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Abstract

In this paper, we consider an interval matrix game with interval valued payoffs, which
is the generation of the traditional matrix game. The “saddle-points”of this interval matrix
game are defined and characterized as equilibrium points of corresponding non-zero sum
parametric games. Numerical examples are given to illustrate our idea. These results are
extended to the fuzzy matrix games. Also, we formulate two person zero-sum stochastic
interval games.

Keywords: Interval game, saddle point, interval payoffs, fuzzy payoffs, equilibrium point, para-
metric game.

1 Introduction and notations

In usual matrix game theory(cf. [25, 26]), all the elements of the payoff matrix are assumed to
be exactly given. But in a real application, we often encounter the case where the information
on the required data includes imprecision or ambiguity because of the uncertain environment.
In order to deal with such a case, it is more reasonable to estimate the elements of the payoff
matrix by intervals. As for interval approaches to linear programming problem and decision
processes, refer, for example, to [7, 21] and [9] respectively.

In this note, we consider the interval matrix game which is an interval generation of the
traditional matrix game. The saddle points of the interval matrix game are defined and char-
acterized as equilibrium points of corresponding non-zero sum parametric games. Also, these
results are extended to the fuzzy matrix games. Recently, Kurano et al [10] have developed the
theory of MDPs in which the immediate rewards are described by use of fuzzy sets. So that, we
consider the question whether these results can be extended to stochastic games with interval
or fuzzy payoffs. We shall formulate two person zero-sum stochastic interval games in which
one-step payoffs are estimated by intervals.

In the reminder of this section, we shall give some notation on interval arithmetics (cf. [16])
and some preliminaries related to the preference relation on intervals.

Let R be the set of all real numbers and C the set of all bounded and closed intervals in R.
Note that R ⊂ C by identifying a ∈ R with a = [a, a] ∈ C. We will give a partial order <,Â on
C by the following definition.
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For [a, b], [c, d] ∈ C, [a, b] < [c, d] if a = c and b = d , and [a, b] Â [c, d] if [a, b] < [c, d] and
[a, b] 6= [c, d]. The Hausdorff metric(cf. [13]) on C is defined by δ, i.e.,

δ([a, b], [c, d]) := |a− c| ∨ |b− d| for [a, b], [c, d] ∈ C,

where x ∨ y = max{x, y}. Obviously, the metric space (C, δ) is complete.
The following arithmetics are used in the sequel.
For [a, b], [c, d] ∈ C and λ ∈ R (λ ≥ 0),

(1.1) [a, b] + [c, d] = [a + c, b + d],

(1.2) λ[a, b] = [λa, λb].

Then, we have the following.

Lemma 1.1 For any [a, b], [a′, b′], [c, d], [c′, d′] ∈ C and λ ∈ R (λ ≥ 0).

(i) δ(λ[a, b], λ[a′, b′]) = λδ([a, b], [a′, b′]). (scalar)

(ii) δ([a, b] + [a′, b′], [c, d] + [c′, d′]) ≤ δ([a, b], [c, d]) + δ([a′, b′], [c′, d′]). (triangle)

(iii) δ([a, b] + [a′, b′], [a, b] + [c′, d′]) = δ([a′, b′], [c′, d′]). (shift)

Let C+ := {a ∈ C | a = [a, b] < [0, 0]} be the set of nonnegative intervals. Let Cm and Cm×n

be the set of all m-dimensional column vectors and m× n matrices, called interval vectors and
interval matrices respectively, whose elements are in C, i.e.,

Cm := {a = (a1,a2, . . . ,am)t | ai ∈ C (1 5 i 5 m)},

Cm×n := {A = (aij) | (aij) ∈ C (1 5 i 5 m, 1 5 j 5 n)}.
We shall identify m× 1 interval matrices with interval vectors and 1× 1 interval matrices with
intervals, so that C = C1×1 and Cm = Cm×1. Also, we denote by Cm

+ and Cm×n
+ the subsets of

componentwise non-negative elements in Cm and Cm×n. We equip Cm×n with componentwise
relations 4, ≺, <, Â. Similarly, we can define Rm and Rm×n as the set of real m-dimensional
column vectors and real m× n matrices. Note that Rm×n ⊂ Cm×n.

For any A = (aij) ∈ Cm×n with aij = [a−ij , a
+
ij ], A will be denoted by A = [A−, A+], where

A− = (a−ij) ∈ Rm×n, A+ = (a+
ij) ∈ Rm×n and [A−, A+] = {A ∈ Rm×n | A− 4 A 4 A+}.

