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Abstract. The paper deals with a p person, non-cooperative game related
to the observation of a Markov chain. The players observe the process up
to a random moment defined by a monotonic logical function based on an
individual players’ decision. The concept of Nash equilibrium is used. The
solution of the game for finite and infinite horizon problems is derived. A
simple example is presented.
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1 Introduction

This paper deals with a p person stopping game related to the observation of
a Markov chain. Let (X,,F,,P;), n =0,1,2,..., be a homogeneous Markov
chain defined on a probability space (2, F,P) with state space (E,B). The
players are able to observe the Markov chain sequentially. At each moment
n their knowledge is represented by F,,. Each player has his own utility
function f; : E — R, i = 1,2,...,p, and at each moment n each player
declares separately his willingness to stop the observation of the process. The
process ends and the payoffs are realized when a suitable subset of players
agree to it. The aim of each player is to maximize their expected payoffs.
In fact, the problem will be formulated as a p person non-cooperative game
with the concept of Nash equilibrium[8] as the solution. On the other hand,
one can say that the multilateral stopping procedure is based on sequential
voting (cf [2], [4], [15] for monotone rule concept and the mathematics of
voting).

The results of this paper are mainly related to work by Kurano, Yasuda,
Nakagami[6] and Yasuda, Nakagami, Kurano[16]. They have investigated
the multilateral version of the optimal stopping problem for independent,
identically distributed p dimensional random vectors X,,. The gain function



of the i-th player is X} (i-th coordinate of X,,). In [6] the following class of
strategies is used.

1. Each player can request a stop at any stage.

2. The majority level » (1 < r < p) is chosen by the players at the begin-
ning of the game.

3. During the sequential observation process, if the number of players
requesting a stop is greater than or equal to the level r, the process
must be stopped.

The multilateral version of the optimal stopping problem with this class of
strategies for Markov processes has been considered in [13] and [14].

This class of strategies is generalized in [16] to monotone rules. Rough-
ly speaking, a monotone rule is a p variate, non-decreasing logical function
defined on {0, 1}?. In both papers the problem is formulated as a p person,
non-cooperative game with the concept of Nash point as a solution. Paper[6]
generalizes the unanimity case, i.e. p = r solved by Sakaguchi[10]. The
motivation for the model considered is the secretary problem (see [3] for
the formulation of the problem). A solution of a bivariate version of the
secretary problem is given in [6]. Presman and Sonin [9] treat this problem
with another set of strategies. They considered the model in which each
player’s decision does not affect the stopping of the process but only his
reward. Sakaguchi[11] and Kadane[5] have solved a multilateral sequential
decision problem in which decisions whether to stop are made by the players
alternately, instead of simultaneous decision under a monotone rule.

In the next section the formal model of the problem is formulated. The
set of allowables strategies is described. Section 3 is devoted to the finite
horizon case. The infinite horizon problem is investigated in Section 4. Simple
examples of the games are solved in Section 5.

2 Formulation of the problem

Following the formulation of the game proposed by Kurano, Yasuda and
Nakagami(cf [6], [16]) for a multilateral stopping problem with indepen-
dent random vectors, this multilateral stopping problem can be described
in terms of the ideas used in non-cooperative game theory(see [8], [1], [7]).
Let (X, Fn,Ps),n=0,1,2,..., N, be a homogeneous Markov chain defined
on a probability space (2, F, P) with state space (E, B). The horizon can be
finite or infinite (N € NU{oco}, N denotes the set of natural numbers). The
players are able to observe the Markov chain sequentially. Each player has
his utility function f; : E — R, i = 1,2,...,p, such that E;|f;(X1)]| < oc.
If process has not stopped by n, then each player, based on F,, can declare
independently his willingness to stop the observation of the process.



Definition 2.1 (see [16]) An individual stopping strategy of the player i

(1SS) is the sequence of random variables {dt}N_,, where ot : Q — {0,1},
such that o}, 1s Fp,-measurable.

