American Options with Uncertainty of the Stock Prices: The Discrete-Time Model

北九州市立大学・経済学部	吉田 祐治 (Yuji Yoshida)	
Faculty of Economics,	the Univ. of Kitakyushu	
千葉大学・理学部	安田 正實 (Masami Yasuda)	
Faculty of Science,	Chiba University	
千葉大学・理学部	中神 潤一 (Jun-ichi Nakagami)	
Faculty of Science,	Chiba University	
千葉大学・教育学部	蔵野 正美 (Masami Kurano)	
Faculty of Education,	Chiba University	

1. Introduction

A discrete-time mathematical model for American put option with uncertainty is presented, and the randomness and fuzziness are evaluated by both probabilistic expectation and λ -weighted possibilistic mean values.

2. Fuzzy stochastic processes

First we give some mathematical notations regarding fuzzy numbers. Let (Ω, \mathcal{M}, P) be a probability space, where \mathcal{M} is a σ -field and P is a non-atomic probability measure. \mathbb{R} denotes the set of all real numbers, and let $\mathcal{C}(\mathbb{R})$ be the set of all non-empty bounded closed intervals. A 'fuzzy number' is denoted by its membership function $\tilde{a} : \mathbb{R} \mapsto [0, 1]$ which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer to Zadeh [12] regarding fuzzy set theory. \mathcal{R} denotes the set of all fuzzy numbers. In this paper, we identify fuzzy numbers with its corresponding membership functions. The α -cut of a fuzzy number $\tilde{a}(\in \mathcal{R})$ is given by

$$\tilde{a}_{\alpha} := \{ x \in \mathbb{R} \mid \tilde{a}(x) \ge \alpha \} \ (\alpha \in (0,1]) \quad \text{and} \quad \tilde{a}_0 := \operatorname{cl}\{ x \in \mathbb{R} \mid \tilde{a}(x) > 0 \},\$$

where cl denotes the closure of an interval. In this paper, we write the closed intervals by

$$\tilde{a}_{\alpha} := [\tilde{a}_{\alpha}^{-}, \tilde{a}_{\alpha}^{+}] \text{ for } \alpha \in [0, 1].$$

Hence we introduce a partial order \succeq , so called the 'fuzzy max order', on fuzzy numbers \mathcal{R} : Let $\tilde{a}, \tilde{b} \in \mathcal{R}$ be fuzzy numbers.

$$\tilde{a} \succeq \tilde{b}$$
 means that $\tilde{a}_{\alpha}^{-} \ge \tilde{b}_{\alpha}^{-}$ and $\tilde{a}_{\alpha}^{+} \ge \tilde{b}_{\alpha}^{+}$ for all $\alpha \in [0, 1]$.

Then (\mathcal{R}, \succeq) becomes a lattice. For fuzzy numbers $\tilde{a}, \tilde{b} \in \mathcal{R}$, we define the maximum $\tilde{a} \lor \tilde{b}$ with respect to the fuzzy max order \succeq by the fuzzy number whose α -cuts are

$$(\tilde{a} \vee \tilde{b})_{\alpha} = [\max\{\tilde{a}_{\alpha}^{-}, \tilde{b}_{\alpha}^{-}\}, \max\{\tilde{a}_{\alpha}^{+}, \tilde{b}_{\alpha}^{+}\}], \quad \alpha \in [0, 1].$$

$$(2.1)$$

An addition, a subtraction and a scalar multiplication for fuzzy numbers are defined as follows: For $\tilde{a}, \tilde{b} \in \mathcal{R}$ and $\lambda \geq 0$, the addition and subtraction $\tilde{a} \pm \tilde{b}$ of \tilde{a} and \tilde{b} and the scalar multiplication $\lambda \tilde{a}$ of λ and \tilde{a} are fuzzy numbers given by

$$(\tilde{a} + \tilde{b})_{\alpha} := [\tilde{a}_{\alpha}^{-} + \tilde{b}_{\alpha}^{-}, \tilde{a}_{\alpha}^{+} + \tilde{b}_{\alpha}^{+}], \quad (\tilde{a} - \tilde{b})_{\alpha} := [\tilde{a}_{\alpha}^{-} - \tilde{b}_{\alpha}^{+}, \tilde{a}_{\alpha}^{+} - \tilde{b}_{\alpha}^{-}]$$

and $(\lambda \tilde{a})_{\alpha} := [\lambda \tilde{a}_{\alpha}^{-}, \lambda \tilde{a}_{\alpha}^{+}] \text{ for } \alpha \in [0, 1].$

