal{C}(\mathbf{R})$ for all $\sigma \in \Sigma_1$. The non-fuzzy stopping problem considered here is to maximize $g(\varphi^{\alpha}(c, \sigma(c)))$ over all $\sigma \in \Sigma_1$, where g is the weighting function given in Section 2. A map $\tau_{\alpha} \in \Sigma_1$ is called an α -optimal stopping time if

$$g(\varphi^{\alpha}(c, \tau_{\alpha}(c))) \ge g(\varphi^{\alpha}(c, \sigma(c)))$$
 for all $\sigma \in \Sigma_1$.

In order to characterize α -optimal stopping times, let

$$\gamma_t^{\alpha}(c) := \sup_{\sigma \in \Sigma_t} g(\varphi^{\alpha}(c, \sigma(c))) \quad \text{for } t \ge 1 \text{ and } c \in \mathcal{C}(S), \tag{4.4}$$

where $\Sigma_t := \{ \sigma \lor t \mid \sigma \in \Sigma_1 \}$ $(t \ge 1)$. Then, the next lemma is given as deterministic versions of the results for stochastic stopping problems in Chow et al. [3] and Kadota et al. [8].

Assumption B (Closedness). For any $\alpha \in [0,1]$, if $(\varphi^{\alpha}(\tilde{s}_{\alpha},t), \tilde{s}_{t,\alpha}) \in K^{\alpha}(g)$ for some t, then $(\varphi^{\alpha}(\tilde{s}_{\alpha},t'), \tilde{s}_{t',\alpha}) \in K^{\alpha}(g)$ for all t' > t, where $K^{\alpha}(g) := \{(h,c) \in \mathcal{C}(\mathbf{R}) \times \mathcal{C}(S) \mid g(h) \geq g(h + R_{\alpha}(Q_{\alpha}(c)))\}.$

For $c \in \mathcal{C}(S)$, let

$$\tau_{\alpha}^*(c) := \min\{t \in \mathbf{N} \mid (\varphi^{\alpha}(c, t), c_t) \in K^{\alpha}(g)\}. \tag{4.5}$$

Lemma 4.1 (c.f. [3, Theorems 4.1 and 4.5] and [8]). Suppose Assumption B holds. Let $\alpha \in [0,1]$. The following (i) and (ii) hold:

- (i) $\gamma_t^{\alpha}(c) = \max\{g(\varphi^{\alpha}(c,t)), \gamma_{t+1}^{\alpha}(c)\} \quad (t \ge 1, c \in \mathcal{C}(S)).$
- (ii) Suppose that $\tau_{\alpha}^*(c) < \infty$ and $\sup_{t \geq 1} g(\varphi^{\alpha}(c,t)) < \infty$ for each $c \in \mathcal{C}(S)$. Then, τ_{α}^* is α -optimal and $\gamma_1^{\alpha}(\cdot) = g(\varphi^{\alpha}(\cdot,\tau_{\alpha}^*(\cdot)))$.
- (iii) If $\lim_{t\to\infty} g(\varphi^{\alpha}(c,t)) = -\infty$, it holds $\tau_{\alpha}^*(c) < \infty$.

Chow et al. [3] studied the general case in optimal stopping problems, and Kadota et al. [8] discussed the one-step look ahead optimal stopping times given by (4.5). For each $\alpha \in [0,1]$, applying the above lemma, we can find an α -optimal stopping time τ_{α}^{*} under conditions of Lemma 4.1(ii). Assuming the existence of α -optimal stopping times for each $\alpha \in [0,1]$, let $\{\tau_{\alpha}^{*}\}_{\alpha \in [0,1]}$ be the family of such stopping times. Here, we try to construct an optimal fuzzy stopping time from $\{\tau_{\alpha}^{*}\}_{\alpha \in [0,1]}$. For this purpose, we need a regularity condition.

Assumption C (Regularity). $\tau_{\alpha}^{*}(\tilde{s}_{\alpha})$ is non-increasing in $\alpha \in [0,1]$.

