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1. Introduction

A discrete-time mathematical model for American put option with uncertainty is pre-

sented, and the randomness and fuzziness are evaluated by both probabilistic expectation

and λ-weighted possibilistic mean values.

2. Fuzzy stochastic processes

First we give some mathematical notations regarding fuzzy numbers. Let (Ω,M, P ) be

a probability space, where M is a σ-field and P is a non-atomic probability measure. R

denotes the set of all real numbers, and let C(R) be the set of all non-empty bounded

closed intervals. A ‘fuzzy number’ is denoted by its membership function ã : R �→ [0, 1]

which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer

to Zadeh [12] regarding fuzzy set theory. R denotes the set of all fuzzy numbers. In

this paper, we identify fuzzy numbers with its corresponding membership functions. The

α-cut of a fuzzy number ã(∈ R) is given by

ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0},

where cl denotes the closure of an interval. In this paper, we write the closed intervals by

ãα := [ã−
α , ã+

α ] for α ∈ [0, 1].

Hence we introduce a partial order �, so called the ‘fuzzy max order’, on fuzzy numbers

R: Let ã, b̃ ∈ R be fuzzy numbers.

ã � b̃ means that ã−
α ≥ b̃−α and ã+

α ≥ b̃+
α for all α ∈ [0, 1].

Then (R,�) becomes a lattice. For fuzzy numbers ã, b̃ ∈ R, we define the maximum ã∨ b̃

with respect to the fuzzy max order � by the fuzzy number whose α-cuts are

(ã ∨ b̃)α = [max{ã−
α , b̃−α}, max{ã+

α , b̃+
α}], α ∈ [0, 1]. (2.1)
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An addition, a subtraction and a scalar multiplication for fuzzy numbers are defined as

follows: For ã, b̃ ∈ R and λ ≥ 0, the addition and subtraction ã ± b̃ of ã and b̃ and the

scalar multiplication λã of λ and ã are fuzzy numbers given by

(ã + b̃)α := [ã−
α + b̃−α , ã+

α + b̃+
α ], (ã − b̃)α := [ã−

α − b̃+
α , ã+

α − b̃−α ]

and (λã)α := [λã−
α , λã+

α ] for α ∈ [0, 1].

A fuzzy-number-valued map X̃ : Ω �→ R is called a ‘fuzzy random variable’ if the

maps ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are measurable for all α ∈ [0, 1], where X̃α(ω) =

[X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥ α} (see [10]). Next we need to introduce

expectations of fuzzy random variables in order to describe an optimal stopping model

in the next section. A fuzzy random variable X̃ is called integrably bounded if both

ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are integrable for all α ∈ [0, 1]. Let X̃ be an integrably

bounded fuzzy random variable. The expectation E(X̃) of the fuzzy random variable X̃

is defined by a fuzzy number (see [7])

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R, (2.2)

where closed intervals E(X̃)α :=
[∫

Ω
X̃−

α (ω) dP (ω),
∫
Ω

X̃+
α (ω) dP (ω)

]
(α ∈ [0, 1]).

In the rest of this section, we introduce stopping times for fuzzy stochastic processes.

Let T (T > 0) be an ‘expiration date’ and let T := {0, 1, 2, · · · , T} be the time space. Let

a ‘fuzzy stochastic process’ {X̃t}T
t=0 be a sequence of integrably bounded fuzzy random

variables such that E(maxt∈ X̃+
t,0) < ∞, where X̃+

t,0(ω) is the right-end of the 0-cut of

the fuzzy number X̃t(ω). For t ∈ T, Mt denotes the smallest σ-field on Ω generated by

all random variables X̃−
s,α and X̃+

s,α (s = 0, 1, 2, · · · , t; α ∈ [0, 1]). We call (X̃t,Mt)
∞
t=0 a

fuzzy stochastic process. A map τ : Ω �→ T is called a ‘stopping time’ if

{ω ∈ Ω | τ (ω) = t} ∈ Mt for all t = 0, 1, 2, · · · , T.

