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� �� (Tetsuihiro IKI)Faulty of Eduation and Culture, Miyazaki University���������� ������ �� �� (Masayuki HORIGUCHI)General Eduation, Yuge National College of Maritime Thehnology� �� �!�	 "#�$ %Masami YASUDA&Faulty of Siene, Chiba University� �� ����	 '( �) (Masami KURANO)Faulty of Eduation, Chiba UniversityAbstratIn this note, as a sequel to our previous work[7℄, we are onerned with adaptive modelsfor unertain Markov deision proesses with regularly ommuniating struture where thestate spae is deomposed into a single ommuniating lass and a absolutely transientlass.We give a pattern-matrix learning algorithm whih �nds the regularly ommuniatingstruture, by whih an asymptoti sequene of adaptive properties with nearly average-optimal properties is onstruted. A numerial experiment is given.Keywords: adaptive Markov deision proesses, pattern-matrix learning algorithm, average-optimal adaptive poliy, regularly ommuniating ase.1 Introdution and notationIn our previous work[7℄, we onsidered the adaptive Markov deision proesses(MDPs) in whihthe state spae is a single ommuniating lass and onstruted an average-optimal adaptivepoliy of reward-penalty types(f. [9, 10℄) by applying the perturbation theory(f. [16℄).In this note, as a sequel to [7℄, we are onerned with adaptive models for unertain MDPswith regularly ommuniating struture where the state spae is assumed to be deomposed intoa single ommuniating lass and a transient lass(f. [1, 6, 11℄). In this ase, the orrespondingadaptive poliy will be ompelled to learn the pattern of the struture.Here, we give a pattern-matrix learning algorithm for regularly ommuniating struture,by whih an asymptoti sequene of adaptive properties with nearly average-optimal propertiesis onstruted by extending the results of [7℄.For general disussions of adaptive MDPs, refer to [4, 5, 12, 13, 18℄ and for an approah bythe neuro-dynami programming refer to [2, 8, 17℄.In the reminder of this setion, we formulate the adaptive MDPs with unertain transitionmatries.Consider a ontrolled dynami system with �nite state spae S = f1; 2; : : : ; Ng, ontainingN < 1 elements. For eah i 2 S, the �nite set A(i) denotes the set of available ations atstate i. Let Q denote the parameter spae of unknown transition matries, i.e.,Q = fq = (qij(a))jqij(a) = 0;Xj2S qij(a) = 1 for i; j 2 S and a 2 A(i)g: (1.1)The sample spae is the produt spae 
 = (S � A)1 suh that the projetions Xt;�t onthe t-th fators S;A desribe the state and ation at the t-th stage of the proess(t = 0). Let1



� denote the set of all poliies, i.e., for � = (�0; �1; : : :) 2 �, let �t 2 P (Aj(S �A)t � S) for allt = 0, where, for any �nite sets X and Y , P (XjY ) denotes the set of all onditional probabilitydistribution on X given Y . A poliy � = (�0; �1; : : :) is alled randomized stationary if aonditional probability  = ((�ji) : i 2 S) 2 P (AjS) suh that �t(�jx0; a0; : : : ; xt) = (�jxt) forall t = 0 and (x0; a0; : : : ; xt) 2 (S �A)t � S: Suh a poliy is simply denoted by . We denoteby F the set of