The interpretation of the strategy is the following. If ¢/, = 1 then player
1 declares that he would like to stop the process and accept the realization
of X,,. Denote ¢! = (i, 0%, ..., 0%;) and let S be the set of ISSs of player i,
t=1,2,...,p. Define
S=8"x8%x...x8".
The element 0 = (0',0%,...,0P)T € S will be called the stopping strategy

(SS). The stopping strategy o € S is a random matrix. The rows of the matrix
are the ISSs. The columns are decisions of the players at successive moments.
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The actual stopping of the observation process and realization of the payoffs
is defined by the stopping strategy exploiting some p-variate logical function.
Let m : {0,1}? — {0,1}. The function « is called monotonic if for each
i€ {1,2,...,p}, ' <y implies w(x!, 2%, ... 2P) < w(yt, ¥, ..., o).

Definition 2.2 (see [16]) A non-constant p-variate logical function w is call-
ed a monotone rule if it is a monotone function and w(1,1,...,1) = 1.

Example 2.1 (see [16]) The most important example of the monotone rule
is the equal majority rule m,. For 1 <r < p we define m(xl 22, 2P) =1
ifSF_ 2" > r and 0 otherwise.

In this stopping game model the stopping strategy is the list of the decla-
ration of the individual players. The monotone rule converts the declarations
to an effective stopping time.

Definition 2.3 (see [16]) A stopping time i (o) generated by a SS o € S
and a monotone rule 7 is defined by

te(oc) =inf{l <n < N:m(o),02,... 08) =1}

n ©)

(inf(P) = o). Since m is fived during the analysis we skip index m and write
t(o) =tz(o).

We have {w € Q : t(0) = n} = ﬂz;ll{w € Q: wlo}f,0f,...,00) =
0}N{weQ: (o), 02,...,08) =1} € Fy, then the random variable ¢, (o)
is stopping time with respect to {F,})_,. For any stopping time t, (o) and
ie{l,2,...,p} let

[ () i (o) =,
filXen(o)) = { limsup,_, o, fi(Xn) if tz(0) = o0

(cf [12], [16]). If players use SS o € S and the individual preferences are
converted to the effective stopping time by the monotone rule 7, then the

player i gets fi(X;, (0))-



Let "o = (*o!,%0?,...,%0")T be some fixed SS. Denote
PPN | * i—1 1 % _i+1 *p\T
o(i)=(o",....)70" " ot et T L TeP)

Definition 2.4 (see [16]) Let the monotone rule © be fized. The strategy

o = ("ol,%0?,...,*0")T € 8 is an equilibrium strategy with respect to m if
for each i € {1,2,...,p} and any o' € S* we have
E. fi(Xt,(v0)) > Eofi( Xt (oo(i))- (2.1)

Remark 2.1 In the class of games with infinite horizon we restrict ourselves
to the set of stopping strategies

S*={ceS:t(c) <o Py —a.e. foreveryz e E}.

In this class of SS the expected gain By fi(Xi(5)) s well defined if we assume
that By f7 (Xi(0)) < oo , where a= = max{0,—a}. Hence in the infinite
horizon game the class of admissible strategies is

S;={0 €S 1 Esf] (Xy0)) <00 forevery z€E,i=1,2,...,p}.

To define the equilibrium strategy within the class of infinite horizon games
we restrict the set of SS' S in Definition 2.4 to the set S}.

The set of SS &, the vector of utility functions f = (f1, fo,. .., fp) and the
monotone rule 7 define the non-cooperative game G = (S, f,m). The aim of the
considerations in this paper is to construct the equilibrium strategy o € S in
G. To this end we define an individual stopping set on the state space. This
set describe the ISS for the player. First of all let us mention that with each
ISS of the player i we can combine the sequence of stopping events D! = {w :

ol = 1}. For each monotone rule 7 there exists the corresponding set value

function I : F — F such that w(o},02,...,00) = m{Ip1,Ipz,..., Ipp} =
Inp: p2,..pry. One can say that D, = {w : n(ol, 0%, ... 00) = 1} =
(DL, D%, ..., DP) is the stopping event of the process at moment n. Since

is monotone, then A" C B implies TI(AL, A2 ... AP) CTI(B}, BZ,..., BE).
For solution of this game the important class of ISS and the stopping events
can be defined by subsets C? € B of the state space E. A given set C* € B will
be called the stopping set for player i at moment n if D}, = {w: X,, € O} is
the stopping event.

