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Abstract

The aim of this paper is to apply the technique of fuzzy stopping times to
an optimal stopping problem of a sequence of fuzzy random variables.

1. Introduction

Fuzzy random variables was first studied by Puri and Ralescu [7] and have been studied
by many authors. Stojakovi¢ [9] discussed fuzzy conditional expectation and Puri and
Ralescu [8] studied fuzzy martingales. On the other hand, Neveu [5], Chow et al. [1] and
many authors studied optimal stopping problems for a sequence of real-valued random
variables. In this paper, we extend their results of the stochastic processes to the case
of fuzzy-valued random variables. As an extension of stopping rules, we also use fuzzy
stopping times by the idea of Kurano et al. [4]. In this paper, we will give a formulation of
sequences of fuzzy-valued random variables and we give an optimal fuzzy stopping times
for sequences under the assumptions of monotonicity and regularity for stopping rules. A

numerical example is given to illustrate our idea.

2. Fuzzy random variables

Let (2, M, P) be a probability space, where M is a o-field and P is a probability measure.
Let R and N be the set of all real numbers and the set of all nonnegative integers
respectively. B denotes the Borel o-field of R and Z denotes the set of all bounded closed
sub-intervals of R. A fuzzy number is denoted by its membership function @ : R +— [0, 1]
which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer
to Zadeh [11] and Novak [6] for the theory of fuzzy sets. R denotes the set of all fuzzy
numbers. The a-cut of a fuzzy number @(€ R) is written by closed intervals

= [a;,al] for a €0,1].

o) o

A map X : Q — R is called a fuzzy random variable if

{(w,2) e QxR | X(w)(z) >a} e M xB forall acl0,1]. (2.1)



The condition (2.1) is also written as
{(w,2) eAxR|zeX (W]eEMXxBLPeM forallael0,1], (2.2)
where X,(w) = [X7(w), XT(w)] := {z € R | X(w)(z) > a} is the a-cut of the fuzzy

number X (w) for w € Q. We can find some equivalent conditions (see [8, 9]). However,

in this paper, we adopt a simple equivalent condition in the following lemma.

Lemma 2.1 (Wang and Zhang [10, Theorems 2.1 and 2.2]). For a map X : Q — R, the

following (i) and (ii) are equivalent:
(1) X is a fuzzy random variable.
(ii) The maps w — X (w) and w — Xt (w) are measurable for all a € [0,1].

Next we introduce expectations and conditional expectations of fuzzy random variables
for the description and calculation of an optimal stopping problem for a sequence of fuzzy
random variables. A fuzzy random variable X is called integrably bounded if w — )N(; (w)
and w — X7 (w) are integrable for all a € [0,1]. Let X be an integrably bounded fuzzy

random variable. We put closed intervals
_ [/ X7 (@) dP(), [ Xt () dP(w)], o€ 0,1]. (2.3)
Q Q

Since the map o +— E()N()CY is left-continuous by the monotone convergence theorem,
the expectation K(X) of the fuzzy random variable X is defined by a fuzzy number ([3,

Lemma 3))

E(X)(z):= CYsel[lgg)l]mm {oz L %), (l’)} for x € R, (2.4)

where 1p is the classical indicator function of a set D. For a sub-o-field NV of M, the
conditional expectation E()N(|./\/) is defined as follows: For a € [0, 1], there exist unique

classical conditional expectations

E(X7|N) and E(XF|N) such that
/A E(X7|N)(w / X: (w) forall A e N, (2.5)

and

/A B(XFN)(w)dP(w) = /A X*H(w)dP(w) forall A€ N. (2.6)

Then we can easily check the maps a — E(XJ|V)(w) and o — E(XF|N)(w) are left-
continuous by the monotone convergence theorem. Therefore we can define the conditional

expectation of the fuzzy random variable X by a fuzzy random variable

E()~(|N)(w)(x) = asel[lopl] mm{a Lg% an)(w } forweand z € R, (2.7)
where i i i
E(X,N)(w) :== [E(X]|N)(w), E(XT|N)(w)] forw € Q. (2.8)



3. Fuzzy stopping times

In this section, we deal with fuzzy stopping times for a sequence of fuzzy random variables.
Let {X, }.en be a sequence of integrably bounded fuzzy random variables such that
E(sup,en X,Fo) < 0o, where Xo(w) is the right-end of the O-cut of the fuzzy number

X,(w) for n € N. For n € N, M,, denotes the smallest o-field on  generated by
all random variables )N(,;a and )N(,j:a (k=0,1,2,--- ,n;a € [0,1]), and M, denotes the
smallest o-field generated by U,cn My. A map 7: Q +— N U{oo} is said a stopping time
if

{w|7(w)=n} e M, forallneN. (3.1)

Then we have the following lemma.