A fuzzy-number-valued map $\tilde{X} : \Omega \mapsto \mathcal{R}$ is called a 'fuzzy random variable' if the maps $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are measurable for all $\alpha \in [0,1]$, where $\tilde{X}_{\alpha}(\omega) = [\tilde{X}_{\alpha}^{-}(\omega), \tilde{X}_{\alpha}^{+}(\omega)] = \{x \in \mathbb{R} \mid \tilde{X}(\omega)(x) \geq \alpha\}$ (see [10]). Next we need to introduce expectations of fuzzy random variables in order to describe an optimal stopping model in the next section. A fuzzy random variable \tilde{X} is called integrably bounded if both $\omega \mapsto \tilde{X}_{\alpha}^{-}(\omega)$ and $\omega \mapsto \tilde{X}_{\alpha}^{+}(\omega)$ are integrable for all $\alpha \in [0,1]$. Let \tilde{X} be an integrably bounded fuzzy random variable. The expectation $E(\tilde{X})$ of the fuzzy random variable \tilde{X} is defined by a fuzzy number (see [7])

$$E(\tilde{X})(x) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{E(\tilde{X})_{\alpha}}(x)\}, \quad x \in \mathbb{R},$$
(2.2)

where closed intervals $E(\tilde{X})_{\alpha} := \left[\int_{\Omega} \tilde{X}_{\alpha}^{-}(\omega) \, \mathrm{d}P(\omega), \int_{\Omega} \tilde{X}_{\alpha}^{+}(\omega) \, \mathrm{d}P(\omega) \right] (\alpha \in [0,1]).$

In the rest of this section, we introduce stopping times for fuzzy stochastic processes. Let T (T > 0) be an 'expiration date' and let $\mathbb{T} := \{0, 1, 2, \dots, T\}$ be the time space. Let a 'fuzzy stochastic process' $\{\tilde{X}_t\}_{t=0}^T$ be a sequence of integrably bounded fuzzy random variables such that $E(\max_{t \in \tilde{X}_{t,0}^+}) < \infty$, where $\tilde{X}_{t,0}^+(\omega)$ is the right-end of the 0-cut of the fuzzy number $\tilde{X}_t(\omega)$. For $t \in \mathbb{T}$, \mathcal{M}_t denotes the smallest σ -field on Ω generated by all random variables $\tilde{X}_{s,\alpha}^-$ and $\tilde{X}_{s,\alpha}^+$ $(s = 0, 1, 2, \dots, t; \alpha \in [0, 1])$. We call $(\tilde{X}_t, \mathcal{M}_t)_{t=0}^\infty$ a fuzzy stochastic process. A map $\tau : \Omega \mapsto \mathbb{T}$ is called a 'stopping time' if

$$\{\omega \in \Omega \mid \tau(\omega) = t\} \in \mathcal{M}_t \text{ for all } t = 0, 1, 2, \cdots, T.$$

Then, the following lemma is trivial from the definitions ([11]).

Lemma 2.1. Let τ be a stopping time. We define

$$\tilde{X}_{\tau}(\omega) := \tilde{X}_t(\omega) \quad \text{if } \tau(\omega) = t \quad \text{for } t = 0, 1, 2, \cdots, T \text{ and } \omega \in \Omega.$$

Then, \tilde{X}_{τ} is a fuzzy random variable.

