Optimal Fuzzy Stopping of a Sequence of Fuzzy Random Variables

Y. YOSHIDA \S , M. YASUDA † , J. NAKAGAMI † and M. KURANO ‡

§ Faculty of Economics and Business Administration, Kitakyushu University, Kokuraminami, Kitakyushu 802, Japan. † Faculty of Science, Chiba University, † Faculty of Education, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

Abstract

The aim of this paper is to apply the technique of fuzzy stopping times to an optimal stopping problem of a sequence of fuzzy random variables.

1. Introduction

Fuzzy random variables was first studied by Puri and Ralescu [7] and have been studied by many authors. Stojaković [9] discussed fuzzy conditional expectation and Puri and Ralescu [8] studied fuzzy martingales. On the other hand, Neveu [5], Chow et al. [1] and many authors studied optimal stopping problems for a sequence of real-valued random variables. In this paper, we extend their results of the stochastic processes to the case of fuzzy-valued random variables. As an extension of stopping rules, we also use fuzzy stopping times by the idea of Kurano et al. [4]. In this paper, we will give a formulation of sequences of fuzzy-valued random variables and we give an optimal fuzzy stopping times for sequences under the assumptions of monotonicity and regularity for stopping rules. A numerical example is given to illustrate our idea.

2. Fuzzy random variables

Let (Ω, \mathcal{M}, P) be a probability space, where \mathcal{M} is a σ -field and P is a probability measure. Let \mathbf{R} and \mathbf{N} be the set of all real numbers and the set of all nonnegative integers respectively. \mathcal{B} denotes the Borel σ -field of \mathbf{R} and \mathcal{I} denotes the set of all bounded closed sub-intervals of \mathbf{R} . A fuzzy number is denoted by its membership function $\tilde{a}: \mathbf{R} \mapsto [0,1]$ which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer to Zadeh [11] and Novák [6] for the theory of fuzzy sets. \mathcal{R} denotes the set of all fuzzy numbers. The α -cut of a fuzzy number $\tilde{a} \in \mathcal{R}$ is written by closed intervals

$$\tilde{a}_{\alpha} := [\tilde{a}_{\alpha}^{-}, \tilde{a}_{\alpha}^{+}] \text{ for } \alpha \in [0, 1].$$

A map $\tilde{X}:\Omega\mapsto\mathcal{R}$ is called a fuzzy random variable if

$$\{(\omega, x) \in \Omega \times \mathbf{R} \mid \tilde{X}(\omega)(x) \ge \alpha\} \in \mathcal{M} \times \mathcal{B} \quad \text{for all } \alpha \in [0, 1].$$
 (2.1)

The condition (2.1) is also written as

$$\{(\omega, x) \in \Omega \times \mathbf{R} \mid x \in \tilde{X}_{\alpha}(\omega)\} \in \mathcal{M} \times \mathcal{B} \neq \emptyset\} \in \mathcal{M} \text{ for all } \alpha \in [0, 1],$$
 (2.2)

where $\tilde{X}_{\alpha}(\omega) = [\tilde{X}_{\alpha}^{-}(\omega), \tilde{X}_{\alpha}^{+}(\omega)] := \{x \in \mathbf{R} \mid \tilde{X}(\omega)(x) \geq \alpha\}$ is the α -cut of the fuzzy number $\tilde{X}(\omega)$ for $\omega \in \Omega$. We can find some equivalent conditions (see [8, 9]). However, in this paper, we adopt a simple equivalent condition in the following lemma.

Lemma 2.1 (Wang and Zhang [10, Theorems 2.1 and 2.2]). For a map $\tilde{X}: \Omega \mapsto \mathcal{R}$, the following (i) and (ii) are equivalent:

- (i) \tilde{X} is a fuzzy random variable.
- (ii) The maps $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are measurable for all $\alpha \in [0,1]$.