For A = (aij),B = (bij) ∈ Cm×n and λ ∈ R+,

A + B = {A + B | A ∈ A and B ∈ B}(1.1’)
λA = {λA | A ∈ A},(1.2’)

where for C = (cij) and D = (dij) ∈ Rm×n, C + D = (cij + dij). Observing A + B =
[A− + B−, A+ + B+] ∈ Cm×n.

For any given D ⊂ C, c is called a minimal (maximal) point of D if

(1.3) {d ∈ D | d ≺ (Â) c} = ∅.

The set of all minimal (maximal) point of D will be defined by minD(maxD) (cf. [20, 24]).
Since the partial order 4 on C is equivalent to the vector ordering on R2 with R2

+ as the
corresponding order cone, the following fact follows easily (cf. [2, 20]).

Lemma 1.2 Let D be a compact and convex subset of C. Then [a, b] ∈ minD(maxD) if and
only if there exists γ ∈ (0, 1) such that γa + (1− γ)b 5 (=)γa′ + (1− γ)b′ for all [a′, b′] ∈ D.
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In Section 2, an interval matrix game is specified and its saddle points are characterized as
equilibrium points of the corresponding non-zero sum parametric game. A fuzzy matrix game is
investigated in Section 3. In Section 4, a numerical example is given to illustrate our arguments.
In order to formulate the interval stochastic game we need the concept of a expectation of
interval-valued random variables.

Let (Ω,B, P ) be a probability space and r : Ω → C a discrete random quantity with its
range R(r) = {c1, c2, · · · , cl} ⊂ C. Then, we define the expectation of r by

(1.4) E[r] =
l∑

i=1

ciP (r = ci).

Note that arithmetics in (1.4) is given in (1.1) and (1.2) and E[r] ∈ C. The definition of (1.4)
is corresponding to the discrete case of the expectation of general fuzzy random variables (cf.
[18]).

In Section 5 stochastic interval games are specified and their saddle points are defined,
which are characterized as equilibrium points of corresponding nonzero-sum parametric stochas-
tic games in Section 6. In Section 7, stochastic interval game are extended to the case of the
multi-dimensional fuzzy payoffs.

2 Interval matrix games

The two person interval matrix game is defined by the m×n interval matrix A = (aij) ∈ Cm×n,
where player 1(maximizer) and player 2(minimizer) have m pure strategies {i | i = 1, 2, . . . , m}
and n pure strategies {j | j = 1, 2, . . . , n} and if player 1 and 2 select i(1 5 i 5 m) and
j(1 5 j 5 n) respectively, the payoff for player 1 is estimated by the interval aij ∈ C.

Let X and Y be the set of all mixed strategies for player 1 and 2 respectively, i.e.,

X = {x = (x1, x2, . . . , xm)t ∈ Rm
+ |

m∑

j=1

xi = 1},

Y = {y = (y1, y2, . . . , yn)t ∈ Rn
+ |

n∑

j=1

yi = 1}.

Then, for any selected pair of strategies (x, y) ∈ X × Y the expected payoff for player 1 is
estimated by

(2.1) f(x, y) := xtAy =
∑

i,j

xiyjaij .

By arithmetics in (1.1’) and (1.2’) the following holds obviously.

Lemma 2.1. For any x ∈ X and y ∈ Y , it holds that

(2.2) f(x, y) = [xtA−y, xtA+y] ∈ C.

Definition 1. (cf. [[14], [24]]) Let (x∗, y∗) ∈ X × Y and A ∈ Cm×n. Then (x∗, y∗) is said to
be a saddle point of the interval matrix game A if the following holds:

(2.3) f(x∗, y∗) ∈ max f(X, y∗) ∩min f(x∗, Y ),
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where for any (x, y) ∈ X × Y , f(X, y) = {f(x′, y) | x′ ∈ X} and f(x, Y ) = {f(x, y′) | y′ ∈ Y }.

We note that f(X, y) and f(x, Y ) are compact and convex subset of C.
In order to characterize the saddle point of the interval matrix game A, we introduce a

parametric matrix game A(γ). For each γ ∈ (0, 1) and A = [A−, A+] ∈ Cm×n, let A(γ) =
γA+ + (1− γ)A−.

