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In Neveu’s variant of the stopping problem, a randomized strategy is considered in order to
relax a condition on values of two stochastic sequences. We shall describe the variant of the
problem as a zero sum two person sequential game and show that a solution for a recursive
equation of the game value exists. Neveu’s condition reduces the equilibrium solution to a Markov"
time among the class of randomized strategies. |
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1. Neveu’s stopping problem

In the Chapter 6 of Neveu’s (1975) book, a modification of the game conceived
by Dynkin (1969) is presented as an optimization problem in martingale theory.
The game variant of the stopping problem by Dynkin is as follows: Two players
observe a stochastic sequence X(n), n=1,2,....If each of them chooses a strategy,
A, u respectively both Markov times, the payoff is given by '

X(A) on{A=<pu},
X(u) on{A>u}.

The first player is to maximize the expected value of (1.1) and the other is to
minimize. Dynkin proved the existence of the game value and optimal strategy with
a restriction on the moves of the game. Under the same formulation, Kiefer (1971)
obtained another existence condition. Neveu modified the payoff in the Dynkin’s
problem as follows: There are two preassigned stochastic sequences X (n), Y(n),
and for each strategy of the two players A and u (which are Markov times and
without Dynkin’s constraint on moves), the payoff equals

X(A) on{A=sypu},
Y(u) on{A>pu},
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R(A,u)={ (1.1)

R(f\,u)={ (1.2)
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with the condition ‘
X(n)<Y(n) foreach n (1.3)

Under a regularity condition for the integrability of supremum or infimum of the
sequences he proved the existence of the game (min-max) value and e-optimal
(equilibrium) strategy. Assuming the essential condition (1.3), several authors such
as Krylov (1970) and Bismut (1977) considered the stopping game problem of
random processes.

In this paper we assign three stochastic sequences to the payoft of two players:
one sequence is used when Player 1 stops sooner than the other; the second is when
Player 2 is faster and the third is when both stop simultaneously. Let X(n), Y(n)
and W(n) denote these sequences respectively. This problem is formulated as the
multi-stage two person zero sum game (2 X2 Matrix game) with the intention of
extending a strategy from a Markov time (a pure strategy) to a randomized one.
Although the extension is meaningless in a one person problem (Chow, Robbins,
- Siegmund (1971, in Chap 5.3)), a randomization should be considered in the
situation. Neveu discusses the infinite horizon case but we firstly consider the finite
horizon case, referring to Chow, Robbins, Siegmund. Then we give a condition for
the existence of a game value in the infinite horizon case with a discount factor.
This problem resembles Everett’s Recursive game in Luce, Raiffa (1972) and the
arbitration problem in Chatterjee (1981). A similar stochastic game, in which
stopping can occur by mutual agreement, is discussed by Sakaguchi (1980).

2. Randomized strategy

Let (2, %, P) be a probability space with an increasing sub o-field %(n) (alter-
nately %,) of %. Suppose we are given the trio: X (n), Y(n) and W(n), which are
sequences of integrable random variables adapted to %(n) for each n. We consider
the following game: There are two players and each of them chooses as his strategy
a stopping time. If A and p are the stopping times of the first and the second player
respectively, then the corresponding payoff is of the form

R(A p) =X (M <yt W) Loyt Y() Ins (21)

where I is an indicator function. That is, the process is stopped when either of the
two players declares stop and the payoffs are given according to their declaration.
However, without conditions such as (1.3), an equilibrium pair of Markov times
does not exist. So we propose that the class of strategies should be extended from
a pure one (a Markov time) to a randomized one. The adapted scheme in this paper
is as follows:

Definition 2.1. A strategy for each player is a random sequence p=(p,)€ P or
q={(g,) € 2 such that, for each n,
(i) p, and g, are adapted to F(n),
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(ii) 0=<p,, g, <1 with probability 1.
If each random variable equals either 0 or 1, we call it a pure strategy.