Next we introduce expectations and conditional expectations of fuzzy random variables for the description and calculation of an optimal stopping problem for a sequence of fuzzy random variables. A fuzzy random variable \tilde{X} is called integrably bounded if $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are integrable for all $\alpha \in [0,1]$. Let \tilde{X} be an integrably bounded fuzzy random variable. We put closed intervals

$$E(\tilde{X})_{\alpha} := \left[\int_{\Omega} \tilde{X}_{\alpha}^{-}(\omega) \, \mathrm{d}P(\omega), \int_{\Omega} \tilde{X}_{\alpha}^{+}(\omega) \, \mathrm{d}P(\omega) \right], \quad \alpha \in [0, 1].$$
 (2.3)

Since the map $\alpha \mapsto E(\tilde{X})_{\alpha}$ is left-continuous by the monotone convergence theorem, the expectation $E(\tilde{X})$ of the fuzzy random variable \tilde{X} is defined by a fuzzy number ([3, Lemma 3])

$$E(\tilde{X})(x) := \sup_{\alpha \in [0,1]} \min \left\{ \alpha, 1_{E(\tilde{X})_{\alpha}}(x) \right\} \quad \text{for } x \in \mathbf{R}, \tag{2.4}$$

where 1_D is the classical indicator function of a set D. For a sub- σ -field \mathcal{N} of \mathcal{M} , the conditional expectation $E(\tilde{X}|\mathcal{N})$ is defined as follows: For $\alpha \in [0,1]$, there exist unique classical conditional expectations

 $E(\tilde{X}_{\alpha}^{-}|\mathcal{N})$ and $E(\tilde{X}_{\alpha}^{+}|\mathcal{N})$ such that

$$\int_{\Lambda} E(\tilde{X}_{\alpha}^{-}|\mathcal{N})(\omega) \, \mathrm{d}P(\omega) = \int_{\Lambda} \tilde{X}_{\alpha}^{-}(\omega) \, \mathrm{d}P(\omega) \quad \text{for all } \Lambda \in \mathcal{N}, \tag{2.5}$$

and

$$\int_{\Lambda} E(\tilde{X}_{\alpha}^{+}|\mathcal{N})(\omega) \, \mathrm{d}P(\omega) = \int_{\Lambda} \tilde{X}_{\alpha}^{+}(\omega) \, \mathrm{d}P(\omega) \quad \text{for all } \Lambda \in \mathcal{N}.$$
 (2.6)

Then we can easily check the maps $\alpha \mapsto E(\tilde{X}_{\alpha}^-|\mathcal{N})(\omega)$ and $\alpha \mapsto E(\tilde{X}_{\alpha}^+|\mathcal{N})(\omega)$ are left-continuous by the monotone convergence theorem. Therefore we can define the conditional expectation of the fuzzy random variable \tilde{X} by a fuzzy random variable

$$E(\tilde{X}|\mathcal{N})(\omega)(x) := \sup_{\alpha \in [0,1]} \min \left\{ \alpha, 1_{E(\tilde{X}_{\alpha}|\mathcal{N})(\omega)}(x) \right\} \quad \text{for } \omega \in \Omega \text{ and } x \in \mathbf{R},$$
 (2.7)

where

$$E(\tilde{X}_{\alpha}|\mathcal{N})(\omega) := [E(\tilde{X}_{\alpha}^{-}|\mathcal{N})(\omega), E(\tilde{X}_{\alpha}^{+}|\mathcal{N})(\omega)] \quad \text{for } \omega \in \Omega.$$
 (2.8)

3. Fuzzy stopping times

In this section, we deal with fuzzy stopping times for a sequence of fuzzy random variables. Let $\{\tilde{X}_n\}_{n\in\mathbb{N}}$ be a sequence of integrably bounded fuzzy random variables such that $E(\sup_{n\in\mathbb{N}}\tilde{X}_{n,0}^+)<\infty$, where $\tilde{X}_{n,0}^+(\omega)$ is the right-end of the 0-cut of the fuzzy number $\tilde{X}_n(\omega)$ for $n\in\mathbb{N}$. For $n\in\mathbb{N}$, \mathcal{M}_n denotes the smallest σ -field on Ω generated by all random variables $\tilde{X}_{k,\alpha}^-$ and $\tilde{X}_{k,\alpha}^+$ $(k=0,1,2,\cdots,n;\alpha\in[0,1])$, and \mathcal{M}_∞ denotes the smallest σ -field generated by $\bigcup_{n\in\mathbb{N}}\mathcal{M}_n$. A map $\tau:\Omega\mapsto\mathbb{N}\cup\{\infty\}$ is said a stopping time if

$$\{\omega \mid \tau(\omega) = n\} \in \mathcal{M}_n \text{ for all } n \in \mathbf{N}.$$
 (3.1)

Then we have the following lemma.