funtions on S with f(i) 2 A for all i 2 S. A randomized stationary poliy is alled stationary if there exists a funtion f 2 F with (ff(i)gji) = 1 for all i 2 S, whih isdenoted simply by f .We will onstrut a probability spae as follows: For any initial state X0 = i; � 2 � anda transition law q = (qij(a)) 2 Q , let P (Xt+1 = jjX0;�0; : : : ;Xt = i;�t = a) = qij(a) andP (�t = ajX0;�0; : : : ;Xt = i) = �t(ajX0;�0; : : : ;Xt = i) (t = 0): Then, we an de�ne theprobability measure P�(�jX0 = i; q) on 
. For a given reward funtion r on S � A, we shallonsider the long-run expeted average reward: (i; qj�) = lim infT!1 1T + 1E�  TXt=0 r(Xt;�t) ��� X0 = i; q! (1.2)where E�(�jX0 = i; q) is the expetation operator with respet to P�(�jX0 = i; q).Let D be a subset of Q . Then, the problem is to maximize  (i; qj�) over all � 2 � for anyi 2 S and q 2 D. Thus, denoting the optimal value funtion as (i; q) = sup�2� (i; qj�); (1.3)a poliy �� 2 � will be alled q-optimal if  (i; qj��) =  (i; q) for all i 2 S and alled adaptivelyoptimal for D if �� is q-optimal for all q 2 D.Let q 2 Q . A subset E � S is alled a ommuniating lass for q if(i) for any i; j 2 E, there exists a path in E from i to j with positive probability, rewrittenby \i! j", i.e., it holds thatqi1i2(a1)qi2i3(a2) � � � qil�1il(al�1) > 0 (1.4)for some fi1 = i; i2; : : : ; il = jg � E and ak 2 A(ik) and 2 5 l 5 N; and(ii) E is losed, i.e., Pj2E qij(a) = 1 for i 2 E; a 2 A(i).The transition matrix q 2 Q is said to be regularly ommuniating if there exists an �E $ Ssuh that(i) �E is a ommuniating lass for q and(ii) T = S � �E is an absolutely transient lass, i.e.,P�(Xt 2 �E for some t = 1jX0 2 T ) = 1 (1.5)for all � 2 �For a regularly ommuniating q 2 Q ; this orresponding ommuniating lass �E will be de-noted by �E(q) depending on q 2 Q . For any i0 2 S, we denote by Q�(i0) the set of regularlyommuniating q 2 Q with i0 2 �E(q). 2



Let n(D) denotes the number of elements in a set D. For any q 2 Q�(i0), the pattern-matrixM(q) (f. [6℄) orresponding with q is generally represented as follows:M(q) = � E OR K �where E is an n( �E(q)) � n( �E(q))-matrix and R is an n(S � �E(q)) � n( �E(q))-matrix whoseelements of both E and R are all 1 and that i! j means that the (i; j) element of M(q) is 1.The adaptive poliy for q 2 Q�(i0) will be neessary to �nd the pattern-matrixM(q), whosealgorithm will be alled the pattern-matrix learning one.The sequene of poliies f~�ng1n=0 � � is alled an asymptoti sequene of adaptive poliieswith nearly optimal properties for D � Q and E � S iflimn!1 (i; qj~�n) =  (i; q) (1.6)for all q 2 D and i 2 E.In [9℄, an adaptively optimal poliy forQ+ := fq = (qij(a)) 2 Q jqij (a) > 0 for all i; j 2 S and a 2 A(i)g; (1.7)was onstruted by applying the value iteration and poliy improvement algorithm (f. [3℄)whih was extensively applied to the ommuniating ase of multi-hain MDPs in Iki et. al. [7℄.In this note, using the method of pattern-matrix learning we will onstrut an asymptotisequene of adaptive poliies with nearly optimal properties for Q� (i0) with i0 2 S, whih isthought of as a wider lass for unertain MDPs than the ommuniating ase treated in [7℄.In order to treat with the regularly ommuniating ase with q 2 Q�(i0), we use the so-alledvanishing disount approah whih studies the average ase by onsidering the orresponding(1��)-disounted one as letting � ! 