Let A,, A,,... and B, B,,... be independent identically distributed random
variables of uniform distribution on [0, 1] and independent of \/i‘;l F(n). Let 9(n)
be the o-field generated by F(n), {A,, A, ..., A} and {B,, B,, ..., B,}. The proba-
bility space is, without loss of generality, rich enough to support the additional
randomisation. A randomized stopping time A(p) for a strategy p =(p,)€ ? and
n(q) for a strategy q =(q,) € 2 are defined, respectively, by

A(p)=inf{n=1: A, <p,}, pu(g)=inf{n=1: B,<gq,}. (2.2)

Definition 2.2. For a strategy p=(p,) € ? and q=(g,) € 2 of each player, define a
payoft:

X((p) - if {A(p) <u(q)},
R(p,q)=4 W(A(p))=W(u(q)) if {x(p)=pn(q)}, (2.3)
Y(u(q)) ~if {a(p)>u(q)}

provided A(p) and w(q) are randomized ({%(n)}-measurable) stopping times.

Clearly if each p, is either zero or one, then A(p) is in fact an {F(n)}-stopping
time, and the strategy is pure and corresponds to a Markov time. In particular an
{%(n)}-stopping time A corresponds to the strategy p = ( p,) with p, = I;,_,, where
I is an indicator function.

The aim of Player 1 (respectively Player 2) is to make the expectation of the
payoff as large (as small) as possible. Firstly we consider a finite horizon case, which
is restricted to N stages. Let

Py ={p=(p)eP;p1=""=pP,1=0,pn =1} (2.4)

denotes all of the strategies between stage n and N for Player 1. Similarly 2
denotes all of the strategies between n and N for Player 2.
Let

¥ = essinf esssup EZ"[R(p, q)], vy = esssup essinf E*"[R(p, q)].
2% PN - N ol
(2.5)

A pair of strategies which coincides with the minimax (infsup in (2.5)) and
maximin (supinf in (2.5)) strategy is called an equilibrium strategy. Note that, by
(2.2),

¥~ =essinf esssup E*"[R(A, u)] and 1y =esssup essinf E¥"[R(A, )]
MY AN ~ AYN MY

where A}, M} are a class of Markov times such that n< A, u < N, satisfy

Fn>Fn >y >yn. (2.6)
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Fdllowing the usﬁalconventions, for example, Luce, Raiffa (1957), let us denote
a value of the two person zero sum game with the payoff matrix A by val[ A]. That
is, for a 2 X2 matrix A =(a;;) with each {%(n)}-measurable element,

val[ A] = esssup essinf{ pnqndu + p,(1— qn)au +(1— pn)gnas

Pn n

+(1=pn)(1—q,)ax}

= essinf esssup{ pngna11 + pa(1—q,)ax+ (1 —p,)q.a,
an  Pn

+(1—pn)(1—¢,)as}.

Recu'rsivexly‘ define the sequence v YN—1, ..., Y1 by setting

yN=W(N),
< - (2.7)
W(n) X(n) ]
N
Yn =V31[ . , n=N-1, N-2,...,1.
a Y(n) E""[ynii]

Theorem 2.1. v, =¥, =yn,n=1,2,... N holds.

Proof. Firstly we show as in the proof of Proposition VI-6-9 in Neveu (1975) that
the operations essinfy~ esssuppy and the integral with respect to E?"! are
exchangeable. If pe ?7" and g€ 27, the random variable R(p, q) is integrable as it _
is dominated in the absolute value by max;<;<n {X (i) + Y(i)+ W{(i)}. Clearly, for
every n and g, the family E”"[R(p, q)], p€ ?,, is an increasing directed set. That
is, for p' and p°®, there exist p such that E7'[R(p, q)]=max{E*"[R(p", q)],
E?"[R(p? q)1}. Hence esssupgpr?"[R(p, q)] is also integrable. Because
R(p, q)<{X(A(p))+ max W(i)} forall peP;,, qe2,,

n=i= N
we have

E#-i[esssup E*[R(p, q)]1=esssup E¥1[R(p, q)] (2.8)