3. American put option with uncertainty of stock prices

In this section, we formulate American put option with uncertainty of stock prices by fuzzy random variables. Let $\mathbb{T} := \{0, 1, 2, \dots, T\}$ be the time space with an expiration date T (T > 0) similarly to the previous section, and take a probability space $\Omega := \mathbb{R}^{T+1}$. Let r (r > 0) be an interest rate of a bond price, which is riskless asset, and put a discount rate $\beta = 1/(1+r)$. Define a 'stock price process' $\{S_t\}_{t=0}^T$ as follows: An initial stock price S_0 is a positive constant and stock prices are given by

$$S_t := S_0 \prod_{s=1}^t (1+Y_s) \text{ for } t = 1, 2, \cdots, T,$$
 (3.1)

where $\{Y_t\}_{t=1}^T$ is a uniform integrable sequence of independent, identically distributed real random variables on [r-1, r+1] such that $E(Y_t) = r$ for all $t = 1, 2, \dots, T$. The σ -fields $\{\mathcal{M}_t\}_{t=0}^T$ are defined as follows: \mathcal{M}_0 is the completion of $\{\emptyset, \Omega\}$ and $\mathcal{M}_t(t = 1, 2, \dots, T)$ denote the complete σ -fields generated by $\{Y_1, Y_2 \cdots Y_t\}$.

We consider a finance model where the stock price process $\{S_t\}_{t=0}^T$ takes fuzzy values. Now we give fuzzy values by triangular fuzzy numbers for simplicity. Let $\{a_t\}_{t=0}^T$ be an \mathcal{M}_t -adapted stochastic process such that $0 < a_t(\omega) \leq S_t(\omega)$ for $\omega \in \Omega$. A 'stock price process with fuzzy values' are represented by a sequence of fuzzy random variables $\{\tilde{S}_t\}_{t=0}^T$:

$$\tilde{S}_t(\omega)(x) := L((x - S_t(\omega))/a_t(\omega))$$
(3.2)

for $t \in \mathbb{T}$, $\omega \in \Omega$ and $x \in \mathbb{R}$, where $L(x) := \max\{1 - |x|, 0\}$ $(x \in \mathbb{R})$ is the triangle shape function. Hence, $a_t(\omega)$ is a spread of triangular fuzzy numbers $\tilde{S}_t(\omega)$ and corresponds to the amount of fuzziness in the process. Then, $a_t(\omega)$ should be an increasing function of the stock price $S_t(\omega)$ (see Assumption S in the next section).

Let K (K > 0) be a 'strike price'. The 'price process' $\{\tilde{P}_t\}_{t=0}^T$ of American put option under uncertainty is represented by

$$\tilde{P}_t(\omega) := \beta^t (1_{\{K\}} - \tilde{S}_t(\omega)) \vee 1_{\{0\}} \quad \text{for } t = 0, 1, 2, \cdots, T,$$
(3.3)

where \vee is given by (2.1), and $1_{\{K\}}$ and $1_{\{0\}}$ denote the crisp number K and zero respectively. An 'exercise time' in American put option is given by a stopping time τ with values in \mathbb{T} . For an exercise time τ , we define

$$\tilde{P}_{\tau}(\omega) := \tilde{P}_{t}(\omega) \quad \text{if } \tau(\omega) = t \quad \text{for } t = 0, 1, 2, \cdots, T, \text{ and } \omega \in \Omega.$$
(3.4)

Then, from Lemma 2.1, \tilde{P}_{τ} is a fuzzy random variable. The expectation of the fuzzy random variable \tilde{P}_{τ} is a fuzzy number(see (2.2))

$$E(\tilde{P}_{\tau})(x) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{E(\tilde{P}_{\tau})_{\alpha}}(x)\}, \quad x \in \mathbb{R},$$
(3.5)

where $E(\tilde{P}_{\tau})_{\alpha} = \left[\int_{\Omega} \tilde{P}_{\tau,\alpha}^{-}(\omega) \,\mathrm{d}P(\omega), \int_{\Omega} \tilde{P}_{\tau,\alpha}^{+}(\omega) \,\mathrm{d}P(\omega)\right]$. In American put option, we must maximize the expected values (3.5) of the price process by stopping times τ , and we need to evaluate the fuzzy numbers (3.5) since the fuzzy max order (2.1) on \mathcal{R} is a partial order and not a linear order. In this paper, we consider the following estimation regarding the price process $\{\tilde{P}_t\}_{t=0}^T$ of American put option. Let $g: \mathcal{C}(\mathbb{R}) \mapsto \mathbb{R}$ be a map such that