Then, the following lemma is trivial from the definitions ([11]).

Lemma 2.1. Let τ be a stopping time. We define

X̃τ (ω) := X̃t(ω) if τ (ω) = t for t = 0, 1, 2, · · · , T and ω ∈ Ω.

Then, X̃τ is a fuzzy random variable.

3. American put option with uncertainty of stock prices

In this section, we formulate American put option with uncertainty of stock prices by

fuzzy random variables. Let T := {0, 1, 2, · · · , T} be the time space with an expiration

date T (T > 0) similarly to the previous section, and take a probability space Ω := R
T+1.

Let r (r > 0) be an interest rate of a bond price, which is riskless asset, and put a discount
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rate β = 1/(1+ r). Define a ‘stock price process’ {St}T
t=0 as follows: An initial stock price

S0 is a positive constant and stock prices are given by

St := S0

t∏
s=1

(1 + Ys) for t = 1, 2, · · · , T, (3.1)

where {Yt}T
t=1 is a uniform integrable sequence of independent, identically distributed real

random variables on [r − 1, r + 1] such that E(Yt) = r for all t = 1, 2, · · · , T . The σ-fields

{Mt}T
t=0 are defined as follows: M0 is the completion of {∅, Ω} and Mt(t = 1, 2, · · · , T )

denote the complete σ-fields generated by {Y1, Y2 · · ·Yt}.
We consider a finance model where the stock price process {St}T

t=0 takes fuzzy values.

Now we give fuzzy values by triangular fuzzy numbers for simplicity. Let {at}T
t=0 be an

Mt-adapted stochastic process such that 0 < at(ω) ≤ St(ω) for ω ∈ Ω. A ‘stock price

process with fuzzy values’ are represented by a sequence of fuzzy random variables {S̃t}T
t=0:

S̃t(ω)(x) := L((x − St(ω))/at(ω)) (3.2)

for t ∈ T, ω ∈ Ω and x ∈ R, where L(x) := max{1 − |x|, 0} (x ∈ R) is the triangle shape

function. Hence, at(ω) is a spread of triangular fuzzy numbers S̃t(ω) and corresponds to

the amount of fuzziness in the process. Then, at(ω) should be an increasing function of

the stock price St(ω) (see Assumption S in the next section).

Let K (K > 0) be a ‘strike price’. The ‘price process’ {P̃t}T
t=0 of American put option

under uncertainty is represented by

P̃t(ω) := βt(1{K} − S̃t(ω)) ∨ 1{0} for t = 0, 1, 2, · · · , T, (3.3)

where ∨ is given by (2.1), and 1{K} and 1{0} denote the crisp number K and zero re-

spectively. An ‘exercise time’ in American put option is given by a stopping time τ with

values in T. For an exercise time τ , we define

P̃τ (ω) := P̃t(ω) if τ (ω) = t for t = 0, 1, 2, · · · , T, and ω ∈ Ω. (3.4)

Then, from Lemma 2.1, P̃τ is a fuzzy random variable. The expectation of the fuzzy

random variable P̃τ is a fuzzy number(see (2.2))

E(P̃τ )(x) := sup
α∈[0,1]

min{α, 1E(P̃τ )α
(x)}, x ∈ R, (3.5)

where E(P̃τ )α =
[∫

Ω
P̃−

τ,α(ω) dP (ω),
∫

Ω
P̃+

τ,α(ω) dP (ω)
]
. In American put option, we must

maximize the expected values (3.5) of the price process by stopping times τ , and we need

to evaluate the fuzzy numbers (3.5) since the fuzzy max order (2.1) on R is a partial order

and not a linear order. In this paper, we consider the following estimation regarding the

price process {P̃t}T
t=0 of American put option. Let g : C(R) �→ R be a map such that

g([x, y]) := λx + (1 − λ)y, [x, y] ∈ C(R), (3.6)
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where λ is a constant satisfying 0 ≤ λ ≤ 1. This scalarization is used for the evaluation of

fuzzy numbers, and λ is called a ‘pessimistic-optimistic index’ and means the pessimistic

degree in decision making. We call g a ‘λ-weighting function’ and we evaluate fuzzy

numbers ã by “λ-weighted possibilistic mean value’