Definition 2. For any γ, γ′ ∈ [0, 1], the point (x∗, y∗) ∈ X×Y is said to be a (γ, γ′)-equilibrium
point for a non-zero sume game (A(γ), A(γ′)) if the following (i)–(ii) holds:

(i) xtA(γ)y∗ 5 x∗tA(γ)y∗ for all x ∈ X,

(ii) x∗tA(γ′)y = x∗tA(γ′)y∗ for all y ∈ Y .

We note that the (γ, γ)-equilibrium point (x∗, y∗) for a non-zero sume game (A(γ), A(γ))
means that (x∗, y∗) is a saddle point for the zero sume matrix game A(γ), i.e.,

(2.4) xtA(γ)y∗ 5 x∗tA(γ)y∗ 5 x∗tA(γ)y for all x ∈ X and y ∈ Y.

Also, every non-zero sum finite game has an equilibrium point(cf. [15, 26]), so that for any
γ, γ′ ∈ [0, 1], a (γ, γ′)-equilibrium point exists. Applying Lemma 1.1 and 2.1, we have the
following.

Theorem 2.1. A point (x∗, y∗) ∈ X×Y is a saddle point for the interval matrix game A if and
only if there exist γ, γ′ ∈ (0, 1) such that (x∗, y∗) is a (γ, γ′)-equilibrium point. for a non-zero
sume game (A(γ), A(γ′))

Proof. By Lemma 1.1 and 2.1, that f(x∗, y∗) ∈ min f(x∗, Y ) means that there exists γ′ ∈ (0, 1)
satisfying

(2.5) γ′x∗tA+y∗ + (1− γ′)x∗tA−y∗ 5 γ′x∗tA+y + (1− γ′)x∗tA−y for all y ∈ Y.

Obviously, (2.5) is rewritten as follows.

(2.6) x∗tA(γ′)y∗ 5 x∗tA(γ′)y for all y ∈ Y.

which is corresponding with (ii) of Definition 2.
Similarly, f(x∗, y∗) ∈ max f(X, y∗) means that there exists γ ∈ (0, 1) such that

(2.7) x∗tA(γ)y∗ = xtA(γ)y∗ for all x ∈ X.

Thus, the proof is complete. ¤

The following results easily follow from Theorem 2.1.

Corollary 2.1. If the point (x∗, y∗) ∈ X × Y is a saddle point for the matrix game A(γ) (γ ∈
(0, 1)), (x∗, y∗) is a saddle point for the interval matrix game A.

Corollary 2.2. For any A = ([a−ij , a
+
ij ]) ∈ Cm×n with a+

ij − a−ij = c independent of i and
j (1 5 i 5 m, 1 5 j 5 n), the saddle point (x∗, y∗) of A is uniquely determined as a saddle point
for the matrix game A− = (a−ij).

Proof. We note that A(γ) is rewritten as A(γ) = A−+ γ(A+−A−). So that if A+−A− = cE,
A(γ) and A(γ′) is essentially equivalent for any γ, γ′ ∈ (0, 1), where all the elements of E ∈ Rm×n

are 1. Thus, the statement of Corollary 2.2 follows obviously. ¤
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The following is useful in finding the saddle point of the interval matrix game A.

Corollary 2.3 [cf. [22]]. The point (x∗, y∗) ∈ X × Y is a saddle point for the interval matrix
game A ∈ Cm×n if and only if there exist γ, γ′ ∈ (0, 1) such that (x∗, y∗) is a part of a solution
to

(2.8)





A(γ′)y + ν = xtA(γ′)y1m

xtA(γ)− µt = xtA(γ)y1t
n

νtx = 0, µty = 0
xt1m = 1, yt1n = 1
x, ν ∈ Rm

+ , y, µ ∈ Rn
+,

where 1m = (1, . . . , 1)′ ∈ Rm
+ and 1n = (1, . . . , 1)′ ∈ Rn

+.

