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Abstract

We consider a constrained regret-optimization problem for semi-Markov deci-
sion processes. The expected regret-utility of the total reward is minimized subject
to multiple expected regrete-utility constraints and the planning horizon is a reach-
ing time to a given absorbing subset. By introducing a corresponding Lagrange
function, a saddle-point theorem is proved. The existence of a constrained optimal
policy is characterized by optimal action sets specified with a parametric utility.
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1 Introduction and notation

In decision making, it may be more approciate to evaluate each decision or policy
under a regret-optimality criterion. Inour previous work[12], we had considered the
general regret-constraint problem for absorbing semi-Markov decision processes(semi-
MDP’s), in which the expected utility of the total reward earned until the stopping time

is minimized. Its regret-optimal policy is characterized by the corresponding optimality
equation.

In this paper, we treat the constrained optimization problem for the same model
as [12]. However, it often occurs, in a social life or in a business that that we should
maxmimize the reward under several utility functions. For example, in the group de-
cision making with different utility functions each player would like to maximize own
specified utility function. In such a case, not only one type of expected utility but
keeping other types higher than some given bound.

Here, we consider the constrained regret-optimization problem for semi-MDPs in
which the expected regret-utility of the total reward earned until the reaching time
to a given absorbing subset is minimized subject to multiple expected regret-utility
constraints and the objectives is to show that the Lagrange approach to the utility-
constraints case is made successfully. In fact, by introducing a corresponding Lagrange
function, a saddle point theorem is obtained and the existence of a constrained optimal



policy had proved. Also a constrained optimal policy is characterized by optimal action
sets specified tih a paremtric utility.

Similar to the previous work[12], we do not restrict the type of regret-utility func-
tions and it is expected to enlarge the practical application of the optimization problem.
Fro the utility discussions for MDPs and constrained MDPs, refer to [5, 6, 8, 11, 13]
and their references. In remainder of this section, a constrained regret-utility optimiza-
tio problem is formulated under the absorbing semi-MDPs model.

A semi-MDP is specified by the next five components:
(i) acountable state spac®={0,1,2,---},
(i) afinite action spaceA={1,2,---,m},m< oo,
(i) atransition probability distributionf(pij(a); j € S)|i € Sac A},
(iv) adistribution function{F;(-|a)|i, j € S a < A} of the time between transitions,

(v) animmediate rewardand a reward raté which are functions fronsx Ato R,
whereR, = [0, ).

When the system is in statez S and actiona € A is taken, then it moves to a
new statej € Swith the sojourn timer, and the reward(i, a) +d(i, a)T is obtained,
where the new statg and the sojourn time are distributed withp;.(a) andFj(-|a)
respectively. This process is repeated from the new §tats.

The sample space is the product sp@ce (Sx Ax R;)”. Let Xy, Ay andtnyq be
random quantities such th&g(w) = Xn, An(w) = ap and Tp;1(w) = thyq for all w =
(X0, @0, t1, X1, &1, t2,---) € Qandn=0,1,2,---. LetH, = (Xo0,00,T1, -, %) be a
history until timen. A policy = (1, 11, - - - ) is a sequence of conditional probabilities
m, = ,4(- | Hp) such thatg, (A | Hy) = 1 for all historiesH, € (Sx Ax R;)" x S The
set of all policies is denoted byl. A policy m= (1, m4,---) is called stationary if
there exists a functiorf : S— A such thatm,({f(Xn)} | Hn) = 1 for all n > 0 and
Hn € (SxAx R{)"x S Such a policy is denoted bfy”.

For anym € I, we assume that
(i) Prob(Xni1= j| Xo, o, T, -+, X =1, By = @) = pij (3)
(i) Prob(thi1 <t Xo, Do, T1, -+, Xn =i,An=a, X1 = j) = Fj(t]a)
foralln>0,i,j € Sandac A.

For any Borel se, we denote by(D) the set of all probility measures @ From
(i) and (ii), we can define the probability meas®g< P(Q) with an initial distribution
v € P(S) viz. Prob(Xp =1i) = v(i),i € Sandme .

For any subsely C S, called as absorbing set, let

N :=min{n > 0|X, € Jo},wheremin® = . (1.2)

The present valueﬁg :£=1,2,---} and the total lapsed timg, : £ =1,2,---} of the
process{ Xn, An, Tnt1 : N=0, 1, 2,---} until the ¢-th time are defined respectively by

Dy 1= 516 (F(Xn, &n) + Tnr2d(Xn, &n))  and

(1.2)
=St ((>1).

LetG,Hi(i=1,2,---,k) : Rt x Ry — R be Borel-measurable function, which will be
called regret-utility functions as describing the general evaluation of the differences
between the target value and the present value.