PN pN |
by Proposition VI-1-1 of Neveu (1975). For every n the family of
esSSupgN E?’f[R( p; q)] as q varies over 2, is a decreasing directed set and SO 1ts
essential supremum ¥, is again integrable. Therefore we have obtained the formula:

E%[yn]= essinf B E';['3"-]‘[eSps]:o;ytp E*[R(p, )]]. (2.9)

We now show that the sequence yN n=1,2,..., N satisfies (2.7) by the method
of backward induction: For n= N this is trivial by (2.3). Assume the equality of
(2.7) holds for n+1. Note that, by (2.3) and (2.5), |

P¥"(A,<pmB.<q,)=Pudn E”"[R(p,q): A,<p,, B.<g,]= W(n)
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and similarly for other cases. Since

essinf esssgp E*"[R(p, q)] = essinf esssup essi}slf esssup E""[R(p, 9]

qeal pe?] an Pn 9€2 41 PEP 4y

holds, it follows that

¥5 = essinf esssup{ p.g, W(n)+p,(1—4,) X (n)+(1-p,)q,Y(n)
qn Dn

+(1-pa)(1—g,) essinf E™[esssup E*~[R(p, ¢)11}-

n+1 P n+1

Therefore, using (2.8) and (2.9), ¥, satisfies (2.7). Similarly it is proved that '_yf,v
satisfies the same equality. Hence the result is proved.

Corollary 2.2. (i) min{ W(n), X(n)}< vy} <max{W(n), Y(n)} and
(i) min{Y(n), E*"[y2\]} < v <max{X(n), E%[Y.ﬁl]} Jfor each n.

Corollary 2.3. If
X(n)<s W(n)<Y(n) (2.10)

Jor each n with probability 1, then

Y(n) if Y(n)<E%[y},],
yn = 1ES[ya] i X(n)<E%[yN,]1<Y(n), (2.11)
X (n) if EZ[ynal<X(n).
That is,
%11\,\_ Esc"['}’rl:lﬂ] = (X(n) _Eg"[YnNﬂ])Jr_(Y(n) - Ey"[‘}’rllv+l])_ (2.12)

where (a)*=max(a;0) and (a) =(—a)*. Therefore a pair of the pure strategy p*
and q* such that p} =1 if y) = X(n), g5 =1 if yi = Y(n) and p* = g* = 0 otherwise
Jor each n, gives an equilibrium one.

The condition (2.10) reduces the equilibrium strategy to a pure one. The equalities
(2.11) in the corollary provide a finite horizon case of Neveu’s result. It is seen the
ransom sequence W(n), n=1,2,... is irrelevant for the recursive equation (2.12)
because the declaration of both stopping never occurs. Similarly to (2.12), Dynkin’s
recursive equation is written as

‘y']lv_Eg"[’YrIl\Ll] = I{¢n>o}(X(n')*Eg"[vi"ﬂ])“ I{¢,,<o}(X(n)_Eg"[')’§+1])_ (2.13)

where the sequence {¢,} denotes the moves of the game. That is, Player 1 (resp.
Player 2) can select stop when ¢, >0 (¢, <0).
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3. Infinite horizon problem with a discount factor

For a strategy pe @, = ?% and g€ 2, = 27, the terminal time 7(p, q) in the game
equals min(A( p), u(q)). However, if the terminal time is not finite, then the payoft
cannot be made. Here we set the payoff to be 0 when the game is not terminated.
Also we incorporate a discount factor, a constant 8 with 0<B <1, to assure the
convergence of the payoff. Let

¥, = essinf esssup EZ»[8" PP 7"R(p, )1,
2, P

v, = esssup essinf E*[B"»P"R(p, q)]. (3.1)
- P, 2,

n

Consider a recursive equation:

_ W(n) X(n) ] _
Vn Val[Y(n) BE® [y ] ) n=1,2,... (3.2)

The next theorem corresponds to Proposition VI-6-9 of Neveu (1975) but we need
not assume that X(n)< W(n)=Y(n).