∫ 1

0

2αg(ãα) dα, (3.7)

where ãα is the α-cut of fuzzy numbers ã. (see Carlsson and Fullér [1], Goetshel and

Voxman [4]) When we apply a λ-weighting function g to (3.5), its evaluation follows

∫ 1

0

2αg(E(P̃τ )α) dα. (3.8)

Now we analyze (3.8) by α-cuts technique of fuzzy numbers. The α-cuts of fuzzy

random variables (3.2) are

S̃t,α(ω) = [St(ω) − (1 − α)at(ω), St(ω) + (1 − α)at(ω)], ω ∈ Ω, (3.9)

and so

S̃±
t,α(ω) = St(ω) ± (1 − α)at(ω), ω ∈ Ω (3.10)

for t ∈ T and α ∈ [0, 1]. Therefore, the α-cuts of (3.3) are

P̃t,α(ω) = [P̃−
t,α(ω), P̃+

t,α(ω)] := [β t max{K − S̃+
t,α(ω), 0}, βt max{K − S̃−

t,α(ω), 0}], (3.11)

and we obtain E(maxt∈ supα∈[0,1] P̃
+
t,α) ≤ K < ∞ since S̃−

t,α(ω) ≥ 0, where E(·) is the

expectation with respect to some risk-neutral equivalent martingale measure([2],[6]). For

a stopping time τ , the expectation of the fuzzy random variable P̃τ is a fuzzy number

whose α-cut is a closed interval

E(P̃τ )α = E(P̃τ,α) = [E(P̃−
τ,α), E(P̃+

τ,α)] for α ∈ [0, 1], (3.12)

where P̃τ (ω),α(ω) = [P̃−
τ (ω),α(ω), P̃+

τ (ω),α(ω)] is the α-cut of fuzzy number P̃τ (ω). Using the

λ-weighting function g, from (3.7) the evaluation of the fuzzy random variable P̃τ is given

by the integral ∫ 1

0

2αg(E(P̃τ,α)) dα. (3.13)

Put the value by P (τ ). Then, from (2.2), the terms (3.8) and (3.13) coincide:

P (τ ) =

∫ 1

0

2αg(E(P̃τ,α)) dα =

∫ 1

0

2αg(E(P̃τ )α) dα. (3.14)

Therefore P (τ ) means an evaluation of the expected price of American put option when

τ is an exercise time. Further, we have the following equality.
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Lemma 3.1. For a stopping time τ (τ ≤ T ), it holds that

P (τ ) =

∫ 1

0

2αg(E(P̃τ,α))dα =

∫ 1

0

2αE(g(P̃τ,α))dα = E

(∫ 1

0

2αg(P̃τ,α(·)) dα

)
. (3.15)

We put the ‘optimal expected price’ by

V := sup
τ :τ≤T

P (τ ) = sup
τ :τ≤T

∫ 1

0

2αg(E(P̃τ,α)) dα. (3.16)

In the next section, this paper discusses the following optimal stopping problem regarding

American put option with fuzziness.

Problem P. Find a stopping time τ ∗(τ ∗ ≤ T ) and the optimal expected price V such

that

P (τ ∗) = V , (3.17)

where V is given by (3.16).

Then, τ ∗ is called an ‘optimal exercise time’.

4. The optimal expected price and the optimal exercise time

In this section, we discuss the optimal fuzzy price V and the optimal exercise time τ ∗, by

using dynamic programming approach. Now we introduce an assumption.

Assumption S. The stochastic process {at}T
t=0 is represented by

at(ω) := cSt(ω), t = 0, 1, 2, · · · , T, ω ∈ Ω,

where c is a constant satisfying 0 < c < 1.