0. The expeted total (1��)-disounted reward is de�nedby v� (i; qj�) = E� 1Xt=0(1� �)tr(Xt;�t)jX0 = i; q! (1.8)for i 2 S; q 2 Q and � 2 �, and v� (i; q) = sup�2� v� (i; qj�) is alled a (1� �)-disounted valuefuntion, where (1� �) 2 (0; 1) is a given disount fator.Let B(S) be the set of all funtions on S. For any q = (qij(a)) 2 Q and � 2 (0; 1), we de�nethe operator U�fqg : B(S)! B(S) byU�fqgu(i) = maxa2A 8<:r(i; a) + (1� �)Xj2S qij(a)u(j)9=; (1.9)for all i 2 S and u 2 B(S). We have the following.Lemma 1.1 ([14, 15℄). It holds that(i) the operator U�fqg is a ontration with the modulus (1� �),(ii) the (1� �)-disount value funtion v� (i; q) is a unique �xed point of U�fqg, i.e.,v� = U�fqgv� ; (1.10)3



(iii) v� (i; q) = v� (i; qjf� ) and lim�!0 �v� (i; q) =  (i; q); where f� is a maximizer of the right-handside in (1.10).In Setion 2, some elementary lemmas are given whih show the e�etiveness of pattern-matrix leaning algorithm developed in the sequel. Setion 3 is devoted to the onstrution ofadaptive poliies with nearly average-optimal properties for Q� (i0). A numerial experiment isgiven in Setion 4.2 Preliminary lemmasIn this setion, several lemmas are given whih are used in Setion 3.Let i0 2 S: For any q 2 Q� (i0) and E $ �E(q), we de�ne the sequene Jk(E) (k = 1; 2; : : :)iteratively byJ1(E) = fi 2 Ej Xj2 �E(q)�E qij(a) > 0 for some a 2 A(i)gandJk(E) = fi 2 E � k�1[l=1 Jl(E)j Xj2Jk�1(E) qij(a) > 0 for some a 2 A(i)g (k = 2): (2.1)Letting K( �E(q)) = f(i; a; j)jpij (a) > 0; i; j 2 �E(q) and a 2 A(i)g, put Æ := minpij(a) wherethe minimum is taken over (i; a; j) 2 K( �E(q)). Then, from the de�nition of ommuniatinglass �E(q), the following an be easily shown.Lemma 2.1. For any q 2 Q� (i0) with i0 2 S and E $ �E(q); there exists l(E) (1 5 l(E) 5 N)for whih Jk(E) 6= ; (k = 1; 2; : : : ; l(E)) and Jl(E)+1(E) = ;:Lemma 2.2. Let q 2 Q� (i0) with i0 2 S. Let a poliy ~� = (~�0; ~�1; : : :) and a dereasingsequene of positive numbers f"tg1t=0 satisfy that for eah t = 0 ~�t(ajht) = "t with a 2 A(xt)and ht = (x0; a0; x1; : : : ; xt) 2 Ht: Then, it holds that for any E $ �E(q);P~�(Xt+l 2 �E(q)�E for some l(1 5 l 5 N)jXt 2 E) = (Æ"t+N )N : (2.2)Proof. By Lemma 2.1, it holds thatthe left-hand side of (2.2) = ("tÆ)("t+1Æ) � � � ("t+l(E)Æ)= (Æ"t+N )N ;whih ompletes the proof.For q 2 Q� (i0) with i0 2 S, a sequene of stopping times f�tg and subsets fE�tg � �E(q)will be de�ned as follows:E0 := fi0g; T0 := �E(q)�E0; �1 := minftjXt 2 T0; t > 0g;E�1 = E0 [ fX�1g; T�1 := �E(q)�E�1 ;and iteratively for n = 2; 3; : : :;�n := minftjXt 2 T�n�1 ; t > �n�1g; E�n = E�n�1 [ fX�ng; T�n = �E(q)�E�n ;where min ; =1: (2.3)For any E � �E(q), let �n(E) = minfn = 1jE�n = �E(q)g. If �n(E) < 1, we an �nd thepattern-matrix M(q): Here, we have the following.4