Remark. On the interval matrix game A, if player 1(2) selects the stratrgy i(j) player 1(2)
receives(loses) the iterval valued payoff aij = [a−ij , a

+
ij ] ∈ C, where the actual value of the payoff

is not known precisely for both players like a value of a beautiful ancient urn. In general,
[a−ij , a

+
ij ] + [−a+

ij ,−a−ij ] = [a−ij − a+
ij , a

+
ij − a−ij ] 6= 0 (3 0) then the interval matrix game A is not a

zero sum game in the strict sense of the word. The player 1 and 2 may consider the interval game
A as a non-zero sum game (A(γ), A(γ′)) for some parameters γ and γ′, where the parametric
game A(γ) and A(γ′) for player 1 and 2 may be their subjective values for the intervlal game
A. Consider the extreme case (γ, γ′) = (0, 1), a (0, 1)-equilibrium point (x∗, y∗) ∈ X ×Y means
that

(i) xtA−y∗ 5 x∗tA−y∗ for all A ∈ A and x ∈ X,

(ii) x∗tA+y = x∗tA+y∗ for all A ∈ A and y ∈ Y .

This shows that (x∗, y∗) guarantees the best in the worst case for both players. Thus, (0, 1)-
equilibrium point (x∗, y∗) will be called a pessimistic-pessimistic pair. By the same discussion
as the above, the (1, 0)-equilibrium point (x∗, y∗) will be called an optimistic-optimistic pair.
Then the parameter γ (0 ≤ γ ≤ 1) is a grade of optimism for player 1 or a grade of pessimism
for player 2.

3 Extensions to fuzzy games

In this section, the results in the preceding section will be extended to the multi-dimensional
fuzzy payoff games.

We write a fuzzy set on Rp by its membership function s̃ : Rp → [0, 1] (see Novák [17] and
Zadeh [27]). The α-cut (α ∈ [0, 1]) of the fuzzy set s̃ on Rp is defined as

s̃α := {x ∈ Rp | s̃(x) ≥ α} (α > 0) and s̃0 := cl{x ∈ Rp | s̃(x) > 0},

where cl denotes the closure of the set. A fuzzy set s̃ is called convex if

s̃(λx + (1− λ)y) ≥ s̃(x) ∧ s̃(y) x, y ∈ Rp, λ ∈ [0, 1],

where a ∧ b = min{a, b}. Note that s̃ is convex if and only if the α-cut s̃α is a convex set
for all α ∈ [0, 1]. Let F(Rp) be the set of all convex fuzzy sets whose membership functions
s̃ : Rp → [0, 1] are upper-semicontinuous and normal (supx∈Rp s̃(x) = 1) and have a compact
support. In the one-dimensional case n = 1, F(R) denotes the set of all fuzzy numbers. Let
C(Rp) be the set of all compact convex subsets of Rp.
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The definitions of addition and scalar multiplication on F(Rp) are as follows: For s̃, r̃ ∈ F(Rp)
and λ ≥ 0,

(3.1) (s̃ + r̃)(x) := sup
x1,x2∈Rp

x1+x2=x

{s̃(x1) ∧ r̃(x2)},

(3.2) (λs̃)(x) :=
{

s̃(x/λ) if λ > 0
1{0}(x) if λ = 0

(x ∈ Rp),

where 1{·}(·) is an indicator.
By using set operations A + B := {x + y | x ∈ A, y ∈ B} and λA := {λx | x ∈ A} for any

non-empty sets A,B ⊂ Rp, the following holds immediately.

(3.3) (s̃ + r̃)α = s̃α + r̃α and (λs̃)α = λs̃α (α ∈ [0, 1]).

Let K be a non-empty cone of Rp. Using this K, we can define a pseudo order relation 4K

on Rp by x 4K y if and only if y− x ∈ K. We introduce a pseudo order 4K on F(Rp) (cf. [8]).
Let s̃, r̃ ∈ F(Rp). The relation s̃ 4K r̃ means the following (i) and (ii):

(i) For any x ∈ Rp, there exists y ∈ Rp such that x 4K y and s̃(x) ≤ r̃(y).

(ii) For any y ∈ Rp, ther exists x ∈ Rp such that x 4K y and s̃(x) ≥ r̃(y).

For any a ∈ Rp and d ∈ C(Rp), the product of a and d is defined as

(3.4) ad = {atd | d ∈ d}.
We note that ad ∈ C.

Lemma 3.1 [8]. For any s̃, r̃ ∈ F(Rp), s̃ 4K r̃ if and only if as̃α ≤ ar̃α for all a ∈ K+ and
α ∈ [0, 1].

Here, we consider the two person fuzzy matrix game defined by the m × n fuzzy matrix
Ã = (ãij) ∈ F(Rp)m×n. For any x = (x1, x2, . . . , xm)t ∈ X and y = (y1, y2, . . . , yn)t ∈ Y , the
expected payoff for player 1 is estimated (cf. [18]) by

(3.5) f(x, y) := xtÃy =
∑

xiyjãij .