Lemma 3.1. For a finite stopping time τ , we define

$$\tilde{X}_{\tau}(\omega) := \tilde{X}_{n}(\omega), \quad \omega \in \{\tau = n\} \quad \text{for } n \in \mathbb{N}.$$
 (3.2)

Then, \tilde{X}_{τ} is a fuzzy random variable.

Proof. This lemma follows from

$$\{(\omega, x) \mid \tilde{X}_{\tau}(\omega)(x) \geq \alpha\}$$

$$= \bigcup_{n \in \mathbb{N}} (\{(\omega, x) \mid \tilde{X}_{n}(\omega)(x) \geq \alpha\} \cap \{(\omega, x) \mid \tau(\omega) = n\})$$

$$\in \mathcal{M} \times \mathcal{B} \text{ for all } \alpha \in [0, 1]. \quad \Box$$

By extending the stopping times, we introduce fuzzy stopping times which we studied fuzzy stopping times in dynamic fuzzy systems (see Kurano et al. [4]).

Definition 3.1. A map $\tilde{\tau} : \mathbf{N} \times \Omega \mapsto [0,1]$ is called a fuzzy stopping time if it satisfies the following (i) – (iii):

- (i) For each $n \in \mathbb{N}$, $\tilde{\tau}(n,\cdot)$ is \mathcal{M}_n -measurable.
- (ii) For almost all $\omega \in \Omega$, the map $n \mapsto \tilde{\tau}(n,\omega)$ is non-increasing.
- (iii) For almost all $\omega \in \Omega$, there exists an integer n_0 such that $\tilde{\tau}(n,\omega) = 0$ for all $n \geq n_0$.

Regarding the membership grade of fuzzy stopping times, $\tilde{\tau}(n,\omega) = 0$ means 'to stop at time n' and $\tilde{\tau}(n,\omega) = 1$ means 'to continue at time n' respectively. We can easily check the following lemma regarding the properties of fuzzy stopping times (see [4]).

Lemma 3.2.

(i) Let $\tilde{\tau}$ be a fuzzy stopping time. Define a map $\tilde{\tau}_{\alpha}: \Omega \mapsto \mathbf{N}$ by

$$\tilde{\tau}_{\alpha}(\omega) := \inf\{n \in \mathbf{N} \mid \tilde{\tau}(n,\omega) < \alpha\}, \quad \omega \in \Omega \quad \text{for } \alpha \in (0,1],$$
 (3.3)

where the infimum of the empty set is understood to be $+\infty$. Then, we have:

- (a) $\{\tilde{\tau}_{\alpha} \leq n\} \in \mathcal{M}_n \text{ for } n \in \mathbf{N};$
- (b) $\tilde{\tau}_{\alpha}(\omega) \leq \tilde{\tau}_{\alpha'}(\omega)$ a.a. $\omega \in \Omega$ if $\alpha \geq \alpha'$;
- (c) $\lim_{\alpha'\uparrow\alpha} \tilde{\tau}_{\alpha'}(\omega) = \tilde{\tau}_{\alpha}(\omega)$ a.a. $\omega \in \Omega$ if $\alpha > 0$;
- (d) $\tilde{\tau}_0(\omega) := \lim_{\alpha \downarrow 0} \tilde{\tau}_{\alpha}(\omega) < \infty$ a.a. $\omega \in \Omega$.
- (ii) Let $\{\tilde{\tau}_{\alpha}\}_{{\alpha}\in[0,1]}$ be maps $\tilde{\tau}_{\alpha}: \Omega \mapsto \mathbf{N}$ satisfying the above (a) (d). Define a map $\tilde{\tau}: \mathbf{N} \times \Omega \mapsto [0,1]$ by

$$\tilde{\tau}(n,\omega) := \sup_{\alpha \in [0,1]} \{ \alpha \wedge 1_{\{\tilde{\tau}_{\alpha} > n\}}(\omega) \}, \quad n \in \mathbf{N} \text{ and } \omega \in \Omega.$$
 (3.4)

Then $\tilde{\tau}$ is a fuzzy stopping time.