We can assume the left-continuity of the map $\alpha \mapsto \tau_{\alpha}^*(\tilde{s}_{\alpha})$, by considering $\lim_{\alpha' \uparrow \alpha} \tau_{\alpha'}^*(\tilde{s}_{\alpha'})$ instead of $\tau_{\alpha}^*(\tilde{s}_{\alpha})$. Define a map $\tilde{\tau}^* : \mathcal{F} \times \mathbf{N} \mapsto [0,1]$ by

$$\tilde{\tau}^*(\tilde{s},t) := \sup_{\alpha \in [0,1]} \left\{ \alpha \wedge 1_{\{\tau_\alpha^*(\tilde{s}_\alpha) > t\}} \right\}$$

$$\tag{4.6}$$

for all $\tilde{s} \in \mathcal{F}$ and $t \in \mathbb{N}$.

Theorem 4.1. Suppose Assumptions B and C hold. Then, $\tilde{\tau}^*$ defined by (4.6) is a \tilde{s} -optimal fuzzy stopping time.

Proof. From Assumption C, $\tau_{\alpha}^*(\tilde{s}_{\alpha}) \leq \tau_{\alpha'}^*(\tilde{s}_{\alpha'})$ if $\alpha \geq \alpha'$, so that $\tilde{\tau}^* \in \Sigma'$ follows from Theorem 3.2. For any $\tilde{s} \in \mathcal{F}$ and $\tilde{\sigma} \in \Sigma'$, from Lemmas 2.1 and 3.1 we have

$$\varphi(\tilde{s}, \tilde{\sigma})_{\alpha} = \sum_{t=1}^{\tilde{\sigma}_{\alpha}(\tilde{s}_{\alpha})-1} R_{\alpha}(\tilde{s}_{t,\alpha}) = \sum_{t=1}^{\tilde{\sigma}_{\alpha}(\tilde{s}_{\alpha})-1} R_{\alpha}(Q_{\alpha}^{t-1}(\tilde{s}_{\alpha})). \tag{4.7}$$

Also, since $\sigma_{\alpha} \in \Sigma_1$, the optimality of τ_{α}^* implies by (4.7) that, for all $\alpha \in [0,1]$,

$$g(\varphi(\tilde{s}, \tilde{\sigma})_{\alpha}) = g(\varphi^{\alpha}(\tilde{s}_{\alpha}, \sigma_{\alpha}(\tilde{s}_{\alpha}))) \leq g(\varphi^{\alpha}(\tilde{s}_{\alpha}, \tau_{\alpha}^{*}(\tilde{s}_{\alpha}))) = g(\varphi(\tilde{s}, \tilde{\tau}^{*})_{\alpha}).$$

Therefore, we have

$$G(\tilde{s}, \tilde{\sigma}) = \int_0^1 g(\varphi(\tilde{s}, \tilde{\sigma})_{\alpha}) \ d\alpha \le \int_0^1 g(\varphi(\tilde{s}, \tilde{\tau}^*)_{\alpha}) \ d\alpha = G(\tilde{s}, \tilde{\tau}^*).$$

This means that $\tilde{\tau}^*$ is \tilde{s} -optimal, as required. \square

Remark. It seems to be difficult to check the regularity Assumption C. But, as example, if for some scalar w_1, w_2 with $0 \le w_1 \le w_2, g([a,b]) = w_1 a + w_2 b$ for all $[a,b] \in \mathcal{C}(\mathbf{R})$ and $\overline{R}_{\alpha'}(Q_{\alpha'}(\tilde{s}_{\alpha',t})) - \overline{R}_{\alpha}(Q_{\alpha}(\tilde{s}_{\alpha,t})) \ge \underline{R}_{\alpha}(Q_{\alpha}(\tilde{s}_{\alpha,t})) - \underline{R}_{\alpha'}(Q_{\alpha'}(\tilde{s}_{\alpha',t}))$ for all $t \ge 1$ and $0 \le \alpha' \le \alpha \le 1$, Assuption C holds for an initial state \tilde{s} , where