Assumption S is reasonable since at(ω) means a size of fuzziness and it should depend

on the volatility and the stock price St(ω) because one of the most difficulties is estimation

of the actual volatility ([8, Sect.7.5.1]). In this model, we represent by c the fuzziness of

the volatility, and we call c a ‘fuzzy factor’ of the process. From now on, we suppose that

Assumption S holds. For a stopping time τ (τ ≤ T ), we define a random variable

Πτ (ω) :=

∫ 1

0

2αg(P̃τ,α(ω)) dα, ω ∈ Ω. (4.1)

From Lemma 3.1, P (τ ) = E(Πτ) is the evaluated price of American put option when τ

is an exercise time. Then we have the following representation about (4.1).

Lemma 4.1. For a stopping time τ (τ ≤ T ), it holds that

Πτ (ω) = βτ (ω)fP (Sτ (ω)), ω ∈ Ω, (4.2)
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where fP is a function on (0,∞) such that

fP (y) :=

{
K − y − 1

3
cy(2λ − 1) + λϕ1(y) if 0 < y < K

(1 − λ)ϕ2(y) if y ≥ K,
(4.3)

and

ϕ1(y) :=
1

(cy)2
((−K + y + cy)max{0,−K + y + cy}2 − 2

3
max{0,−K + y + cy}3), y > 0,

(4.4)

ϕ2(y) :=
1

(cy)2
((K−y+cy)max{0,K−y+cy}2− 2

3
max{0, K−y+cy}3), y > 0. (4.5)

Now we give an optimal stopping time for Problem P and we discuss an iterative

method to obtain the optimal expected price V in (3.16). To analyze the optimal fuzzy

price V , we put

V P
t (y) = sup

τ : t≤τ≤T
E(β−tΠτ |St = y) (4.6)

for t = 0, 1, 2, · · · , T and an initial stock price y (y > 0). Then we note that V = V P
0 (y).

Theorem 4.1 (Optimality equation).

(i) The optimal expected price V = V P
0 (y) with an initial stock price y (y > 0) is given

by the following backward recursive equations (4.7) and (4.8):

V P
t (y) = max{βE(V P

t+1(y(1 + Y1))), f
P (y)}, t = 0, 1, · · · , T − 1, y > 0, (4.7)

V P
T (y) = fP (y), y > 0. (4.8)

(ii) Define a stopping time

τP (ω) := inf{t ∈ T | V P
0 (St(ω)) = fP (St(ω))}, ω ∈ Ω, (4.9)

where the infimum of the empty set is understood to be T . Then, τP is an optimal

exercise time for Problem P, and the optimal value of American put option is

V = V P
0 (y) = P (τP ) (4.10)

for an initial stock price y > 0.

5. A numerical example

Now we give a numerica example to illustrate our idea in Sections 3 and 4.

Example 5.1. We consider CRR type American put option model (see Ross [8,

Sect.7.4]). Put an expiration date T = 10, an interest rate of a bond r = 0.05, a fuzzy

factor c = 0.05, an initial stock price y = 30 and a strike price K = 35. Assume that
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{Yt}T
t=1 is a uniform sequence of independent, identically distributed real random variables

such that

Yt :=

{
eσ − 1 with probability p
e−σ − 1 with probability (1 − p)

for all t = 1, 2, · · · , T , where σ = 0.25 and p = (1 + r − e−σ)/(eσ − e−σ). Then we have

E(Yt) = r. The corresponding optimal exercise time is given by

τP (ω) = inf{t ∈ T | V P
0 (St(ω)) = fP (St(ω))}.

In the following Table, the optimal expected price V = V P
0 (y) at initial stock price y = 30

changes with the pessimistic-optimistic index λ of the λ-weighting function g.

Table. The optimal expected price = P
0 (y) at initial stock prices y = 30.

λ 1/3 1/2 2/3
V 7.48169 7.39649 7.31130
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