4. A fuzzy optimal stopping problem

In this section, we discuss an optimal fuzzy stopping problem for the sequence of fuzzy random variables $\{\tilde{X}_n\}_{n\in\mathbb{N}}$ in the previous section. Let $\omega\in\Omega$. We consider about α -cuts of the sequence stopped at a fuzzy stopping time $\tilde{\tau}(n,\omega)$. The α -cuts must be $\tilde{X}_{\tilde{\tau}_{\alpha}(\omega),\alpha}(\omega)$ where $\tilde{\tau}_{\alpha}(\omega)$ is given by (3.3) and is a 'classical' stopping time for each $\alpha\in(0,1]$. Let $g:\mathcal{I}\mapsto\mathbf{R}$ be an additive map, that is,

$$g(c' + c'') = g(c') + g(c'')$$
 for $c', c'' \in C(S)$. (4.1)

A weighting function satisfies this kind of linearity (4.1) and is used for the scalar estimation of fuzzy numbers (see Fortemps and Roubens [2]). Then we define a random variable

$$G_{\tilde{\tau}}(\omega) := \int_0^1 g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega)) \, d\alpha, \quad \omega \in \Omega,$$
(4.2)

where we write $\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega) := \tilde{X}_{\tilde{\tau}_{\alpha}(\omega),\alpha}(\omega)$ for simplicity. Note that the scalar-estimated value $g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega))$ is a real number and the map $\alpha \mapsto g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\omega))$ is left-continuous on (0,1], so that the right-hand integral of (4.2) is well-defined. (4.2) would be a scalar-estimated value of the sequence of fuzzy random variables stopped at a fuzzy stopping time $\tilde{\tau}(n,\omega)$. Therefore the expectation of (4.2) is

$$E(G_{\tilde{\tau}}) := E\left(\int_{0}^{1} g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}(\cdot)) d\alpha\right) = \int_{0}^{1} E(g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}) d\alpha$$
(4.3)

for fuzzy stopping times $\tilde{\tau}$.

Definition 4.1.

- (i) Let $\alpha \in [0,1]$. A finite stopping time τ^* is called α -optimal if $E(g(\tilde{X}_{\tau^*,\alpha})) \geq E(g(\tilde{X}_{\tau,\alpha}))$ for all finite stopping times τ .
- (ii) A fuzzy stopping time $\tilde{\tau}^*$ is called optimal if $E(G_{\tilde{\tau}^*}) \geq E(G_{\tilde{\tau}})$ for all fuzzy stopping times $\tilde{\tau}$.

To give optimal stopping times for the stopping problems in Definition 4.1, we define a sequence of subsets $\{\Lambda_n\}_{n=0}^{\infty}$ of Ω by

$$\Lambda_n := \{ \omega \in \Omega \mid g(\tilde{X}_{n,\alpha}(\omega)) \ge E(g(\tilde{X}_{n+1,\alpha})|\mathcal{M}_n)(\omega) \}, \quad n \in \mathbf{N}.$$

In this paper, we deal with the monotone case in the following assumption (Chow et al. [1]).

Assumption A (Monotone case). The following conditions hold almost surely:

$$\Lambda_0 \subset \Lambda_1 \subset \Lambda_2 \subset \Lambda_3 \subset \cdots$$
 and $\bigcup_{n=0}^{\infty} \Lambda_n = \Omega$.