Lemma 2.3. Let q 2 Q� (i0) with i0 2 S and ~� satisfy ondition in Lemma 2.2 withP1t=0 "Nt =1. Then, for any E $ �E(q) it holds that(i) P~�(�n(E) <1jX0 = i0; q) = 1, and(ii) for any k 5 �n(E); P~�(�k <1jX0 = i0; q) = 1:Proof. For any E $ �E(q), from Lemma 2.2 and P1t=0 "Nt =1 it follows thatP~�(Xt+l 2 E for all l = 1jXt 2 E; q) 5 1Yl=1(1� ÆN"Nt+lN ) 5 e�ÆN 1Xl=1 "Nt+lN = 0: (2.4)So, taking E = E0 in (2.4), we haveP~�(�1 <1jX0 2 E0; q) = 1� P~�(�1 =1jX0 2 E0; q)= 1� P~�(Xt 2 E0 for all t = 1jX0 2 E0; q)= 1:For (ii), indutively on k (k = 2; 3; : : :), if E�k�1 $ �E(q), we have from (2.4) thatP~�(�k <1jX0 2 E0; q)= 1Xl=1 P~�(�k�1 = ljX0 2 E0; q) � P~�(Xt+l 2 �E(q)�El for some 0 < t <1jXl 2 El; q)= 1Xl=1 P~�(�k�1 = ljX0 2 E0; q)= P~�(�k�1 <1jX0 2 E0; q)= 1: (2.5)
Obviously, (i) follows from (ii), whih ompletes the proof.We note that a sequene f(1 + t)�Ng1t=0 satis�es Assumption onerning f"tg1t=0 given inLemma 2.3.3 Pattern-matrix learning algorithmsIn this setion, we give a pattern-matrix learning algorithm by whih an asymptoti sequeneof adaptive poliies with nearly average-optimal properties for Q�(i0) with i0 2 S is given.For any sequene fbng1n=0 of positive numbers with b0 = 1; 0 < bn < 1 and bn > bn+1 forall n = 1; let � be any stritly inreasing funtion that � : [0; 1℄ ! [0; 1℄ and �(bn) = bn+1 forall n = 0.Here, we onsider the following iterative sheme alled a pattern-matrix learning algorithmwith i0 2 S; fbng and � 2 (0; 1), denoted by PMLA(i0;fbng; �).PMLA(i0;fbng; �):1. Set E0 = fi0g; T0 = S � E0; ~v0(i) = 0 (i 2 E0), X0 = i0 and ~��0 (ajX0) = n(A(i0))�1 fora 2 A(i0): 5



2. Suppose that En � S; Tn = S�En and f~vn(i) : i 2 Eng are given. Moreover, suppose thatthe n-th deision rule ~��n(aji) = Prob.(�n = ajHn�1;�n�1;Xn = i) (i 2 En; a 2 A(i))are given, where Hn�1 = (X0;�0;X1; : : : ;Xn�1) is a history until the (n� 1)-th step.3. Choose an ation �n+1 2 A(Xn) from ~�n(�jHn). Then, aording to the value of Xn+1,we put En+1 = En [ fXn+1g if Xn+1 2 Tn and En+1 = En if Xn 2 En.Calulate Nn+1(i; jja) =Pnt=0 IfXt=i;�t=a;Xt+1=jg and Nn+1(ija) =Pnt=0 IfXt=i;�t=ag fori; j 2 En+1 and a 2 A(i).Set qn+1 = (qn+1ij (a)) byqn+1ij (a) = 8<:Nn+1(i; jja)Nn+1(i; a) if Nn+1(ija) > 0;q0j otherwise; (i; j 2 En+1; a 2 A(i)) (3.1)where q0 = (q0j : j 2 En+1) is any distribution on En+1 with q0j > 0 for all i 2 En+1.4. For eah i 2 En+1; hoose ~an+1(i) whih satis�es~an+1(i) 2 argmaxa2A(i) fr(i; a) + (1� �) Xj2En+1 qn+1ij (a)~vn(j)gand update ~��n+1(aji) = Prob.(�n+1 = ajHn;�n+1;Xn+1 = i) as follows:~��n+1(aiji) = (1�Pa6=ai �(~��n(aji)) (ai = ~an+1(i))�(~��n(aiji)) (ai 6= ~an+1(i)): (3.2)Moreover, put ~vn+1 = U�fqn+1g~vn on En+1.5. Set n n+ 1 and return to step 3.We need the following ondition on fbng.Condition (�) bn ! 0 as n!1 and 1Xn=0 bNn =1: (3.3)The following theorem says that the poliy ~�� = (~��0 ; ~��1 ; : : :) onstruted byPMLA(i0;fbng; �) has nearly average-optimal properties for Q� (i0) when � ! 0.Theorem 3.1. Under ondition (�), a sequene f~��ng1n=1 with �n ! 0 as n ! 