We note that f(x, y) ∈ F(Rp) and its α-cut is given by

(3.6) f(x, y)α =
∑

xiyjãij,α ∈ C(Rp),

where ãij,α is the α-cut of ãij .
The saddle point of the fuzzy matrix game Ã is defined similarly as that of the interval

matrix game (see Definition 1 in Section 2).
For any a ∈ Rp, noting aãij,α ∈ C, we denote aãij,α by [ã−ij,α(a), ã+

ij,α(a)] and set A−α (a) :=
(ã−ij,α(a)) ∈ Rm×n and A+

α (a) := (ã+
ij,α(a)) ∈ Rm×n. Here, for α ∈ [0, 1], γ ∈ (0, 1) and a ∈ Rp,

we put

(3.7) Aα,a(γ) = γA+
α (a) + (1− γ)A−α (a).

Then, the saddle points of the fuzzy matrix game Ã will be characterized in the following
theorem, whose proof is done by applying Lemma 3.1 and the ideas used in Section 2.

Theorem 3.1. A point (x∗, y∗) ∈ X × Y is a saddle point of the fuzzy matrix game Ã if and
only if there exist two functions γ, γ′ : [0, 1]×K+ → (0, 1) such that

(3.8) xtAα,a(γ(α, a))y∗ 5 x∗tAα,a(γ(α, a))y∗

x∗tAα,a(γ′(α, a))y = x∗tAα,a(γ′(α, a))y∗

for all α ∈ [0, 1] and a ∈ K+.
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4 Numerical Example

Here, we give numerical examples.

Example 1. Let A =
(

[2, 4], [−2, 0]
[0, 2], [1, 3]

)
∈ C2×2.

Noting that A− =
(

2, −2
0, 1

)
and A+ =

(
4, 0
2, 3

)
and A+ − A− =

(
2, 2
2, 2

)
. Thus, by

Corollary 2.2, a saddle point (x∗, y∗) of A is unique and given by a sadle point for A−. After a

simple calculation, we find that x∗ =
(

1
5
,
4
5

)
, y∗ =

(
3
5
,
2
5

)
and f(x∗, y∗) =

[
2
5
,
12
5

]
.

Example 2. Let A =




[3, 4],
[
−3

2
,
1
2

]

[
1
2
,
3
2

]
, [1, 2]


 with A− =




3, −3
2

1
2
, 1


 and A+ =




4,
1
2

3
2
, 2


.

Noting A(γ) =




γ + 3, 2γ − 3
2

γ +
1
2
, γ + 1


 , for each γ ∈ (0, 1), we solve the parametric equation (2.8)

and find that the (γ, γ′)-equilibrium point (x∗, y∗) is given by

x∗ = (
1

10− 2γ

9− 2γ

10− 2γ
), y∗ = (

5− 2γ′

1− 2γ′
,

5
1− 2γ′

) with

f(x∗, y∗) = [
2γγ′ − 15γ′ − 15γ + 75

(10− 2γ)(10− 2γ′)
,
6γγ′ − 35γ − 35γ′ + 75

(10− 2γ)(10− 2γ′)
].

By Theorem 2.1, the set of all saddle points is specified by the set of all (γ, γ′)-equilibrium
points. Some saddle points and their values are given in Table 1.

x∗ y∗ f(x∗, y∗)

γ =
1
3

γ′ =
1
3

(
3
28

,
25
28

) (
13
28

,
15
28

) [
587
784

,
177
98

]

γ =
2
3

γ′ =
1
3

(
3
26

,
23
26

) (
13
28

,
15
28

) [
68
91

,
1317
728

]

γ =
1
3

γ′ =
2
3

(
3
28

,
25
28

) (
11
26

,
15
26

) [
68
91

,
1317
728

]

γ =
2
3

γ′ =
2
3

(
3
26

,
23
26

) (
11
26

,
15
26

) [
503
676

,
306
169

]

Table 1. Saddle points and their values.

5 Interval stochastic game

In this section, we formulate two person zero-sum stochastic games with interval payoffs, called
interval stochastic games, and define the saddle points under a criterion of discounted interval
gains.
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A two person interval stochastic game is determined by five objects:

{S,A, B, r, q}.