In order to characterize α -optimal stopping times, we let

$$\gamma_n^{\alpha} := \underset{\tau: \text{ finite stopping times, } \tau \geq n}{\text{ess sup}} E(g(\tilde{X}_{\tau,\alpha})|\mathcal{M}_n) \quad \text{for } n \in \mathbf{N}, \tag{4.4}$$

where we refer to Neveu [5, Proposition 6-1-1] and Chow et al. [1, Chapter 1-6] for the definition of the essential supremum. We define a map $\tilde{\sigma}_{\alpha}^*: \Omega \mapsto \mathbf{N}$ by

$$\tilde{\sigma}_{\alpha}^{*}(\omega) := \inf \left\{ n \mid g(\tilde{X}_{n,\alpha}(\omega)) = \gamma_{n}^{\alpha}(\omega) \right\}$$
(4.5)

for $\omega \in \Omega$ and $\alpha \in [0,1]$, where the infimum of the empty set is understood to be $+\infty$. Then the next lemma is given by Chow et al. [1].

Lemma 4.1 ([1, Theorems 4.1 and 4.5]). Suppose Assumption A holds. Then, for $\alpha \in [0,1]$ the following (i) and (ii) hold:

- (i) $\gamma_n^{\alpha}(\omega) = \max\{g(\tilde{X}_{n,\alpha}(\omega)), \gamma_{n+1}^{\alpha}(\omega)\}$ a.a. $\omega \in \Omega$ for $n \in \mathbb{N}$;
- (ii) almost all $\omega \in \Omega$. If $P(\tilde{\sigma}_{\alpha}^* < \infty) = 1$, then $\tilde{\sigma}_{\alpha}^*$ is α -optimal and $E(\gamma_0^{\alpha}) = E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^*,\alpha}))$.

In order to construct an optimal fuzzy stopping time from the α -optimal stopping times $\{\tilde{\sigma}_{\alpha}^*\}_{\alpha\in[0,1]}$, we need the following regularity condition.

Assumption B (Regularity). For almost all $\omega \in \Omega$, the map $\alpha \mapsto \tilde{\sigma}_{\alpha}^{*}(\omega)$ is non-increasing and $\lim_{\alpha' \uparrow \alpha} \tilde{\sigma}_{\alpha'}^{*}(\omega) = \tilde{\sigma}_{\alpha}^{*}(\omega)$ if $\alpha > 0$.

Under Assumption B, we can define a map $\tilde{\sigma}^* : \mathbf{N} \times \Omega \mapsto [0,1]$ by

$$\tilde{\sigma}^*(n,\omega) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{\{\tilde{\sigma}^*_{\alpha} > n\}}(\omega)\}, \quad n \in \mathbf{N} \text{ and } \omega \in \Omega.$$
 (4.6)

Theorem 4.1. Suppose Assumptions A and B hold. If $P(\tilde{\sigma}_0^* < \infty) = 1$, then $\tilde{\sigma}^*$ is an optimal fuzzy stopping time.

Proof. ¿From Assumption B and Lemma 3.2, $\tilde{\sigma}^*$ is a fuzzy stopping time. ¿From Lemma 4.1, for all fuzzy stopping times $\tilde{\tau}$ we obtain

$$E(G_{\tilde{\tau}}) = E\left(\int_{0}^{1} g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}) d\alpha\right)$$

$$\leq \int_{0}^{1} \sup_{\tau: \text{ finite stopping times}} E\left(g(\tilde{X}_{\tau,\alpha})\right) d\alpha$$

$$= \int_{0}^{1} E(\gamma_{0}^{\alpha}) d\alpha$$

$$= \int_{0}^{1} E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^{*},\alpha})) d\alpha$$

$$= E(G_{\tilde{\sigma}^{*}}).$$

Therefore $\tilde{\sigma}^*$ is optimal for the stopping problem in Definition 4.1(ii). \Box

In the rest of this section, we discuss ε -optimality. This method is effective when the condition $P(\tilde{\sigma}_{\alpha}^* < \infty) = 1$ is not neccessarily satisfied (see Lemma 4.1(ii)).

Definition 4.2. Let $\varepsilon > 0$.