For the logical function m we have (cf [16])

v

n(p',...,pry= {DinT(D',... Q. ..

=
I
=3
=
=

u{D' NII(D',. ..,



Let fi, g; be real valued, integrable (i.e. E;|fi(X1)| < oo) functions
defined on E. For fixed DJ, j =1,2,...,p,j # i, and C' € B define

$(C) = By | fi(X1)Lip, (pi) +gi(X1)Im

where Dy (A) = TI(D}, ..., D™ A, DIt DP) and D} = {w: X, € C}.
By (2.2) we have

Y(C) = Eo(fi(X1) = 9i(X1))Ipinip, (o)
+E; (fi(X1) - gz’(X1))ID—;ND1(@) + Ezgi(X1)
= Eo(fi(X1) = :(X1))Ipine, )\ D, 0)
+E; (fi(X1) — 9:(X1))Iip, 0) + Ecg:(X1)
E. (f;(X1) = g:(X1))* Ipiangn, )\ vy 0))
+E; (fi(X1) = 9:(X1))Lip, () + Ezgi(X1).
Let *C' = {z € E : f;(z) > ¢g;(z)} and denote *Di = {w : X,, € *C}. We get

1/)(*Ci) = E;(fi(X1) —gi(Xl))+I*D1(ﬂ)
—E; (fi(X1) — 9:(X1)) " Lp,(g) + Ezg:(X1),

IN

where at = max{0,a} and a~ = min{0, —a}. This allows us to prove the
following Lemma.

Lemma 2.1 Let f;, g;, be integrable and let C7 € B, j =1,2,...,p, j # 1,
be fized. Then the set *C* = {z € E : fi(z) — gi(z) > 0} € B is such that

Y(*C?) = sup ¢(C7)

CieB
and

(O = Eo(fi(X1) — gi(X1)) T, (o) (2.3)
—E;(fi(X1) = 9:(X1)) " Lip, ) + Ezgi (X1).

Based on Lemma 2.1 we derive the recursive formulae defining the equi-
librium point and the equilibrium payoff for the finite horizon game.

3 Finite horizon game

Let the horizon N be finite. If the equilibrium strategy *o exists, then we
denote v; n(x) = E;fi(Xi(+)) to be the equilibrium payoff of i-th player
when Xy = z. For backward induction we introduce some useful notation.
Let Si = {{oi},k = n,..., N} be the set of ISS for moments n < k < N



and S,= 8. x 82 x ... x 8. The SS for moments not earlier than n is
"o = ("ol,"%0?,...,"0P) € S,, where "¢ = (o, Ohytr - Oy). Denote

th =tn(0) =t("o) =inf{n <k < N :7(o},08,...,00) =1}
to be the stopping time not earlier than n.

Definition 3.1 The stopping strategy "o = (“*o!,"*0%,...,"*0P) is an equi-
Librium in S, if

Eo fi(Xt,(v0)) 2 Eu fi(Xt, (v0(i))) Pao—ace
for everyi e {1,2,...,p}, where
M) = (VoL il Rl it P,
Denote

vi,N—n+1(Xn—1) = E:c[fz(th(*a))lfn—l] = EXn_l fZ(th(*O))

At n = N the players request a stop and v; o(z) = fi(2). Let us assume that
the process is not stopped before n and the players are using the equilibrium
strategies *O']i, 1=1,2,...,p, at moments k = n+1,..., N. Choose player
i and assume that the other players are using the equilibrium strategies *o ,
j # i, and player i is using strategy o defined by some stopping set C?.
Then the expected payoff pn_,(Xn_1, C?) of player i in the game starting
at moment n, when the state of the Markov chain at moment n —1is X,,_1,
is equal to

¢N-n(Xn-1,C") =Ex,_, [fi(Xn)L*Dn(D;L) + i, N-n (Xn) b iy | 5

where *D,, (A) = TI(*D}, ..., *Di=1 A *Ditl . . *Dr).
By Lemma 2.1 the conditional expected gain on_n (Xn—n, C’i) attains its
maximum on the stopping set *Ci = {z € E : fi(2) — vi n—n(z) > 0} and

Vi N-nt1(Xno1) = Eo[(fi(Xn) = viNon(Xn)) T Lip, ()| Fazi]
—Eq [(fi(Xn) = vi N—n(Xn))"Lup, @) Fn-1]  (3.1)
+E17 ['Ui,N—n(Xn)|fn—1]

P,—a.e.. It allows us to formulate the following construction for the equilib-
rium strategy and the equilibrium value for the game G.

