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Abstract

We consider a constrained regret-optimization problem for semi-Markov deci-
sion processes. The expected regret-utility of the total reward is minimized subject
to multiple expected regrete-utility constraints and the planning horizon is a reach-
ing time to a given absorbing subset. By introducing a corresponding Lagrange
function, a saddle-point theorem is proved. The existence of a constrained optimal
policy is characterized by optimal action sets specified with a parametric utility.

Keywords:Semi-Markov decision process; Utility constraint; Lagrange technique;
Saddle point; Optimal policy.

1 Introduction and notation

In decision making, it may be more approciate to evaluate each decision or policy
under a regret-optimality criterion. Inour previous work[12], we had considered the
general regret-constraint problem for absorbing semi-Markov decision processes(semi-
MDP’s), in which the expected utility of the total reward earned until the stopping time
is minimized. Its regret-optimal policy is characterized by the corresponding optimality
equation.

In this paper, we treat the constrained optimization problem for the same model
as [12]. However, it often occurs, in a social life or in a business that that we should
maxmimize the reward under several utility functions. For example, in the group de-
cision making with different utility functions each player would like to maximize own
specified utility function. In such a case, not only one type of expected utility but
keeping other types higher than some given bound.

Here, we consider the constrained regret-optimization problem for semi-MDPs in
which the expected regret-utility of the total reward earned until the reaching time
to a given absorbing subset is minimized subject to multiple expected regret-utility
constraints and the objectives is to show that the Lagrange approach to the utility-
constraints case is made successfully. In fact, by introducing a corresponding Lagrange
function, a saddle point theorem is obtained and the existence of a constrained optimal
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policy had proved. Also a constrained optimal policy is characterized by optimal action
sets specified tih a paremtric utility.

Similar to the previous work[12], we do not restrict the type of regret-utility func-
tions and it is expected to enlarge the practical application of the optimization problem.
Fro the utility discussions for MDPs and constrained MDPs, refer to [5, 6, 8, 11, 13]
and their references. In remainder of this section, a constrained regret-utility optimiza-
tio problem is formulated under the absorbing semi-MDPs model.

A semi-MDP is specified by the next five components:
(i) a countable state space:S= {0, 1, 2, · · ·},

(ii) a finite action space:A = {1, 2, · · · ,m},m< ∞,

(iii) a transition probability distribution:{(pi j (a); j ∈ S) | i ∈ S,a∈ A},
(iv) a distribution function{Fi j (·|a) | i, j ∈ S, a∈ A} of the time between transitions,

(v) an immediate rewardr and a reward rated which are functions fromS×A to R+,
whereR+ = [0, ∞).

When the system is in statei ∈ S and actiona ∈ A is taken, then it moves to a
new statej ∈ S with the sojourn timeτ, and the rewardr(i, a)+ d(i, a)τ is obtained,
where the new statej and the sojourn timeτ are distributed withpi·(a) andFi j (·|a)
respectively. This process is repeated from the new statej ∈ S.

The sample space is the product spaceΩ = (S×A×R+)∞. Let Xn, ∆n andτn+1 be
random quantities such thatXn(ω) = xn, ∆n(ω) = an andτn+1(ω) = tn+1 for all ω =
(x0, a0, t1, x1, a1, t2, · · ·) ∈ Ω andn = 0, 1, 2, · · · . Let Hn = (X0,∆0,τ1, · · · ,Xn) be a
history until timen. A policy π = (π0, π1, · · ·) is a sequence of conditional probabilities
πn = πn(· | Hn) such thatπn(A | Hn) = 1 for all historiesHn ∈ (S×A×R+)n×S. The
set of all policies is denoted byΠ. A policy π = (π0, π1, · · ·) is called stationary if
there exists a functionf : S→ A such thatπn({ f (Xn)} | Hn) = 1 for all n≥ 0 and
Hn ∈ (S×A×R+)n×S. Such a policy is denoted byf ∞.

For anyπ ∈Π, we assume that

(i) Prob(Xn+1 = j| X0, ∆0, τ1, · · · ,Xn = i, ∆n = a) = pi j (a)
(ii) Prob(τn+1 ≤ t| X0, ∆0, τ1, · · · ,Xn = i, ∆n = a, Xn+1 = j) = Fi j (t|a)

for all n≥ 0, i, j ∈ Sanda∈ A.

For any Borel setD, we denote byP(D) the set of all probility measures onD. From
(i) and (ii), we can define the probability measurePν

π ∈P(Ω) with an initial distribution
ν ∈ P(S) viz. Prob(X0 = i) = ν(i), i ∈ Sandπ ∈Π.