- (i) Let $\alpha \in [0,1]$. A finite stopping time τ^* is called (ε,α) -optimal if $E(g(\tilde{X}_{\tau^*,\alpha})) \geq E(g(\tilde{X}_{\tau,\alpha})) \varepsilon$ for all finite stopping times τ .
- (ii) A fuzzy stopping time $\tilde{\tau}^*$ is called ε -optimal if $E(G_{\tilde{\tau}^*}) \geq E(G_{\tilde{\tau}}) \varepsilon$ for all fuzzy stopping times $\tilde{\tau}$.

We define a map $\tilde{\sigma}_{\alpha}^{\varepsilon}: \Omega \mapsto \mathbf{N}$ by

$$\tilde{\sigma}_{\alpha}^{\varepsilon}(\omega) := \inf \left\{ n \mid g(\tilde{X}_{n,\alpha}(\omega)) \ge \gamma_n^{\alpha}(\omega) - \varepsilon \right\}$$
(4.7)

for $\omega \in \Omega$ and $\alpha \in [0,1]$, where the infimum of the empty set is understood to be $+\infty$. Then the next lemma is given by Neveu [5, Chapter 6-1] or Chow et al. [1, Chapter 4-5].

Lemma 4.2 ([5, Proposition 6-1-3]). Suppose Assumption A holds. Then, for $\varepsilon > 0$ and $\alpha \in [0, 1]$ the following (i) and (ii) hold:

- (i) $P(\tilde{\sigma}_{\alpha}^{\varepsilon} < \infty) = 1;$
- (ii) $\tilde{\sigma}_{\alpha}^{\varepsilon}$ is (ε, α) -optimal and $E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^{\varepsilon}, \alpha})) \geq E(\gamma_0^{\alpha}) \varepsilon$.

In order to construct an optimal fuzzy stopping time from the (ε, α) -optimal stopping times $\{\tilde{\sigma}_{\alpha}^{\varepsilon}\}_{\alpha \in [0,1]}$, we need the following regularity condition.

Assumption B' (Regularity). For almost all $\omega \in \Omega$, the map $\alpha \mapsto \tilde{\sigma}_{\alpha}^{\varepsilon}(\omega)$ is non-increasing

and $\lim_{\alpha'\uparrow\alpha} \tilde{\sigma}_{\alpha'}^{\varepsilon}(\omega) = \tilde{\sigma}_{\alpha}^{\varepsilon}(\omega)$ if $\alpha > 0$.

Under Assumption B', we can define a map $\tilde{\sigma}^{\varepsilon}: \mathbf{N} \times \Omega \mapsto [0,1]$ by

$$\tilde{\sigma}^{\varepsilon}(n,\omega) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{\{\tilde{\sigma}^{\varepsilon}_{\alpha} > n\}}(\omega)\}, \quad n \in \mathbf{N} \text{ and } \omega \in \Omega.$$
 (4.8)

Theorem 4.2. Suppose Assumptions A and B' hold. $\tilde{\sigma}^{\varepsilon}$ is an ε -optimal fuzzy stopping time.

Proof. ¿From Assumption B' and Lemma 3.2, $\tilde{\sigma}^{\varepsilon}$ is a fuzzy stopping time. ¿From Lemma 4.2, for all fuzzy stopping times $\tilde{\tau}$ we obtain

$$E(G_{\tilde{\tau}}) = E\left(\int_{0}^{1} g(\tilde{X}_{\tilde{\tau}_{\alpha},\alpha}) d\alpha\right)$$

$$\leq \int_{0}^{1} \sup_{\tau: \text{ finite stopping times}} E\left(g(\tilde{X}_{\tau,\alpha})\right) d\alpha$$

$$= \int_{0}^{1} E(\gamma_{0}^{\alpha}) d\alpha$$

$$\leq \int_{0}^{1} E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^{*},\alpha})) d\alpha + \varepsilon$$

$$= E(G_{\tilde{\sigma}^{*}}) + \varepsilon.$$

Therefore $\tilde{\sigma}^{\varepsilon}$ is ε -optimal for the stopping problem in Definition 4.2(ii). \Box