$$R_{\alpha'}(Q_{\alpha'}(\tilde{s}_{\alpha',t})) = \left[\underline{R}_{\alpha'}(Q_{\alpha'}(\tilde{s}_{\alpha',t})), \overline{R}_{\alpha'}(Q_{\alpha'}(\tilde{s}_{\alpha',t}))\right]$$

$$\supset R_{\alpha}(Q_{\alpha}(\tilde{s}_{\alpha,t})) = \left[\underline{R}_{\alpha}(Q_{\alpha}(\tilde{s}_{\alpha,t})), \overline{R}_{\alpha}(Q_{\alpha}(\tilde{s}_{\alpha,t}))\right].$$

In fact, we can easily assure that $\left(\varphi^{\alpha'}(\tilde{s}_{\alpha'},t),\tilde{s}_{\alpha',t}\right)\in K^{\alpha'}(g)$ implies $(\varphi^{\alpha}(\tilde{s}_{\alpha},t),\tilde{s}_{\alpha,t})\in K^{\alpha}(g)$ for all $\alpha\geq\alpha'$.

5. A numerical example

In this section, an example is given to illustrate the theoretical results. Let S := [0,1] and $0 < \beta < 0.98$. the fuzzy relations \tilde{q} and \tilde{r} are given by

$$\tilde{q}(x,y) = (1 - |y - \beta x|/100) \lor 0, \quad x, y \in [0,1]$$

and

$$\tilde{r}(x,z) = \begin{cases} 1 & \text{if } z = x - \lambda \\ 0 & \text{otherwise} \end{cases}$$
 for $x \in [0,1], z \in \mathbf{R}$,

where λ is an observation cost satisfying $\lambda > 1/100(1-\beta)$. Then, Q_{α} and R_{α} defined by (3.1) and (3.2) are as follows:

$$Q_{\alpha}([a,b]) = [\beta a - (1-\alpha), \beta b + (1-\alpha)] \quad \text{and} \quad R_{\alpha}([a,b]) = [a-\lambda, b-\lambda] \quad \text{for } 0 \le a \le b \le 1.$$

Now, let $c = [a, b] \ (0 \le a \le b \le 1)$ and g(c) = b. Then

$$g(\varphi^{\alpha}(c,t)) = g\left(\sum_{l=1}^{t-1} R_{\alpha}(c_l)\right) = \frac{(1-\beta^{t-1})b_{\alpha}}{1-\beta} - \lambda_{\alpha}(t-1)$$

and

$$\gamma_t^{\alpha}(c) = \sup_{\sigma \in \Sigma_t} g(\varphi^{\alpha}(c, \sigma(c))) = \sup_{n \ge t} \left\{ \frac{(1 - \beta^{n-1})b_{\alpha}}{1 - \beta} - \lambda_{\alpha}(n - 1) \right\},\,$$

where $b_{\alpha} := b - (1 - \alpha)/100(1 - \beta)$ and $\lambda_{\alpha} := \lambda - (1 - \alpha)/100(1 - \beta)$ for $\alpha \in [0, 1]$. Applying Lemma 4.1, for each $\alpha \in [0, 1]$, the α -optimal stopping time τ_{α}^{*} is given by

$$\begin{split} \tau_{\alpha}^*([a,b]) &= \min\left\{t(\geq 1) \mid (\varphi^{\alpha}([a,b],t),\beta^{t-1}[a,b]) \in K^{\alpha}(g)\right\} \\ &= \min\left\{t(\geq 1) \mid \frac{(1-\beta^{t-1})b_{\alpha}}{1-\beta} - \lambda_{\alpha}(t-1) \geq \frac{(1-\beta^t)b_{\alpha}}{1-\beta} - \lambda_{\alpha}t\right\}. \end{split}$$