Theorem 3.1. Assume that

E[sﬁp |W(n)|]< o, E[sgp Y(n)"]<o© and E[sup X(n)*]<oco. (3.3)

Then ¥, and v, coincide for all n and the sequence satisfies the above recursive equation.

Proof. First we note that the assumption (3.3) implies

esssup EZ[B™»P7"R(p, q)] = BE [esssup E ¥ [B" PV "' R(p, ¢)1]
Pt Prs1
because a similar discussion as for (2.8) holds. Since E% Hl[ﬁ’“’"”'”“R(p, q)] is
independent of g,, we obtain that
¥. = essinf esssup{ pag. W(n) + p.(1 - ¢,) X (n) +(1 - p,)q.Y(n)
qn Pn

+:B(1 _pn)(l - qn)Eg;n[?n+l]}3

similarly to (2.9). Hence the sequence ¥, satisfies the equation (3.2). Symmetrically
it is proved that y, also satisfies (3.2).

Let v, be a solution of (3.2) and let p* = (p¥), ¢* = (q}) be an associated strategy.
That is,

Yo =pEgEW(n)+pi(1—g) X (n)+(1-pHqsY(n)
+B(1-pH(1—gH) E% [ Ypii] (3.4)
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for each n and *=r(p*, ¢*). By (3.1) and (3.2), it follows that
E%[B""R(p*, 4*)]= v

=B’”'”“Ey"[{l'[ (1-pHQ- qk)}

x (E%mn[ BT "™ 'R(p*, ¢*)]1- 7m+1)]

for any m = n. Since B <1, by letting m - 0, it follows that
EZ[8""R(p", 4*)1=vn (35)

Consider a strategy g™ = (¢\™, gi™, ...) defined by, for each K,

=gt k>m, =g, k<m
with the pre-specified g* = (q¥, q%,...) and arbitrary strategy q =(q,, g, . . .). Since
EZn[TP ™ "R (p*, )] = E¥n[ B "R(p*, )] = E¥n[ypu1]

is obtained by (3.5), it is immediately seen from (3.4) and the definition

of (3.2) that Y < EZn[ B7P" "(m))'"‘R(p q“""M]1. Iteratively, . vy, =<

EZ[B™P™4 ™ "R(p*, ¢™)] holds for each m=n. Letting m-oo, we have
Y.< EZ[B™P D "R(p*, q)]. As the strategy q is arbitrary,

Vn sesssszEg"[BT(” DR(p*, )]
<esssup essinfE%[B"PP7"R(p, q)] = y,.
P, 2, ) -

The other inequality v, = ¥, is proved symmetrically. Hence these show that ¥, = Yn
and simultaneously that the solution v, in (3.2) constitute the unique sequence.

Corollary 3.2. If X(n)< W(n)< Y(n) for each n, than an e-equilibrium pure strategy
exists for arbitrary £ > 0.

Note that the random variable W(n) is irrelevant, as is seen in (2.12), because
the declaration of both stopping never occurs in the case under consideration. To
let £ =0, we must show the terminal time is finite with probability 1, so conditions
such as lim,X (n) = —00, lim, Y(n) = are needed (refer to Theorem 4.5 in Chow,
Robbins, Siegmund). In this paper we give a condition in the next theorem, which
is the due to the property of the matrix game.

Theorem 3.3. In addition to the condition of Theorem 3.1, assume that

S, e 8e-- -, U S.=0 (3.6)
- n=1
where S, ={Y(n)< W(n)< X(n)} for each n. Then the terminal time‘of the game is
 finite with probability 1 and an equilibrium strategy exists.
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Proof. Because either player declares stop when the event S, occurs, the result is
immediate. :
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