5. A numerical example

An example is given to illustrate the results of the fuzzy stopping problem in the previous section. Let $\{Y_n\}_{n\in\mathbb{N}}$ be a uniform integrable sequence of independent, identically distributed real random variables. Let c and d be constants satisfying 0 < d < 3c. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence given by $a_n := d \cdot n$ for $n \in \mathbb{N}$. Put

$$M_n := \max\{Y_0, Y_1, Y_2, \cdots, Y_n\} - c \cdot n, \quad n \in \mathbf{N}.$$

Hence we take a sequence of fuzzy random variables $\{\tilde{X}_n\}_{n\in\mathbb{N}}$ as follows:

$$\tilde{X}_n(\omega)(x) := \begin{cases} L((M_n(\omega) - x)/a_n) & \text{if } x \leq M_n(\omega) \\ L((x - M_n(\omega))/a_n) & \text{if } x \geq M_n(\omega) \end{cases}$$

for $n \in \mathbb{N}$, $\omega \in \Omega$ and $x \in \mathbb{R}$, where the shape function $L(x) := \max\{1 - |x|, 0\}$ for $x \in \mathbb{R}$. Then their α -cuts are

$$\tilde{X}_{n,\alpha}(\omega) = [M_n(\omega) - (1-\alpha)a_n, M_n(\omega) + (1-\alpha)a_n], \quad \omega \in \Omega$$

for $n \in \mathbb{N}$ and $\alpha \in [0,1]$. Let a function g([x,y]) := (x+2y)/3 for $x,y \in \mathbb{R}$ satisfying $x \leq y$. Then g satisfies (4.1), and we can easily check

$$g(\tilde{X}_{n,\alpha}(\omega)) = M_n(\omega) + \frac{1-\alpha}{3}a_n, \quad \omega \in \Omega$$

for $\alpha \in [0,1]$, and

$$G_n(\omega) = \int_0^1 g(\tilde{X}_{n,\alpha}(\omega)) d\alpha = M_n(\omega) + \frac{1}{6}a_n, \quad \omega \in \Omega.$$

Next we check Assumptions A and B. Let $\alpha, \alpha' \in [0, 1]$ satisfy $\alpha' \leq \alpha$ and let $\omega \in \Omega$. If $g(\tilde{X}_{n,\alpha'}(\omega)) = \gamma_n^{\alpha'}(\omega)$ for some n, then we have

$$g(\tilde{X}_{n,\alpha}(\omega)) = M_n(\omega) + \frac{1-\alpha}{3}A_n(\omega)$$

$$= M_n(\omega) + \frac{1-\alpha'}{3}A_n(\omega) + \frac{\alpha'-\alpha}{3}A_n(\omega)$$

$$= g(\tilde{X}_{n,\alpha'}(\omega)) + \frac{\alpha'-\alpha}{3}A_n(\omega)$$

$$= \gamma_n^{\alpha'}(\omega) + \frac{\alpha'-\alpha}{3}A_n(\omega)$$

$$\geq E(g(\tilde{X}_{\tau,\alpha'}) \mid \mathcal{M}_n)(\omega) + \frac{\alpha'-\alpha}{3}E(A_\tau \mid \mathcal{M}_n)(\omega)$$

$$= E\left(g(\tilde{X}_{\tau,\alpha'}) + \frac{\alpha'-\alpha}{3}A_\tau \mid \mathcal{M}_n\right)(\omega)$$

$$= E(g(\tilde{X}_{\tau,\alpha}) \mid \mathcal{M}_n)(\omega) \quad \text{a.a. } \omega \in \Omega$$

for all finite stopping times τ such that $\tau \geq n$. It follows $g(\tilde{X}_{n,\alpha}(\omega)) = \gamma_n^{\alpha}(\omega)$. Therefore we obtain $\tilde{\sigma}_{\alpha}^*(\omega) \leq \tilde{\sigma}_{\alpha'}^*(\omega)$ for almost all $\omega \in \Omega$, and Assumption B holds. On the other hand, we have

$$g(\tilde{X}_{n,\alpha}(\omega)) = M_n(\omega) + \frac{1-\alpha}{3}a_n$$

= $\max\{Y_0(\omega), Y_1(\omega), Y_2(\omega), \cdots, Y_n(\omega)\} - c \cdot n + \frac{1-\alpha}{3}d \cdot n$
= $\max\{Y_0(\omega), Y_1(\omega), Y_2(\omega), \cdots, Y_n(\omega)\} - \left(c - \frac{1-\alpha}{3}d\right)n$.