Theorem 3.1 In the game G with finite horizon N we have the following
solution.

(i) The equilibrium value v;(z), i = 1,2,...,p, of the game G can be calcu-
lated recursively as follows:



1 wvio(z) = fi(x);
2. Forn=1,2,...,N we have Py—a.e.
Vi (®) = Eo[(fi Xnont1) = vin—1 (Xnont1)) Tip () [ Fv—n]
_E.r[(fi(XN—n-l-l) - Ui,n—l()(]\/'—'n-l-l.).)_:[MDN_TL_‘_1 (0) |TN—‘TL:|

+Em[vi,n—1(XN—n+1)|fN—n]7
for:=1,2,...,p.

(ii) The equilibrium strateqy *o € S is defined by the SS of the players *o'
where "ol = 1 if X, € *CL, and *C! = {z € E: f(z) —v; Non(z) > 0},
n=201,...,N.

We have vi(z) = v; n(2), and Exfi(Xt(*o)) =y n(z), 1=1,2,...,p.
Proor. Part (i) is a consequence of the Lemma 2.1. We have v; 1 (z) =
E; fi(X1) and v; 1 (Xn-1) = EXN_le'(Xt(N*O-)) P,—a.c.. Assume that
Uz',N—n—l(Xn+1) = EXn+1 fl'(Xt((n+2)*o-)) P, —a.e. (3.2)
and define *Dj, 11 = H(*D}H_l, . .,*D;_H, ...,*DF ). We have
Ex, fi(Xi(nt1)00))
= Ex, [filXiorveo)In, g + fil X)) 7]
= Ex,fi(Xa41)Ip, 0 + Ex, {Ex,p fi( Xy o)) } Iip

= Ex, fi(Xn41)Lp, 4, + EXnUi,N—n+1(Xn+1)Im

Ex, (fi(Xn41) = vi Nont1(Xng1) T Lp, L (@)
—Ex, (fi(Xn41) —vi,N-nt1(Xn41)) " Lip, 1, (0)
+Ex, vi Nont1(Xnt1)-

We show that "o is an equilibrium point in the game G. To this end let us

assume, that p — 1 players are using the strategies *o* and one of the players,

say the player 1, uses the strategy o%n} = (o1,0%,... 0} *J}H_l, o),

(0'%0} = *ol). We have

E: f1(Xi(on})) < Exf1(Xi(o{n-1})):

where o{n} = (J%n}, *o2,...,%P)T. It means that player 1 is using some fixed
strategy at moments 1,2,...,n and the strategy defined by (ii) thereafter.
We get

E:fi(Xion) = Eofi(Xeoinp)t(oin})<n}
+E; f1 (Xt(o4n})) Lt (o{n})>n}

= Eofi(Xitofn-13))Yt(o{n-1})<n}
+E: [1(Xt(o(n})) lt(o{n})>n)



and

E; i (Xeoin) toinont = Eofi(Xe, (o)) t(oin})>n}
E.Eq[f1(Xn)Len, | Fac1lLit(ofn})>n}
+EEq [vi N (X)) g Fr 1]t (o{n}) >0}
EoviN—n+1(Xn-1)Lgpn-ne0y>n} -

IN

Hence

E: f1(Xtwin}) < Eofi(Xeo{n-11)){t(o{n-1})<n}
+Ezvi, Nnt1(Xn—1) L2 0y5 0}
= E:fi(Xioin-11)it(o{n-1})<n}
+E: 1 (Xe(ofn—11){t(o{n-1})>n}
= E;fi(Xi(o{n-1}))-

This ends the proof of the theorem.

4 Infinite horizon game

In this class of games the equilibrium strategy is defined in Definition 2.4 but
only for the class of SS described in Remark 2.1. In this section a sufficient
conditions for the existence of the equilibrium strategy for the infinite horizon
game are formulated. Let "o € S} be an equilibrium strategy. Denote

vi(2) = Bz fi(Xi(v0)).