For any subsetJ0 ⊂ S, called as absorbing set, let

N := min{n > 0|Xn ∈ J0},wheremin /0 = ∞. (1.1)

The present value{D̃` : ` = 1,2, · · ·} and the total lapsed time{τ̃` : ` = 1,2, · · ·} of the
process{Xn, ∆n, τn+1 : n = 0, 1, 2, · · ·} until the`-th time are defined respectively by

D̃` := ∑`−1
n=0 (r(Xn, ∆n)+ τn+1d(Xn, ∆n)) and

τ̃` := ∑`
n=1 τn, (`≥ 1).

(1.2)

Let G,Hi(i = 1,2, · · · ,k) : R+×R+ → R be Borel-measurable function, which will be
called regret-utility functions as describing the general evaluation of the differences
between the target value and the present value.
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For any given threshold vectorα = (α1, · · · ,αk) ∈ Rk and constraint-target vector
h = (h1, · · · ,hk) ∈ Rk, let

V(ν ,α,h) :=
{

π ∈Π
∣∣∣Eν

π [Hi(hi τ̃N, D̃N)]≤ αi for all i (1≤ i ≤ k)
}

(1.3)

Then, for a constantg∗, called a target value, our problem is given in the following.

Problem A:

Minimize Eν
π [G(g∗τ̃N, D̃N)] subject to π ∈V(ν ,α,h).

The optimal solutionπ∗ ∈V(ν ,α,h) of Problem A, if it exists, is called aν-constraint
regret optimal policy or simply a constraint regret optimal policy.

By a slight modification of the proof of Theorem 3.2 and 3.3 in Borkar[3], we have
the following assertion.

Lemma 1.1 For any ν ∈ P(S), let ϕ(ν) :=
{

Pν
π ∈ P(Ω)

∣∣∣π ∈Π
}

. Then,ϕ(ν) is a

convex set and compact in the weak topology w.r.t. a function ofΩ.

The motivation of considering Problem A has its origin to take a comparison be-
tween the target value and the present value, that is,G by g∗τ̃N and D̃N, and also
Hi(i = 1,2, . . . ,k) by hi τ̃N andD̃N. For example, under the condition of Markov chain
corresponding a policy is possitive recurrent and ireducible, then an average criterion

suplimT
1
T

Eπ(∑t v(Xt ,∆) | i)≤ δ

⇔ Eπ [δ τ̃−∑t v(Xt ,∆)] =: Eπ [G[δ τ̃,∑t v(Xt ,∆)]]≥ 0

where we setG(x,y) := x−y and the valueδ is provided that it means a target value.
In Section 2, the saddle point statement for Problem A will be described and its

result is applied to obtain the existence of a constraint optimal policy. In Section 3,
characterization of a constraint optimal policy is given.

2 Saddle point theorem for constrained semi-MDP

Now we discuss the saddle point-theorem for Lagrangian associated with Problem A.
Firstly, for any initial distributionν ∈ P(S), LagrangeianLν is defined as follows.

Lν(π,λ ) :=
k

∑
i=1

λi(αi −Eν
π [Hi(hi τ̃N, D̃N)])−Eν

π [G(g∗τ̃N, D̃N])] (2.1)

for anyπ ∈Π andλ = (λ1, · · · ,λk)∈Rk
+. Without any confusion, “λ = (λ1, · · · ,λk)∈

Rk
+” will be written simply by “λ ≥ 0”.

The following statement on saddle points can be proved similarly to that of Luen-
berger [15] at Theorem 2 of pp.221. The proof is omitted.

Theorem 2.1 Suppose that there existsπ∗ ∈Π andλ ∗ ≥ 0 such thatLν with ν ∈ P(S)
possesses a saddle point arπ∗,λ ∗. That is,

Lν(π,λ ∗)≤ Lν(π∗,λ ∗)≤ Lν(π∗,λ ) (2.2)

for eachπ ∈ Π andλ ≥ 0. Then,π∗ solves Problem A and is aν-constrained regret
optimal policy.
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This theorem motivates us to obtain a sufficient condition for theexistence of a
saddle point associated with LagrangianLν . We need the following assumption.

Assumption 2.1 (i) There existsM1 andM2 such that

0≤ r(i,a)≤M1 < ∞, 0≤ d(i,a)≤M2 < ∞,

for all i ∈ S, a∈ A.