Lemma 3.1. For a finite stopping time 7, we define
X, (w):=X,(w), we{r=n} forneN. (3.2)
Then, X, is a fuzzy random variable.

Proof. This lemma follows from

{w.2) | %, (@)(z) = o}
= U0 | Xafw)(@) 2 abn {(w,2) | 7() = n})

neN
€ MxB forallael0,1]. O

By extending the stopping times, we introduce fuzzy stopping times which we studied

fuzzy stopping times in dynamic fuzzy systems (see Kurano et al. [4]).

Definition 3.1. A map 7: N x Q +— [0, 1] is called a fuzzy stopping time if it satisfies
the following (i) — (iii):

(i) For each n € N, 7(n,-) is M, -measurable.
(ii) For almost all w € ©, the map n — 7(n,w) is non-increasing.

(iii) For almost all w € §, there exists an integer ng such that 7(n,w) = 0 for all n > ny.

Regarding the membership grade of fuzzy stopping times, 7(n,w) = 0 means ‘to stop
at time n” and 7(n,w) = 1 means ‘to continue at time n’ respectively. We can easily check

the following lemma regarding the properties of fuzzy stopping times (see [4]).

Lemma 3.2.



(i) Let 7 be a fuzzy stopping time. Define a map 7, : § — N by
To(w) :=inf{n € N | 7(n,w) < a}, weQ forac(0,1], (3.3)

where the infimum of the empty set is understood to be +o0c. Then, we have:

(a) {7fa<n}eM, ftornéeN;

(b) Talw) < Tw(w) aa.wef ifa>d;

(¢) limgig To(w) = To(w) aa weQ ifa>0;
(d) 7o(w) :=lim, o Ta(w) < 0o a.a.w € .

(i) Let {74 }aeo1] be maps 7, : @ — N satisfying the above (a) — (d). Define a map
7: N x Q—[0,1] by

7(n,w):= sup {aAlz,5n(w)}, neNandwe Q. (3.4)
a€[0,1]

Then 7 is a fuzzy stopping time.

4. A fuzzy optimal stopping problem

In this section, we discuss an optimal fuzzy stopping problem for the sequence of fuzzy
random variables {)N(n}nEN in the previous section. Let w € ). We consider about a-cuts
of the sequence stopped at a fuzzy stopping time 7(n,w). The a-cuts must be )N(.;a(wm(w)
where 7,(w) is given by (3.3) and is a ‘classical’” stopping time for each a € (0,1]. Let
g :Z — R be an additive map, that is,

g(d + ")y =g() +g(") for , " € C(S). (4.1)

A weighting function satisfies this kind of linearity (4.1) and is used for the scalar es-
timation of fuzzy numbers (see Fortemps and Roubens [2]). Then we define a random

variable

G (w) = /0 (Xe (@) da, we, (4.2)

where we write )N(;ma(w) = )N(;a(wm(w) for simplicity. Note that the scalar-estimated

value ¢g(X5, .(w)) is a real number and the map a — ¢g(Xz, »(w)) is left-continuous on
(0,1], so that the right-hand integral of (4.2) is well-defined. (4.2) would be a scalar-
estimated value of the sequence of fuzzy random variables stopped at a fuzzy stopping

time 7(n,w). Therefore the expectation of (4.2) is

1 - 1 ~
B(Gr) = B ([ 9(%s,u())da) = [ Blg(%s, ) da (4.3)
for fuzzy stopping times 7.

Definition 4.1.



(i) Let a € [0,1]. A finite stopping time 7* is called a-optimal if E(g(X.x.)) >
E(g()N(.m)) for all finite stopping times 7.

(ii) A fuzzy stopping time 7* is called optimal if E(G5+) > FE(G5) for all fuzzy stopping

times 7.