$$g([x,y]) := \lambda x + (1-\lambda)y, \quad [x,y] \in \mathcal{C}(\mathbb{R}), \tag{3.6}$$

where λ is a constant satisfying $0 \leq \lambda \leq 1$. This scalarization is used for the evaluation of fuzzy numbers, and λ is called a 'pessimistic-optimistic index' and means the pessimistic degree in decision making. We call g a ' λ -weighting function' and we evaluate fuzzy numbers \tilde{a} by " λ -weighted possibilistic mean value'

$$\int_0^1 2\alpha g(\tilde{a}_\alpha) \,\mathrm{d}\alpha,\tag{3.7}$$

where \tilde{a}_{α} is the α -cut of fuzzy numbers \tilde{a} . (see Carlsson and Fullér [1], Goetshel and Voxman [4]) When we apply a λ -weighting function g to (3.5), its evaluation follows

$$\int_0^1 2\alpha g(E(\tilde{P}_{\tau})_{\alpha}) \,\mathrm{d}\alpha. \tag{3.8}$$

Now we analyze (3.8) by α -cuts technique of fuzzy numbers. The α -cuts of fuzzy random variables (3.2) are

$$\tilde{S}_{t,\alpha}(\omega) = [S_t(\omega) - (1 - \alpha)a_t(\omega), S_t(\omega) + (1 - \alpha)a_t(\omega)], \quad \omega \in \Omega,$$
(3.9)

and so

$$\tilde{S}_{t,\alpha}^{\pm}(\omega) = S_t(\omega) \pm (1-\alpha)a_t(\omega), \quad \omega \in \Omega$$
(3.10)

for $t \in \mathbb{T}$ and $\alpha \in [0, 1]$. Therefore, the α -cuts of (3.3) are

$$\tilde{P}_{t,\alpha}(\omega) = [\tilde{P}_{t,\alpha}^{-}(\omega), \tilde{P}_{t,\alpha}^{+}(\omega)] := [\beta^{t} \max\{K - \tilde{S}_{t,\alpha}^{+}(\omega), 0\}, \beta^{t} \max\{K - \tilde{S}_{t,\alpha}^{-}(\omega), 0\}], \quad (3.11)$$

and we obtain $E(\max_{t\in} \sup_{\alpha\in[0,1]} \tilde{P}_{t,\alpha}^+) \leq K < \infty$ since $\tilde{S}_{t,\alpha}^-(\omega) \geq 0$, where $E(\cdot)$ is the expectation with respect to some risk-neutral equivalent martingale measure([2],[6]). For a stopping time τ , the expectation of the fuzzy random variable \tilde{P}_{τ} is a fuzzy number whose α -cut is a closed interval

$$E(\tilde{P}_{\tau})_{\alpha} = E(\tilde{P}_{\tau,\alpha}) = [E(\tilde{P}_{\tau,\alpha}^{-}), E(\tilde{P}_{\tau,\alpha}^{+})] \quad \text{for } \alpha \in [0,1],$$
(3.12)

where $\tilde{P}_{\tau(\omega),\alpha}(\omega) = [\tilde{P}^{-}_{\tau(\omega),\alpha}(\omega), \tilde{P}^{+}_{\tau(\omega),\alpha}(\omega)]$ is the α -cut of fuzzy number $\tilde{P}_{\tau}(\omega)$. Using the λ -weighting function g, from (3.7) the evaluation of the fuzzy random variable \tilde{P}_{τ} is given by the integral

$$\int_0^1 2\alpha g(E(\tilde{P}_{\tau,\alpha})) \,\mathrm{d}\alpha. \tag{3.13}$$

Put the value by $P(\tau)$. Then, from (2.2), the terms (3.8) and (3.13) coincide:

$$\boldsymbol{P}(\tau) = \int_0^1 2\alpha g(E(\tilde{P}_{\tau,\alpha})) \,\mathrm{d}\alpha = \int_0^1 2\alpha g(E(\tilde{P}_{\tau})_{\alpha}) \,\mathrm{d}\alpha.$$
(3.14)

Therefore $P(\tau)$ means an evaluation of the expected price of American put option when τ is an exercise time. Further, we have the following equality.