Where S = {1, 2, . . . , N} denotes the state space, A = {1, 2, . . . , m} and B = {1, 2, . . . , n} denote
the set of actions available to player 1 (maximizer) and player 2 (minimizer) respectively. An
interval-valued map r : S×A×B → C denotes interval estimate of one-step payoff function and
q = {qss′(i, j) | s, s′ ∈ S, i ∈ A, j ∈ B} is a transition law, i.e., qss′(i, j) ≥ 0 and

∑
s′∈S qss′(i, j) =

1 for s, s′ ∈ S, i ∈ A, j ∈ B.
A game is played as follows: At each time of epoch, two players observe the current state

s ∈ S of the system and players 1 and 2 independently choose actions i ∈ A and j ∈ B
respectively. Then two events happen; (i) player 1 receives an immediate payoff estimated by
the interval r(s, i, j) ∈ C and (ii) the system moves to a new state s′ ∈ S selected according to
the distribution qs·(i, j). This process is then repeated from the new state s′ ∈ S.

The sample space is the product space Ω = (S × A× B)∞ such that the projection Xt,∆A
t

and ∆B
t on the t-th factor S,A and B describe the state and the actions chooses respectively by

players 1 and 2 at the t-th time of the process (t = 1, 2, . . .). Let P(A) and P(B) be the sets of
all probability distributions on A and B respectively, i.e.,

P(A) = {x = (x1, x2, . . . , xm) | xi ≥ 0,
m∑

i=1

= 1}

and

P(B) = {y = (y1, y2, . . . , yn) | yj ≥ 0,
n∑

j=1

= 1}.

A (stationary) strategy π and σ for player 1 and 2 are sets of probability distributions
{π(·|s) | s ∈ S} ⊂ P(A) and {σ(·|s) | s ∈ S} ⊂ P(B) respectively. The sets of all stationary
strategies for player 1 and 2 will be denoted by Π and Σ. We assume that for each pair
(π, σ) ∈ Π× Σ with s, s′ ∈ S, i ∈ A, j ∈ B and t ≥ 1,

Prob{Xt+1 = s′ | X1,∆A
1 ,∆B

1 , · · · , Xt = s,∆A
t = i,∆B

t = j} = qss′(i, j),

Prob{∆A
t = i | X1,∆A

1 ,∆B
1 , · · · , Xt = s} = π(i|s)

and
Prob{∆B

t = j | X1,∆A
1 ,∆B

1 , · · · , Xt = s} = σ(j|s).
Then, the initial state s ∈ S and the pair of strategies (π, σ) ∈ Π×Σ determine the probability
measure P s

π,σ on Ω by the usual way.
Here, we consider the total expected payoff for player 1 in which the future payoff is dis-

counted with a factor β (0 < β < 1). For any pair (π, σ) ∈ Π× Σ and any starting state s ∈ S,
let

(5.1) IT (s, π, σ) =
T∑

t=1

βt−1Es
π,σ[r(Xt,∆A

t ,∆B
t )],

where Es
π,σ is the expectation with respect to P s

π,σ. Obviously, IT (s, π, σ) ∈ C.

Lemma 5.1 For any pair (π, σ) ∈ Π × Σ and any starting state s ∈ S, {IT (s, π, σ)}∞T=1 is a
Cauchy sequence with respect to the Hausdorff metric δ ∈ C.
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Proof. For any T > H, it holds from Lemma 1.1 (iii) that

δ(IT (s, π, σ),IH(s, π, σ))

= δ(0,

T∑

t=H+1

βt−1Es
π,σ[r(Xt,∆A

t ,∆B
t )])

= βHδ(0,

T∑

t=H+1

βt−H−1Es
π,σ[r(Xt,∆A

t ,∆B
t )])

≤ βH max
s∈S,i∈A,j∈B

δ(0, r(s, i, j))/(1− β).

This completes the proof. ¤

From Lemma 5.1, the infinite horizon total expected payoff for player 1 can be defined by

(5.2) I (s, π, σ) = lim
T→∞

IT (s, π, σ).

Since I (s, π, σ) ∈ C, it will be written as

(5.3) I (s, π, σ) = [I −(s, π, σ),I +(s, π, σ)].

For any pair (π, σ) ∈ Π× Σ and s ∈ S, let

I (s,Π, σ) = {I (s, π, σ) | π ∈ Π} and I (s, π, Σ) = {I (s, π, σ) | σ ∈ Σ}.
The following is easily shown by applying the idea of Borkar’s discounted occupation measure
(cf. Theorem 1.2 [3]).