For any given threshold vectar = (ay,-- -, ax) € R¢ and constraint-target vector
h=(hy,---,h) € R let

V(v,a,h) = {ne M ] EY[Hi(hn,Dn)] < aiforalli (1< < k)} (1.3)

Then, for a constarg*, called a target value, our problem is given in the following.
Problem A:

Minimize EY[G(g*Ty,Dn)]  subjectto meV(v,a,h).
The optimal solutiorrt* € V (v, a, h) of Problem A, if it exists, is called a-constraint
regret optimal policy or simply a constraint regret optimal policy.
By a slight modification of the proof of Theorem 3.2 and 3.3 in Borkar[3], we have
the following assertion.
Lemma 1.1 For any v € P(S), let ¢(v) = {Pg e P(Q) ‘ me I'I}. Then,¢(v) is a
convex set and compact in the weak topology w.r.t. a functi@h of

The motivation of considering Problem A has its origin to take a comparison be-
tween the target value and the present value, thaGiby g*Ty and Dy, and also
Hi(i=1,2,...,k) by hjTy andDy. For example, under the condition of Markov chain
corresponding a policy is possitive recurrent and ireducible, then an average criterion

suplimr %ETI(Zt v(%,A) i) <o
< EqoT — 3 v(%,A)] =: Ex[G[OT, 3¢ V(%,A)]] >0

where we se6(x,y) ;= x—y and the valu® is provided that it means a target value.

In Section 2, the saddle point statement for Problem A will be described and its
result is applied to obtain the existence of a constraint optimal policy. In Section 3,
characterization of a constraint optimal policy is given.

2 Saddle point theorem for constrained semi-MDP
Now we discuss the saddle point-theorem for Lagrangian associated with Problem A.

Firstly, for any initial distributionv € P(S), Lagrangeiarn.’ is defined as follows.

k
LY (mA) = .Zl)“(a‘ — Ex[Hi(hiTn, Dn)]) — Ex[G(g"Tn, Dn))] (2.1)

foranyme MandA = (Ag,--- ,Ax) € R‘fF Without any confusion, A = (Aq,--- ,Ax) €
RE” will be written simply by “A > 0.

The following statement on saddle points can be proved similarly to that of Luen-
berger [15] at Theorem 2 of pp.221. The proof is omitted.

Theorem 2.1 Suppose that there exists € 1 andA* > 0 such that.¥ withv € P(S)
possesses a saddle pointmf, A*. That is,

LY(mA*) < LY(1,A%) < LY (1, A) 2.2)

for eachmre M andA > 0. Then,t* solves Problem A and is @-constrained regret
optimal policy.



This theorem motivates us to obtain a sufficient condition for theexistence of a
saddle point associated with Lagrangiah We need the following assumption.

Assumption 2.1 (i) There existd; andM, such that
0<r(i,a)<Mp<oo, 0<d(i,a) <Mz<oo,
forallie SacA
(i) There exist. > 0, B > 0 such thatL < /Oo?[ Fj(dtja) <Bforall i, j.
(iii) Regret-utility functionss, H;(i = 1,2,--- k) are all lower semicontinuous.

Assumption 2.2
K := supEp(N) <

el

Now we give sufficient condition for Assumption 2.2 to hold. Defe{a@),n =
1,2,--- by e(n) = supsei(n), wheree (n) = sup,n Pr(N > n). Then, it holds (cf.
[12]) thate(n+ 1) < e(n) ande(n+m) < e(n)e(m) forallmn=1,2,---.

Proposition 2.1 Each of the following conditiofi) or (ii) implies to satisfy Assump-
tion 2.2.

() Yno1€(n) <co.
(i) There exist® < ng < 1 andng > 1 such thaie(ng) < 1— no.
Proof. Similar calculations as in [12], (i (i) = Assumtion 2.2. O

Let, for eachv € P(S) andm e I, define a clas®(v):

FY(x,y) :=Py(Tn < X,Dn <) (2.3)
o(v):= {F¥(,) [men} (2.4)

Here, with some abuse of notation, we define
LY(FA) == /0 /0 i (%,y) F(dx dy) (2.5)

foranyF € ®(v) andA > 0, where
k
9 (xY) == 3 Aj(aj—Hj(hxy)) - G(g"x.y) (2.6)
=1

Then, Lagrangiah.V definded in (2.1) is obiously rewritten By’ (rr,A) = LY(F,A)
with F = FY. Thus, we have the following corollary.

Corollary 2.1 Letrr* € MandA* > 0. LY(-,-) with v € P(S) possesses a saddle point
at i, A* if and only if the relation holds

LY(F,A™) < LY(Fy,A*) <LY(Fp,A) (2.7)

forall F € ®(v) andA > 0. Then,it* solves Problem®\ and is av-constrained regret
optimal policy.



Lemma 2.1 For anyv € P(S), it holds that
(i) @(v)is convex and compact it the weak topology;
(i) LY(-,A) is concave and upper semi-continuous for each 0;
(i) LY(F,-) is convex and continuous for eaBhe ®(v).