Lemma 3.1. For a stopping time τ ($\tau \leq T$), it holds that

$$\boldsymbol{P}(\tau) = \int_0^1 2\alpha g(E(\tilde{P}_{\tau,\alpha})) \, d\alpha = \int_0^1 2\alpha E(g(\tilde{P}_{\tau,\alpha})) \, d\alpha = E\left(\int_0^1 2\alpha g(\tilde{P}_{\tau,\alpha}(\cdot)) \, d\alpha\right). \quad (3.15)$$

We put the 'optimal expected price' by

$$\boldsymbol{V} := \sup_{\tau:\tau \leq T} \boldsymbol{P}(\tau) = \sup_{\tau:\tau \leq T} \int_0^1 2\alpha g(E(\tilde{P}_{\tau,\alpha})) \,\mathrm{d}\alpha.$$
(3.16)

In the next section, this paper discusses the following optimal stopping problem regarding American put option with fuzziness.

Problem P. Find a stopping time $\tau^*(\tau^* \leq T)$ and the optimal expected price V such that

$$\boldsymbol{P}(\tau^*) = \boldsymbol{V},\tag{3.17}$$

where V is given by (3.16).

Then, τ^* is called an 'optimal exercise time'.

4. The optimal expected price and the optimal exercise time

In this section, we discuss the optimal fuzzy price V and the optimal exercise time τ^* , by using dynamic programming approach. Now we introduce an assumption.

Assumption S. The stochastic process $\{a_t\}_{t=0}^T$ is represented by

$$a_t(\omega) := cS_t(\omega), \quad t = 0, 1, 2, \cdots, T, \ \omega \in \Omega,$$

where c is a constant satisfying 0 < c < 1.

Assumption S is reasonable since $a_t(\omega)$ means a size of fuzziness and it should depend on the volatility and the stock price $S_t(\omega)$ because one of the most difficulties is estimation of the actual volatility ([8, Sect.7.5.1]). In this model, we represent by c the fuzziness of the volatility, and we call c a 'fuzzy factor' of the process. From now on, we suppose that Assumption S holds. For a stopping time τ ($\tau \leq T$), we define a random variable

$$\Pi_{\tau}(\omega) := \int_{0}^{1} 2\alpha g(\tilde{P}_{\tau,\alpha}(\omega)) \,\mathrm{d}\alpha, \quad \omega \in \Omega.$$
(4.1)

From Lemma 3.1, $\mathbf{P}(\tau) = E(\Pi_{\tau})$ is the evaluated price of American put option when τ is an exercise time. Then we have the following representation about (4.1).

Lemma 4.1. For a stopping time τ ($\tau \leq T$), it holds that

$$\Pi_{\tau}(\omega) = \beta^{\tau(\omega)} f^P(S_{\tau}(\omega)), \quad \omega \in \Omega,$$
(4.2)

where f^P is a function on $(0,\infty)$ such that

$$f^{P}(y) := \begin{cases} K - y - \frac{1}{3}cy(2\lambda - 1) + \lambda\varphi^{1}(y) & \text{if } 0 < y < K\\ (1 - \lambda)\varphi^{2}(y) & \text{if } y \ge K, \end{cases}$$

$$(4.3)$$

and

$$\varphi^{1}(y) := \frac{1}{(cy)^{2}} \left((-K + y + cy) \max\{0, -K + y + cy\}^{2} - \frac{2}{3} \max\{0, -K + y + cy\}^{3} \right), \quad y > 0,$$
(4.4)

$$\varphi^{2}(y) := \frac{1}{(cy)^{2}} ((K - y + cy) \max\{0, K - y + cy\}^{2} - \frac{2}{3} \max\{0, K - y + cy\}^{3}), \quad y > 0.$$
(4.5)

Now we give an optimal stopping time for Problem P and we discuss an iterative method to obtain the optimal expected price V in (3.16). To analyze the optimal fuzzy price V, we put

$$\boldsymbol{V}_t^P(y) = \sup_{\tau: t \le \tau \le T} E(\beta^{-t} \Pi_\tau | S_t = y)$$
(4.6)

for $t = 0, 1, 2, \dots, T$ and an initial stock price y (y > 0). Then we note that $\mathbf{V} = \mathbf{V}_0^P(y)$.