To give optimal stopping times for the stopping problems in Definition 4.1, we define
a sequence of subsets {A,}22, of Q by

Api={w € Q| g(Xna(w)) > B(g(Xpt1.0) M) (w)}, neN.

In this paper, we deal with the monotone case in the following assumption (Chow et

al. [1]).

Assumption A (Monotone case). The following conditions hold almost surely:

AQCA1CA2CA3C“' and UAn:Q

n=0

In order to characterize a-optimal stopping times, we let

o= ess sup E(g(j(ﬂa)b\/in) for n € N, (4.4)

7: finite stopping times, 7>n

where we refer to Neveu [5, Proposition 6-1-1] and Chow et al. [1, Chapter 1-6] for the
definition of the essential supremum. We define a map &7 : Q@ — N by

5i(w) = inf {n | g(Xpa(w)) = 12(w)} (4.5)

for w € Q and « € [0, 1], where the infimum of the empty set is understood to be +oc.
Then the next lemma is given by Chow et al. [1].

Lemma 4.1 ([1, Theorems 4.1 and 4.5]). Suppose Assumption A holds. Then, for
a € [0,1] the following (i) and (ii) hold:

(i) v2(w) = max{g()w(ma(w)),fygﬂ(w)} a.a. w €N forn €N,
(ii) almost all w € Q. If P(6% < oo) = 1, then &% is a-optimal and FE(1§) =
E(9(X5z.0)).
In order to construct an optimal fuzzy stopping time from the a-optimal stopping

times {6 }aejo], we need the following regularity condition.

Assumption B (Regularity). For almost all w € Q, the map a — &%(w) is non-
increasing and limyiq, 6% (w) = 6%(w) if a > 0.



Under Assumption B, we can define a map ¢* : N x Q — [0, 1] by

6" (n,w) := sup min{a, lzesny(w)}, n € Nandw € Q. (4.6)
a€[0,1]

Theorem 4.1. Suppose Assumptions A and B hold. If P(65 < o) = 1, then 6* is an
optimal fuzzy stopping time.

Proof. ;From Assumption B and Lemma 3.2, 5* is a fuzzy stopping time. ; From Lemma

4.1, for all fuzzy stopping times 7 we obtain

E(G:) =E (/Olg(f(m) da>
< 1 sup E (g()N(ﬂa)) da

~ Jo r: finite stopping times
1

; E(yg)da

h
= [ Blg(%sz.0))de
= E(Gse).

Therefore 6* is optimal for the stopping problem in Definition 4.1(ii). O

In the rest of this section, we discuss e-optimality. This method is effective when the

condition P(6% < oo) = 1 is not neccessarily satisfied (see Lemma 4.1(ii)).

Definition 4.2. Let ¢ > 0.

(i) Let @ € [0,1]. A finite stopping time 7 is called (&, a)-optimal if E(g(X.«,)) >
E(g(X..,)) — e for all finite stopping times 7.
(ii) A fuzzy stopping time 7* is called e-optimal if K(G3:+) > E(G;) — e for all fuzzy

stopping times 7.

We define a map 65 : Q — N by
55(w) = inf {n [ g(Xna(@)) = 7 (w) — e} (4.7)

for w € Q and « € [0, 1], where the infimum of the empty set is understood to be +oc.
Then the next lemma is given by Neveu [5, Chapter 6-1] or Chow et al. [1, Chapter 4-5].

Lemma 4.2 ([5, Proposition 6-1-3]). Suppose Assumption A holds. Then, for ¢ > 0
and o € [0, 1] the following (i) and (ii) hold:
(i) P(65 < o0) = 1;

(ii) &2 is (e, a)-optimal and E(g(Xs: o)) > E(7§) — e.



In order to construct an optimal fuzzy stopping time from the (e, a)-optimal stopping

times {67, aefo1], we need the following regularity condition.

Assumption B’ (Regularity). For almost all w € Q, the map o — &5(w) is non-
increasing

and limgr, 65,(w) = 65 (w) if @ > 0.
Under Assumption B’, we can define a map ° : N x Q +— [0, 1] by

7°(n,w) := sup min{a,lpesy(w)}, n€Nandwe . (4.8)
a€[0,1]

Theorem 4.2. Suppose Assumptions A and B’ hold. 6° is an e-optimal fuzzy stopping
time.