Lemma 5.2 For any pair (π, σ) ∈ Π × Σ and s ∈ S, I (s,Π, σ) and I (s, π, Σ) are compact
and convex subsets of C.

Definition 1’ (cf. [20, 24]) Let (π∗, σ∗) ∈ Π× Σ and s ∈ S. Then, the pair (π∗, σ∗) is said to
be a saddle point at s ∈ S for the interval stochastic game if the following holds.

I (s, π∗, σ∗) ∈ max I (s,Π, σ∗) ∩minI (s, π∗,Σ).

6 Characterization of saddle points

In order to characterize the saddle point we introduce a parametric stochastic game.
For any gamma ∈ [0, 1], we put

(6.1) rγ(s, i, j) = γr+(s, i, j) + (1− γ)r−(s, i, j) ∈ R (s ∈ S, i ∈ A, j ∈ B),

where r− and r+ are extreme points of the interval r and r = [r−(s, i, j), r+(s, i, j)].
For any pair (π, σ) ∈ Π× Σ and s ∈ S, let

(6.2) Iγ(s, π, σ) = lim
T→∞

Iγ
T (s, π, σ),

where

Iγ
T (s, π, σ) =

T∑

t=1

βt−1Es
π,σ[rγ(Xt,∆A

t ,∆B
t )] (T ≥ 1).

Definition 2’ Let γ, γ′ ∈ [0, 1] and s ∈ S. Then, the pair (π∗, σ∗) ∈ Π × Σ is said to be a
(γ, γ′)-equilibrium point at state s ∈ S if the following (i) and (ii) hold:
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(i) Iγ
T (s, π, σ∗) ≤ Iγ

T (s, π∗, σ∗) for all π ∈ Π.

(ii) Iγ′
T (s, π∗, σ) ≥ Iγ′

T (s, π∗, σ∗) for all σ ∈ Σ.

Every finite noncooperative stochastic game has an equilibrium point (cf. [1]), so that for
any γ, γ′ ∈ [0, 1], a (γ, γ′)-equilibrium point exists. The following lemma follows obviously from
(2.2), (2.3) and (6.1).

Lemma 6.1 For any pair (π, σ) ∈ Π× Σ and s ∈ S,

Iγ(s, π, σ) = γI +(s, π, σ) + (1− γ)I −(s, π, σ).

Theorem 6.1 A pair (π∗, σ∗) ∈ Π × Σ is a saddle point at s ∈ S if and only if there exist
γ, γ′ ∈ (0, 1) such that (π∗, σ∗) is a (γ, γ′)-equilibrium point at state s ∈ S.

Proof. By Lemmas 1.2 and 6.1, that I (s, π∗, σ∗) ∈ minI (s, π∗,Σ) means that there exists
γ′ ∈ (0, 1) satisfying

γ′I +(s, π∗, σ∗) + (1− γ′)I −(s, π∗, σ∗)(6.3)
≤ γ′I +(s, π∗, σ) + (1− γ′)I −(s, π∗, σ) for all σ ∈ Σ.

By Lemma 6.1, (6.3) is rewritten to (ii) of Definition 2’. Similarly, I (s, π∗, σ∗) ∈ max I (s,Π, σ∗)
means that there exists γ ∈ (0, 1) for which (i) of Definition 2’ holds. Thus, the proof is complete.
¤

The following results easily follow from Theorem 6.1.

Corollary 6.1 If a pair (π∗, σ∗) ∈ Π×Σ is a saddle point for a zero-sum game {Iγ(s, π, σ) | π ∈
Π, σ ∈ Σ}, γ ∈ (0, 1), the pair (π∗, σ∗) is a saddle point at state s ∈ S for the interval stochastic
game.

Proof. The saddle point (π∗, σ∗) satisfies that Iγ(s, π∗, σ) ≥ Iγ(s, π∗, σ∗) ≥ Iγ(s, π, σ∗), which
implies that (π∗, σ∗) is a (γ, γ)-equilibrium point. Thus, the statement of Corollary 6.1 follows
from Theorem 6.1. ¤

Corollary 6.2 If r+(s, i, j) − r−(s, i, j) (= const.) is independent of s ∈ S, i ∈ A, j ∈ B the
saddle point (π∗, σ∗) for the interval stochastic game is uniquely determined as a saddle point
for a zero-sum game {I0(s, π, σ) | π ∈ Π, σ ∈ Σ}.