(ii) There existL > 0, B > 0 such thatL≤
∫ ∞

0
t Fi j (dt|a)≤ B for all i, j .

(iii) Regret-utility functionsG,Hi(i = 1,2, · · · ,k) are all lower semicontinuous.

Assumption 2.2
K := sup

π∈Π
Eν

π (N) < ∞

Now we give sufficient condition for Assumption 2.2 to hold. Definee(n),n =
1,2, · · · by e(n) = supi∈Sei(n), whereei(n) = supπ∈Π Pν

π (N > n). Then, it holds (cf.
[12]) thate(n+1)≤ e(n) ande(n+m)≤ e(n)e(m) for all m,n = 1,2, · · · .

Proposition 2.1 Each of the following condition(i) or (ii) implies to satisfy Assump-
tion 2.2.

(i) ∑∞
n=1e(n) < ∞.

(ii) There exists0 < η0 < 1 andn0 > 1 such thate(n0) < 1−η0.

Proof. Similar calculations as in [12], (ii)⇒ (i) ⇒ Assumtion 2.2. 2

Let, for eachν ∈ P(S) andπ ∈Π, define a classΦ(ν):

Fν
π (x,y) := Pν

π (τ̃N ≤ x, D̃N ≤ y) (2.3)

Φ(ν) :=
{

Fν
π (·, ·)

∣∣∣π ∈Π
}

(2.4)

Here, with some abuse of notation, we define

Lν(F,λ ) :=
∫ ∞

0

∫ ∞

0
gλ (x,y)F(dx,dy) (2.5)

for anyF ∈Φ(ν) andλ ≥ 0, where

gλ (x,y) :=
k

∑
j=1

λ j (α j −H j(h jx,y))−G(g∗x,y) (2.6)

Then, LagrangianLν definded in (2.1) is obiously rewritten byLν(π,λ ) = Lν(F,λ )
with F = Fν

π . Thus, we have the following corollary.

Corollary 2.1 Letπ∗ ∈Π andλ ∗ ≥ 0. Lν(·, ·) with ν ∈ P(S) possesses a saddle point
at π∗,λ ∗ if and only if the relation holds

Lν(F,λ ∗)≤ Lν(Fν
π∗ ,λ

∗)≤ Lν(Fν
π∗ ,λ ) (2.7)

for all F ∈Φ(ν) andλ > 0. Then,π∗ solves ProblemA and is aν-constrained regret
optimal policy.
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Lemma 2.1 For anyν ∈ P(S), it holds that

(i) Φ(ν) is convex and compact it the weak topology;

(ii) Lν(·,λ ) is concave and upper semi-continuous for eachλ ≥ 0;

(iii) Lν(F, ·) is convex and continuous for eachF ∈Φ(ν).

Proof. By Assumption 2.1 and 2.2, we observe that

0≤ Eν
π [τ̃N]≤ BK and 0≤ Eν

π [D̃N]≤ (M1 +M2B)K

for all π ∈ Π. Also, τ̃N and D̃N are continuous, i.e., they continuos functions ofΩ,
so the claim (i) follows from Lemma1.1. By using the Assumption 2.2, the claim (ii)
holds. For (iii), it is immediate from the definition of (2.5) and (2.6). 2

From Lemma 2.1, Fan’s minimax theorem(cf.[4]) could be applied to obtain the
following lemma.

Lemma 2.2 It holds, for anyν ∈ P(S),

inf
λ≥0

max
F∈Φ(ν)

Lν(F,λ ) = max
F∈Φ(ν)

inf
λ≥0

Lν(F,λ ) (2.8)

Henthforth, the common value in the both side of (2.8) will be denoted simply byL∗.
In order to prove the existence of a saddle point with (2.7), a variant of the well-known
Slater Condition is imposed.

Slater Condition: There exists aπ ∈Π such that

Eν
π [Hi(hi τ̃N, D̃N)] < αi (2.9)

for all i(1≤ i ≤ k).

SinceLν(Fν
π ,λ ) −→ ∞ as ‖λ‖ → ∞ under condition(2.9), the convex function

maxF∈Φ(ν) Lν(F,λ ) is bounded from below, so that there existsλ ∗ ≥ 0 such that

max
F∈Φ(ν)

Lν(F,λ ∗)≤ L∗ (2.10)

by (2.8). On the other hand, by Lemma2.2, there existsF∗ ∈Φ(ν) with

Lν(F∗,λ )≥ L∗ (2.11)

for all λ ≥ 0. Thus, applying Corollary 2.1, the following main theorem have obtained.