1 is anasymptoti sequene of adaptive poliies with nearly average-optimal properties for Q� (i0):Proof. Under ondition (�), the poliy ~�� = (~��0 ; ~��1 ; : : :) onstruted inPMLA(i0;fbng; �) satis�es assumptions in Lemma 2.3. So, by Lemma 2.3 we observe thatPMLA(i0;fbng; �) �nds the pattern �E(q) with P~�� (�jX0 = i0; q)-probability 1, i.e.,En = �E(q) for all n = �n(E0);where �n(E0) is given in Lemma 2.3.Thus, a learning algorithm for ommuniating MDPs on �E(q) for q 2 Q(i0 ), whih wasdeveloped in [7℄ using the vanishing disount approah(Lemma 1.1), are appliable to thepattern-matrix learning ase, whih ompletes the proof.6



4 A numerial experimentIn this setion, we give a simulation result for pattern-matrix learning algorithm.Consider the six-state MDPs with S = f1; 2; 3; 4; 5; 6g, where data for simulation are givenin Table 4.1. Table 4.1: Data of simulated MDPsstate ation transition probabilities qij(a) rewardi a 2 A(i) j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 r(i; a)1 1 0 12 0 12 0 0 92 14 0 14 0 12 0 102 1 0 12 0 0 14 14 52 0 0 1 0 0 0 23 1 0 0 25 0 35 0 72 0 12 0 0 0 12 84 1 12 0 12 0 0 0 22 0 14 0 14 12 0 125 1 0 14 0 0 12 14 62 0 12 12 0 0 0 2.53 0 12 0 0 12 0 2.256 1 0 12 0 0 14 14 142 0 0 12 0 0 12 8We denote by ~ n the average present value until n-th time, de�ned by~ n = 1n n�1Xt=0 r(Xt;�t) (n = 1):To alulate the quantity expliitly, we set E0 = f2g. We use a stritly inreasing funtion� suh that �(x) = � xN1 + xN �1=Nwhere N denotes the number of states in S.The pattern matrix M(q) and reordered matrix M orresponding to ommuniating statesare easily omputed, whih are shown as follows.7



M = 1 2 3 4 5 61 0BBBBBB� 1 1 1 1 1 00 1 1 0 1 10 1 1 0 1 11 1 1 1 1 00 1 1 0 1 10 1 1 0 1 1
1CCCCCCA ;23456 M = 2 3 5 6 1 42 0BBBBBB� 1 1 1 1 0 01 1 1 1 0 01 1 1 1 0 01 1 1 1 0 01 1 1 1 1 11 1 1 1 1 1
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f2; 12gFigure 4.1: Transition diagrams of numerial experiment. The �rst quantity in brakets nearthe ar is ation number and the seond one is its transition probability if the ation is hosen.Now, we make numerial experiments with vanishing parameter � = 0:1 and 0:01 and showthe results given in Table 4.2. and Fig. 4.2.Table 4.2: The simulation value of ~ n and ~��n for eah � = 0:1; 0:01.values HHHHH� n 103 5� 103 104 5� 104 105 106 107~ n 0.10 6.403347 6.672316 6.827892 6.965801 7.013102 7.158738 7.2829860.01 6.365634 6.651570 6.816118 6.963271 7.011827 7.158618 7.282973deision HHHHH� n 103 5� 103 104 5� 104 105 106 107~��n(1j2) 0.10 0.661198 0.755328 0.783315 0.835058 0.853137 0.899994 0.9318700.01 0.493097 0.749621 0.780978 0.834723 0.852989 0.899984 0.931870~��n(2j3) 0.10 0.685394 0.758424 0.784669 0.835262 0.853228 0.900001 0.9318710.01 0.685111 0.758380 0.784649 0.835259 0.853226 0.900000 0.931871~��n(1j5) 0.10 0.422566 0.527159 0.574120 0.671281 0.706794 0.800024 0.8637430.01 0.422566 0.527159 0.574120 0.671281 0.706794 0.800024 0.863743~��n(1j6) 0.10 0.686510 0.758602 0.784748 0.835274 0.853233 0.900001 0.9318710.01 0.686510 0.758602 0.784748 0.835274 0.853233 0.900001 0.9318718
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