Proof. We note from (6.1) that rγ(s, i, j) = r−(s, i, j) + γ(r+(s, i, j) − r−(s, i, j)). So that if
r+(s, i, j)−r−(s, i, j) (= const.) is independent of s ∈ S, i ∈ A, j ∈ B, Iγ(s, π, σ) and Iγ′(s, π, σ)
are essentially equivalent for any γ, γ′ ∈ (0, 1). The proof is completed by observing Theorem
6.1. ¤

The following is useful in finding the saddle points for interval stochastic games.

Corollary 6.3 (cf. [22]) The pair (π∗, σ∗) ∈ Π × Σ is a saddle point at s ∈ S if and
only if there exist γ, γ′ ∈ (0, 1) such that π∗(·|s) = (xs1, xs2, . . . , xsm) ∈ P(A) and σ∗(·|s) =
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(ys1, ys2, . . . , ysn) ∈ P(B) (s ∈ S) is a part of a solution to

(6.4)





vs = νsj +
∑

i∈A

(rγ(s, i, j) + β
∑

s′∈S

qss′(i, j)vs′)xsi (s ∈ S)

v′s = µsi +
∑

j∈B

(rγ′(s, i, j) + β
∑

s′∈S

qss′(i, j)v′s′)ysj

∑

s∈S

∑

i∈A

νsixsi = 0,
∑

s∈S

∑

j∈B

µsjysj = 0

∑

i∈A

xsi = 1,
∑

j∈B

ysj = 1, (s ∈ S)

xsi ≥ 0, ysj ≥ 0 (s ∈ S, i ∈ A, j ∈ B).

7 Extensions to fuzzy payoff cases

In this section, we consider the stochastic game similar to that specified in Section 5 except that
for each s ∈ S, i ∈ A and j ∈ B the multi-dimensional fuzzy payoff r̃(s, i, j) ∈ F(Rp) is assigned.

Then, for a pair (π, σ) ∈ Π× Σ and s ∈ S, we let

(7.1) Ĩ (s, π, σ) =
∞∑

t=1

βt−1Es
π,σ[r̃(Xt,∆A

t ,∆B
t )],

where the expectation of a fuzzy random variable is defined similarly as (1.3) by use of (3.1)
and (3.2), and the convergence in (7.1) is taken with respect to the usual Hausdorff metric on
F(Rp) (cf. [4]).

We note that Ĩ (s, π, σ) ∈ F(Rp) and its α-cut Ĩ (s, π, σ)α is given by

(7.2) Ĩ (s, π, σ)α =
∞∑

t=1

βt−1Es
π,σ[r̃(Xt,∆A

t ,∆B
t )α],

where r̃(s, i, j)α is an α-cut of r̃(s, i, j) ∈ F(Rp).
The saddle point of the stochastic game with fuzzy payoff is defined similarly as that of the

interval stochastic game (see Definition 1’ in Section 5).
For any a ∈ Rp, since the product ar̃(s, i, j)α ∈ C, it will be written as

ar̃(s, i, j)α = [(ar̃(s, i, j)α)−, (ar̃(s, i, j)α)+].

For α ∈ [0, 1], d ∈ [0, 1] and a ∈ Rp, we put

(7.3) r(s, i, j|α, γ, a) = γ(ar̃(s, i, j)α)+ + (1− γ)(ar̃(s, i, j)α)−.

For each pair (π, σ) ∈ Π× Σ and s ∈ S, we define

(4.8) I(s, π, σ|α, γ, a) =
∞∑

t=1

βt−1Es
π,σ[r(Xt,∆A

t ,∆B
t |α, γ, a)].

Then, the saddle point for the stochastic game with fuzzy payoff can be characterized in the
following, whose proof is done by applying Lemma 3.1 and the idea used in Section 5.

Theorem 7.1 A pair (π∗, σ∗) ∈ Π × Σ is a saddle point for the stochastic game with fuzzy
payoffs if and only if there exist two function γ, γ′ : [0, 1]×K → (0, 1) such that

(4.9) I(s, π, σ∗|α, γ(α, a), a) ≤ I(s, π∗, σ∗|α, γ(α, a), a),

I(s, π∗, σ|α, γ′(α, a), a) ≥ I(s, π∗, σ∗|α, γ′(α, a), a)

for all π ∈ Π, σ ∈ Σ, α ∈ [0, 1] and a ∈ K+.
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