Theorem 2.2 Under Slater condition(2.9), LagrangianLν(·, ·) with ν ∈ P(S) has a
saddle point, i.e., there existsπ∗ ∈Π andλ ∗ ≥ 0 satisfying (2.2).

Also, from Theorem 2.1 and 2.2, the following corollary holds.

Corollary 2.2 Under Slater condition(2.9), there exists aν-constraint optimal policy
for ν ∈ P(S).
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3 Characterization of optimal policy

Now we will derive some theoretical results, which are usful to seek a constraint op-
timal policy. Firstly, lettingν ∈ P(S) and for eachλ ≥ 0, a plocyπ ∈ Π is said to be
gλ -optimal if

Eν
π∗ [gλ (τ̃N, D̃N)]≥ Eν

π [gλ (τ̃N, D̃N)]

for all π ∈Π, wheregλ is defind in (2.6).
The following Lemma can be easily proved as [13].

Lemma 3.1 Let π ∈Π andλ = (λ 1,λ 2, · · · ,λ k)≥ 0. Then, LagrangianL∗(·, ·) given
in (2.1) has a saddle point atπ,λ if and only if the following (i) – (iii) holds:

(i) π is gλ -optimal;

(ii) π ∈V(ν ,α,h);

(iii) ∑k
i=1 λ i

(
αi −Eν

π [Hi(hi τ̃N, D̃N)]
)

= 0.

For any Borel setX, we denote byB(X) the set of all bounded Borel measurable
functions onX. We define an operatorUλ (d)(c0,c,x| i,a) for d = (di ; i ∈ S) with di ∈
B(Rk+2

+ ) provided thatc0 ∈ R, c = (c1,c2, · · · ,ck) ∈ Rk, x∈ Randi ∈ S,a∈ A.

Uλ (d)(c0,c,x| i,a)

= ∑
j∈J

pi j (a)
∫ ∞

0
d j (c0 +g∗t,c+ht,x+ r(i,a)+d(i,a)t) Fi j (dt|a)

+ ∑
j∈J0

pi j (a)
∫ ∞

0
gλ (c0 +g∗t,c+ht, r(i,a)+d(i,a)t) Fi j (dt|a)

(3.1)

whereJ = S\J0 and

gλ (c0,c,x) =
k

∑
j=1

λ j (α j −H j(c j ,x))−G(c0,x),

c0 ∈ R, c+ht = (c1 +h1t,c2 +h2t, · · · ,ck +hkt) ∈ Rk, x∈ R.
Now we define an optimal value function starting from the initial statei ∈ S and

with (c0,c,x) ∈ Rk+2
+ by

gλ
i (c0,c,x)

:= inf
π∈Π

E{i}π

[
k

∑
j=1

λ j

(
α j −H j(c j +h j τ̃N,x+ D̃N)

)
−G(c0 +g∗τ̃N,x+ D̃N)

]

(3.2)
for i ∈ S. Then we can prove the following by the similar method of Theorem 2.1 in
[12].

Lemma 3.2 For λ ≥ 0, the set of optimal value functionsgλ = {gλ
i ; i ∈ S} is given as

a unique solution of the optimality equation;

gλ
i (c0,c,x) = min

a∈A
Uλ (gλ )(c0,c,x| i,a) (3.3)

for all i ∈ Sand(co,c,x) ∈ Rk+2
+ .
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In order to determine an optimal policy, we define the set ofλ -optimal actions, that
is, Aλ (c0,c,x| i), by

Aλ (c0,c,x|i) := argmina∈AUλ (gλ )(c0,c,x| i,a),

wheregλ = (gλ
i ; i ∈ S) is a unique solution of (3.3 ). Then we have obtained the next

theorem.

Theorem 3.1 For anyν ∈P(S), a policyπ ∈V(ν ,α,h) is a constrained optimal policy
if and only if there existsλ ∗ ≥ 0 such that

(i) Pν
π∗

(
∆t ∈ Aλ ∗(g∗τ̃t ,hτ̃t , D̃t |Xt)

)
= 1 for all t ≥ 0;

(ii) ∑k
i=1 λ ∗i

(
αi −Eν

π∗
[
Hi(hi τ̃N, D̃N

])
= 0

Proof. Applying the results of Theorem 2.1 in [12], it can be shown thatπ∗ is gλ ∗-
optimal if and only if the above (i) holds. So this theorem could be proved by using
Lemma 3.1. 2
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