Since $c - \frac{1-\alpha}{3}d \ge c - \frac{1}{3}d > 0$, this is the monotone case (Assumption A) from Chow et al. [1, Chapter 3-5 (3.22)]. Then the finite α -optimal stopping times in the previous section are given by

$$\tilde{\sigma}_{\alpha}^{*}(\omega) = \inf \left\{ n \mid g(\tilde{X}_{n,\alpha}(\omega)) = \gamma_{n}^{\alpha}(\omega) \right\} = \inf \left\{ n \mid Y_{n}(\omega) \geq \beta^{\alpha} \right\}, \quad \omega \in \Omega,$$

where β^{α} is a constant and the unique solution of the equation

$$E\left((Y_1 - \beta)^+\right) = c - \frac{1 - \alpha}{3}d$$

for $\alpha \in [0,1]$. Therefore the optimal fuzzy stopping time is

$$\tilde{\sigma}^*(n,\omega) = \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{\{\tilde{\sigma}^*_{\alpha} > n\}}(\omega)\} = \sup\{\alpha \in [0,1] \mid Y_n(\omega) < \beta^{\alpha}\},$$

for $n \in \mathbf{N}$ and $\omega \in \Omega$.

Finally we calculate the optimal expected value $E(G_{\tilde{\sigma}^*})$. ¿From Chow et al. [1, Chapter 3-5 (3.22)], we have

$$E(g(\tilde{X}_{\tilde{\sigma}_{\alpha}^*,\alpha})) = \beta^{\alpha}$$

for $\alpha \in [0,1]$. Therefore we obtain

$$E(G_{\tilde{\sigma}^*}) = \int_0^1 E(g(\tilde{X}_{\tilde{\sigma}^*_{\alpha},\alpha})) d\alpha = \int_0^1 \beta^{\alpha} d\alpha.$$

For example, if Y_0, Y_1, Y_2, \cdots are independent and uniformly distributed on [0,1], then

$$\beta^{\alpha} = \begin{cases} \frac{1}{2} - c + \frac{1-\alpha}{3}d & \text{if } \frac{1}{2} - c + \frac{1-\alpha}{3}d < 0\\ 1 - \sqrt{2\left(c - \frac{1-\alpha}{3}d\right)} & \text{if } \frac{1}{2} - c + \frac{1-\alpha}{3}d \ge 0. \end{cases}$$

Let c = 1/2 and d = 1. Then we can easily check that the optimal expected values for the stopping problems (i) and (ii) of Definition 4.1 are

$$E(G_{\tau^*}) = \beta^{\alpha} = 1 - \sqrt{1 - \frac{2(1 - \alpha)}{3}} \quad (\alpha \in [0, 1])$$

and

$$E(G_{\tilde{\sigma}^*}) = \int_0^1 \beta^{\alpha} d\alpha = (1/2)^{3/2}.$$

References

- [1] Y.S.Chow, H.Robbins and D.Siegmund, The theory of optimal stopping: Great expectations (Houghton Mifflin Company, New York, 1971).
- [2] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems 82 (1996) 319-330.
- [3] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic fuzzy systems, Fuzzy Sets and Systems **51** (1992) 83-88.
- [4] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, An approach to stopping problems of a dynamic fuzzy system, preprint.
- [5] J.Neveu, Discrete-Parameter Martingales (North-Holland, New York, 1975).
- [6] V.Novák, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).
- [7] M.L.Puri and D.A.Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409-422.
- [8] M.L.Puri and D.A.Ralescu, Convergence theorem for fuzzy martingales, J. Math. Anal. Appl. 160 (1991) 107-122.
- [9] M.Stojaković, Fuzzy conditional expectation, Fuzzy Sets and Systems 52 (1992) 53-60.
- [10] G.Wang and Y.Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992) 161-178.
- [11] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.