Proof. By Assumption 2.1 and 2.2, we observe that
0<Ep[tn] <BK and 0<Ep[Dy] < (Mi+MB)K

for all me M. Also, Ty andIS,:l are continuous, i.e., they continuos functionSpf
so the claim (i) follows from Lemmal.1l. By using the Assumption 2.2, the claim (ii)
holds. For (iii), it is immediate from the definition of (2.5) and (2.6). O

From Lemma 2.1, Fan’s minimax theorem(cf.[4]) could be applied to obtain the
following lemma.

Lemma 2.2 It holds, for anyv € P(S),

inf _max LY(F,A) = max inf LY(F,A) (2.8)
A>0Fed(v) Fed(v)A>0

Henthforth, the common value in the both side of (2.8) will be denoted simply* by
In order to prove the existence of a saddle point with (2.7), a variant of the well-known
Slater Condition is imposed.

Slater Condition: There exists ar € I such that
EY[Hi(hiTn,Dn)] < @i (2.9)
foralli(1<i<Kk).

SinceLY(FY,A) — o as ||A|| — « under condition(2.9), the convex function
max=co(v) LY (F,A) is bounded from below, so that there exidts> 0 such that

max LY(F,A*) < L* (2.10)
Fed(v)

by (2.8). On the other hand, by Lemma2.2, there eXists ®(v) with
LY(F*,A) > L* (2.11)
forall A > 0. Thus, applying Corollary 2.1, the following main theorem have obtained.

Theorem 2.2 Under Slater condition(2.9), Lagrangial’(-,-) with v € P(S) has a
saddle point, i.e., there exists € N andA* > 0 satisfying (2.2).

Also, from Theorem 2.1 and 2.2, the following corollary holds.

Corollary 2.2 Under Slater condition(2.9), there existvaconstraint optimal policy
forv e P(S).



3 Characterization of optimal policy

Now we will derive some theoretical results, which are usful to seek a constraint op-
timal policy. Firstly, lettingv € P(S) and for eaclA > 0, a plocym € IM is said to be
0, -optimal if . .

Er (93 (TN, Dn)] > Ex[ga (Tn, Dn))

for all Te M, whereg, is defind in (2.6).
The following Lemma can be easily proved as [13].

Lemma 3.1 Let7te MandA = (A1,A2,---,Ak) > 0. Then, Lagrangiar.*(-,-) given
in (2.1) has a saddle point &, A if and only if the following (i) — (iii) holds:

(i) Tis gy-optimal;
(i) TeV(v,a,h);
(i) TE A (ori — EY[Hi (T, 6@)]) —0.

For any Borel seX, we denote byB(X) the set of all bounded Borel measurable
functions onX. We define an operataf, (d)(co,c, x|i,a) for d = (d;;i € S) with d; €
B(R*2) provided thaty € R, ¢ = (€1,C2,-+-,¢) € RS, x€ Randi € Sac A

U, (d)(co,c,x]i,a)
_ %pij(a)/o dj (co+g't,c+ ht,x+r(i,a) + d(i,a)t) F; (dt|a) a1

+ pij(a) /Omg,\ (Co+g't,c+ht,r(i,a)+d(i,a)t) F;j(dt|a)

i€do
whered = S\ Jp and
Aj (aj —Hj(cj, %)) — G(co, %),

M =

ax (Co,C,X) =
=1
Co€R c+ht=(c +hgt,co+hot, -+, o+ hyt) € R, xe R
Now we define an optimal value function starting from the initial stateS and
with (co, ¢,x) € R by

g (co,C,%)
[k __ ~ __
= 7|T|gfH E,{T'} Lzl)\,- (a,— —Hj(cj+hjn, x+ DN)> —G(co+g TN, X+ Dn)

(3.2)
fori € S’ Then we can prove the following by the similar method of Theorem 2.1 in
[12].

Lemma 3.2 For A > 0, the set of optimal value functiogd = {gi" ;i € S}is given as
a unique solution of the optimality equation;

o (co,¢,x) =minUy (g)(co.c. x|ia) (3.3)

for all i € Sand(c,,¢,x) € REF2.



In order to determine an optimal policy, we define the set-oiptimal actions, that
is, A* (o, c,x|i), by

A (co, ¢, (i) 1= argmin,.aU, (") (co, ¢, X|i, ),

whereg! = (gi" ;i € ) is a unique solution of (3.3). Then we have obtained the next
theorem.

Theorem 3.1 For anyv € P(S), a policyrre V (v, a, h) is a constrained optimal policy
if and only if there existd * > 0 such that

(i) Pr (AtGA“(g*ﬁ,hﬁ,bﬂxt)):l forall t>0:

(i) sk, A* (ai —EY. [Hi (hTn, Bﬂ) ~0

Proof. Applying the results of Theorem 2.1 in [12], it can be shown tiiais g) - -
optimal if and only if the above (i) holds. So this theorem could be proved by using
Lemma 3.1. O
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