Proof. ;From Assumption B’ and Lemma 3.2, ¢° is a fuzzy stopping time. ;From
Lemma 4.2, for all fuzzy stopping times 7 we obtain

B(Gs) = E (/Olg(f(m) da)
< 1 sup E (g()N(ﬂa)) da

0 7: finite stopping times

:/ (76 )da

</ ' o ))da + ¢
)+€

Therefore &° is e-optimal for the stopping problem in Definition 4.2(ii). O

5. A numerical example

An example is given to illustrate the results of the fuzzy stopping problem in the pre-
vious section. Let {Y,},en be a uniform integrable sequence of independent, identically
distributed real random variables. Let ¢ and d be constants satisfying 0 < d < 3e¢. Let
{a,}nen be a sequence given by a, :=d - n for n € N. Put

M, := max{Yy, Y1,Y5,--- Y, } —c-n, néeN.
Hence we take a sequence of fuzzy random variables {)N(n}neN as follows:

~ L((M,(w) —z)/a, ifz < M,(w
Xn(w)(z) = { LEECL‘ —(ZW)n(w)g/ang if 2 > Mngwg

forn € N,w € Q and = € R, where the shape function L(z) := max{l —|z|,0} for z € R.
Then their a-cuts are

Xpolw) = [My(w) = (1 — a@)an, My (w) + (1 — @)a,], we

7



for n € N and a € [0,1]. Let a function g([z,y]) := (z 4 2y)/3 for z,y € R satisfying
z < y. Then g satisfies (4.1), and we can easily check

9(Xna(w)) = M, (w) + I_Taan, w € N

for @ € [0,1], and

Go(w) = /Olg(xm( ) da = M, (w) + éan, we.

Next we check Assumptions A and B. Let a,a’ € [0,1] satisfy o/ < a and let w € Q.
If g()N(ma/(w)) = ~72'(w) for some n, then we have

9(Xna(@)) = My(w) + 152 An(w)
= My (w) + 15~ n(w) +

*An(w)

I I

:72((“)) OZg )

> E(g(X; )|M (w) + “52B(A; | M,)(w)
= o |

") (@)

E
E(g(Xm)w
E a.a. w €

(9(Xra) | Ma)(w
for all finite stopping times 7 such that 7 > n. It follows g()N(ma(w)) = 72 (w). Therefore
we obtain 6% (w) < &%,(w) for almost all w € Q, and Assumption B holds. On the other

hand, we have

A,
)

9 Xna(w)) = Ma(w) + 52a,
= maX{YO(w), )/1((.0), )/2((“])7 e 7Yn(w)} —c n+t 1_ad n
= maX{YO(w)a Yl(w)a YQ(w)a T 7Yn(w)} - (c - —d)

Since ¢ — 1_Tad > c— %d > 0, this is the monotone case (Assumption A) from Chow
et al. [1, Chapter 3-5 (3.22)]. Then the finite a-optimal stopping times in the previous

section are given by

5o(w) = inf {n ] g(Xa()) =2 (@)} = nf {n | Va(w) > 5%}, weQ,
where 3% is a constant and the unique solution of the equation

1l -«

3

E(Vi=p)F) =c——5—d

for a € [0,1]. Therefore the optimal fuzzy stopping time is

" (n,w) = sup min{a, lesny (W)} =sup{a € [0,1] | Y, (w) < 5},

a€[0,1]

for n € N and w € .



Finally we calculate the optimal expected value E(Gj+). jFrom Chow et al. [1, Chapter
3-5 (3.22)], we have

for a € [0,1]. Therefore we obtain

1 . 1
B(Gy) = [ Blg(Xsa))da = [ 5% da.
0 0
For example, if Yy, Y}, Ys, - - are independent and uniformly distributed on [0,1], then
{%—«:JH‘T%J if1—c+52d <0

= - 2(c—1z2d) ifl-ct1z2d >0,

Let ¢ = 1/2 and d = 1. Then we can easily check that the optimal expected values for
the stopping problems (i) and (ii) of Definition 4.1 are
2(1 — a)

B(Gr) = 5" =1-1/1 - =—

(o €]0,1])

and

E(Gye) = /01 8% da = (1/2)%2.
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