Let

$$\tilde{s}(x) = (1 - |8x - 4|) \lor 0 \text{ for } x \in [0.1].$$

Then we see

$$\tilde{s}_{\alpha} = \left[\frac{3+\alpha}{8}, \frac{5-\alpha}{8} \right].$$

Therefore

$$\tau_{\alpha}^{*}(\tilde{s}_{\alpha}) = \left[\log \frac{\lambda_{\alpha}(1-\beta)}{-b_{\alpha}\log \beta} / \log \beta\right] + 1,$$

where for a real number z, [z] is the largest integer equal to or less than z. Since \tilde{s} is regular with respect to $\{\tau_{\alpha}^*\}_{\alpha\in[0,1]}$, Theorem 4.1 implies that the \tilde{s} -optimal fuzzy stopping time $\tilde{\tau}^*$ is given by

$$\begin{split} \tilde{\tau}^*(\tilde{s},t) &= \sup_{\alpha \in [0,1]} \{\alpha \wedge 1_{\{\tau_{\alpha}^*(\tilde{s}_{\alpha}) > t\}} \} \\ &= \sup \left\{ \alpha \in [0,1] \mid \left[\log \frac{\lambda_{\alpha}(1-\beta)}{-b_{\alpha}\log \beta} \middle/ \log \beta \right] \geq t \right\} \\ &= 0 \vee \left(\frac{8(1-\beta+\beta^t\log \beta) + 500\beta^t\log \beta + 800(1-\beta)\lambda}{8(1-\beta+\beta^t\log \beta) + 100\beta^t\log \beta} \right) \wedge 1, \end{split}$$

where $a \lor b := \max\{a, b\}$ and $a \land b := \min\{a, b\}$ for $a, b \in \mathbf{R}$ and the values are given in Table 1.

t	1	2	3	4	5	6	7	8	9	
$\tilde{ au}^*(\tilde{s},t)$	0.938	0.812	0.681	0.546	0.405	0.260	0.108	0	0	

Table 1. \tilde{s} -optimal fuzzy stopping time $\tilde{\tau}^*(\tilde{s},\cdot)$ when $\lambda = 0.5$ and $\beta = 0.97$.

References

- [1] R.E.Bellman and L.A.Zadeh, Decision-making in a fuzzy environment, *Management Sci. Ser B.* **17** (1970) 141-164.
- [2] Chen-wei Xu, On convexity of fuzzy sets and fuzzy relations, *Information Science* **59** (1992) 92-102.
- [3] Y.S.Chow, H.Robbins and D.Siegmund, The theory of optimal stopping: Great expectations (Houghton Mifflin Company, New York, 1971).
- [4] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
- [5] J.Kacprzyk, Control of a non-fuzzy system in a fuzzy environment with fuzzy termination time, System Sciences 3 (1977) 325-341.
- [6] J.Kacprzyk, Decision making in a fuzzy environment with fuzzy termination time, Fuzzy Sets and Systems 1 (1978) 169-179.

- [7] J.Kacprzyk and A.O.Esogbue, Fuzzy dynamic programming: Main developments and applications, Fuzzy Sets and Systems 81 (1996) 31-48.
- [8] Y.Kadota, M.Kurano and M.Yasuda, Utility-Optimal Stopping in a Denumerable Markov Chain, Bull. Infor. Cyber. Res. Ass. Stat. Sci., Kyushu University 28 (1996) 15-21.
- [9] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic fuzzy systems, Fuzzy Sets and Systems **51** (1992) 83-88.
- [10] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, Markov-type fuzzy decision processes with a discounted reward on a closed interval, European Journal of Operational Research 92 (1996) 649-662.
- [11] S.Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989) 123-126.
- [12] V.Novák, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).
- [13] M.L.Puri and D.A.Ralescu, The concept of normality for fuzzy random variables, *Ann. Prob.* **13** (1985) 1373-1379.
- [14] Y.Yoshida, Markov chains with a transition possibility measure and fuzzy dynamic programming, Fuzzy Sets and Systems 66 (1994) 39-57.
- [15] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.