Let us assume that (*+1)% ¢ S; n41 18 constructed and it is an equilibrium
strategy. If players j = 1,2,...,p, j # i, apply at n the equilibrium strategies
o), player i the strategy o’ defined by stopping set C' and (n+1)%5 at
n+1,n+2,..., then the expected payoff of the player 7, when history of the
process up to moment n — 1 is known, is given by

n(Xn-1, C) = Ex,_, | fi(Xa)Lep, (p3) + vi(Xn)bip 55y

where D, (A) = T(*D}, ... *Di-Y A *Di¥t . *DP) *Di = {w € Q :
ol =1},j=1,2,...,p,j#i,and D! ={wecQ:0 =1} =1} ={w €
Q: X, € C'}. By Lemma 2.1 the conditional expected gain @, (X,_1, C?)
attains its maximum on the stopping set *C: = {z € E : f;(z) > v;(x)} and

Pn (XTL—11 *CZ) == Ez[(fz(Xn) - Ui(Xn))-I_L*Dn(Q)lfn—l]

—E;[(fi(Xn) = vi(Xn)) " Lup, )| Fn-1]
+Ex[UZ(Xn)|fn—1]



Let us assume that there exists solution (wq(z), w2(z),. .., wp(z)) of the
equations

wi(z) = Eu(fi(X1) — wi(X1)) Lup,(a) (4.1)
_Ex(fz(Xl) — wi(Xl))_L*Dl((Z)) + Exwi(Xl),

, ..., p. Consider the stopping game with following payoff function for

| fi(z) ifn<N,
¢i’N(I)_{ vi(z) ifn> N.

Lemma 4.1 Let "o € S;i be an equilibrium strategy in the infinite horizon
game G. For every N we have

Ez¢z,N(Xt*) = vz(m)

PROOF. For N =1 we have E;¢; 1(X;+) = vi(z) by Lemma 2.1. Our

induction assumption is that for k =1,2,... N
E,6; k(X)) = vi(2). (4.2)
We have
Ecoint1(Xer) = Eodi g1 (Xeo)Ljees1y + Eodi vt (Xee ) Lo =1y

= Ez[¢z’,N+1(Xt*)I*D1 + ¢i,N+1(Xt*)Iﬁ]
= E;[fi(X1)Lp, + Ex, é; ny1(Xe+ ) o]

W B [f(X1) L, + (X))
L.2.1
C2D B (A(X) = 0i(X1) Ly e
_Ex(fi(Xl)_Ui(Xl))_L*Dl((D)+Exvi(X1)
(4.1)

= vi(z),

where *Dy = TI(*D?,...,*Di, ... *D). Tt ends the proof of Lemmad4.1.
O

Let us assume that for 1 = 1,2,...,p and every € E we have
E.[sup,cn fl-"'(Xn)] < 0. (4.3)

Theorem 4.2 Let (X, Fn,Ps)oL, be homogeneous Markov chain and the

payoff functions of the players fulfill (4.3). If t* = t(*0), "o € S} then
Efo(Xt*) = ’UZ(CL‘)



PROOF. By Lemma 4.1 and by (4.3) we have
Bz fi(Xi+) — Eo i N (Xi)
= |E (Fi(Xee) = vi(Xeo) Lo s vy |
Po{t* > N} |Eo [(fi(Xeo)[Tgee s ny] — Eafvi(Xee)
Jf{t* > N}{Ez[sgg(f;— (Xt*)] + v (:L‘)}

< I{t*>N}]|
<

To complete the proof let N — oo.
O

Theorem 4.3 Let the stopping strategy o € SJf be defined by the stopping
sets *CL = {z € E: fi(x) > vi(2)}, i = 1,2,...,p, then *o is the equilibrium
strateqy in the infinite stopping game G.