Theorem 4.1 (Optimality equation).

(i) The optimal expected price $\mathbf{V} = \mathbf{V}_0^P(y)$ with an initial stock price $y \ (y > 0)$ is given by the following backward recursive equations (4.7) and (4.8):

$$\boldsymbol{V}_{t}^{P}(y) = \max\{\beta E(\boldsymbol{V}_{t+1}^{P}(y(1+Y_{1}))), f^{P}(y)\}, \quad t = 0, 1, \cdots, T-1, \ y > 0, \quad (4.7)$$

$$V_T^P(y) = f^P(y), \quad y > 0.$$
 (4.8)

(ii) Define a stopping time

$$\tau^{P}(\omega) := \inf\{t \in \mathbb{T} \mid \boldsymbol{V}_{0}^{P}(S_{t}(\omega)) = f^{P}(S_{t}(\omega))\}, \quad \omega \in \Omega,$$
(4.9)

where the infimum of the empty set is understood to be T. Then, τ^P is an optimal exercise time for Problem P, and the optimal value of American put option is

$$\boldsymbol{V} = \boldsymbol{V}_0^P(y) = \boldsymbol{P}(\tau^P) \tag{4.10}$$

for an initial stock price y > 0.

5. A numerical example

Now we give a numerica example to illustrate our idea in Sections 3 and 4.

Example 5.1. We consider CRR type American put option model (see Ross [8, Sect.7.4]). Put an expiration date T = 10, an interest rate of a bond r = 0.05, a fuzzy factor c = 0.05, an initial stock price y = 30 and a strike price K = 35. Assume that

 $\{Y_t\}_{t=1}^T$ is a uniform sequence of independent, identically distributed real random variables such that

$$Y_t := \begin{cases} e^{\sigma} - 1 & \text{with probability } p \\ e^{-\sigma} - 1 & \text{with probability } (1 - p) \end{cases}$$

for all $t = 1, 2, \dots, T$, where $\sigma = 0.25$ and $p = (1 + r - e^{-\sigma})/(e^{\sigma} - e^{-\sigma})$. Then we have $E(Y_t) = r$. The corresponding optimal exercise time is given by

$$\tau^{P}(\omega) = \inf\{t \in \mathbb{T} \mid \boldsymbol{V}_{0}^{P}(S_{t}(\omega)) = f^{P}(S_{t}(\omega))\}.$$

In the following Table, the optimal expected price $\mathbf{V} = \mathbf{V}_0^P(y)$ at initial stock price y = 30 changes with the pessimistic-optimistic index λ of the λ -weighting function g.

Table. The optimal expected price $= {}_{0}^{P}(y)$ at initial stock prices y = 30.

λ	1/3	1/2	2/3
V	7.48169	7.39649	7.31130

References

- C.Carlsson and R.Fullér, On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems 122 (2001) 315-326.
- [2] R.J.Elliott and P.E.Kopp Mathematics of Financial Markets (Springer, New York, 1999).
- [3] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area compensation, *Fuzzy Sets and Systems* 82 (1996) 319-330.
- [4] R.Goetshel and W.Voxman, Elementary fuzzy calculus, *Fuzzy Sets and Systems* 18 (1986) 31-43.
- [5] J.Neveu, Discrete-Parameter Martingales (North-Holland, New York, 1975).
- [6] S.R.Pliska Introduction to Mathematical Finance: Discrete-Time Models (Blackwell Publ., New York, 1997).
- [7] M.L.Puri and D.A.Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409-422.
- [8] S.M.Ross, An Introduction to Mathematical Finance (Cambridge Univ. Press, Cambridge, 1999).
- [9] A.N.Shiryayev, Optimal Stopping Rules (Springer, New York, 1979).
- [10] G.Wang and Y.Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992) 161-178.
- [11] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, Optimal stopping problems in a stochastic and fuzzy system, J. Math. Analy. and Appl. 246 (2000) 135-149.
- [12] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.