Proor. We show that if p — 1 players are using the strategles *¢7 and

one player say the i-th player uses the strategy such as 0'{ y = = (ol,0%, ... 0%,

‘o n+1’ n+2a'~~)a TLZl 0'{0} = O' then

E: fi(Xt(o{n}) < Bafi(Xe(ofn-1})),
where o, = (*ol, ... ot Jin}, *oitl . %6?)T. Denote t(ogny) = t(n).
Since from stage n — 1 the strategies ¢(n) and ¢(n — 1) coincide, then
E; fi(Xi(n)) = Eo fi( Xe(no1)) Lt (n=1)<n} + Ea fil Xi(n)) Lt (n)>n)-

Moreover

E: fi (Xe)) e (n)>
E:E. [fi(Xi(n))|7n ]I{t (n)2n)
E; EX 1fz Xt ) t(n)>n}

E:AEx,_, [fi(Xa)Ip, + fi(Xe(n) Ip 1 H{t(n)>n)

< Eo{Ex,, [fi(Xa)Ip, + vi(Xen)) Ig ] Ht(o{n}) >0}
= Euui(Xn-1)jt(ao1)>n)
Hence
E; fi(Xin) < Eolfi(Xeto 1) it(n—1)<n} i Xn-1)I{t(n)>n1]
= Eofi(Xi(n-1))-
We have

E: fi(X¢(n)) < Exfi(Xitn-1)) < Eofi(Xe(0)) = Eofi(Xev).

We show that if player j = 1,2,...,p, j # i, uses the strategies o7 and player
i any strategy o then Exfz’(Xt(g)) < E; fi(Xt(+0)), where

~ _ yx_1 * 1—1 i % _i4+1 * T
o= "o, .. 0T ot et T L o)

10



Let us consider the difference
E:fi(X,5) = Eafi(Xi(n)
= Eu[fi(X,5) = [i(Xie) )iy >
= Po{t(3) > 0} {Ball(X, I35y ] = Bl (Ko )) T ]}
Po{1(5) > nH{Bxlsup (7 (X1)] - vi(e)}

IA

for every n € N. Since we consider SS from S}‘ then

Efo(Xt(g)) — Exfi(Xt*) < 0.

5 Examples

Consider the two person voting game on observation of a homogeneous Markov
chain with the majority rule defined in Example 2.1. We have then p = 2
and two cases r = 1 and r = 2. Assume that the Markov chain (X, %, P3),
n=0,1,2,... with the state space E = {0,1} x {0,1} and Py, = P(g, ;,) =
P, x Py,, where P, is given by the transition probability matrix

0
q9 P
p>0,¢qg>0 p+q=1. The payoff functions of the players are f;(z) =

fi(z1,22) = 2, i = 1,2. Let us formulate the optimality equations and their
solution for both cases.

[r=1] The Nash values of the game (v1(z), v2(z)) fulfill the following equa-

tion
vi(z) = Eo(fi(X1) — v (X)) Lipxy)<os(x0))
+E (f1(X1) = v1 (X)L £ 0x0)>00(x0)} + Eov1(X1)
va(z) = Eg(fa(X1) — va(X1)) Ly, x)<on (x0))

+E; (f2(X1) — v2 (X)L g, (x0) >0 (x0)) + Eov2(X1).

The solution of these equations are the functions

q/(1-p*) if (z1,22) = (0,0)
v (21, 22) = va(22,21) = (¢ +2pq)/(1 + p) if (z1,29) =(0,1)
TR, 2 22, (2p)/(1+ p) if (z1,22) = (1,0)
(q2 +p2 +p)/(1 +p) if (Il’m2) = (1: 1)

11



and the stopping sets are C' = {(1,0),(1,1)} and C? = {(0,1),(1,1)}.
Tt is easy to check that for p > q we have v1(1,0) > v1(0,1) > v1(0,0) >
v1(1,1). For p = ¢ = 1/2 the equilibrium values v (z) = va(z) = 2/3
for both players are equal and independent of initial state of the Markov
chain.

[r=2] In this case the equilibrium values fulfill equations
w1 (w) = Bo (f1(X1) = w1 (X)) Ly x0) 2 wax0)) + Bown (K1)

wa(2) = By (f2(X1) — w2 (X1) L, (x1) 2w (x0)) + Bowa(X1).

The solution of these equations are wq(z) = wa(z) = 1 for every z € E
and the stopping sets are C! = C? = {(1,1)}.
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